Skip to main content
. 2023 Mar 24;19(14):4668–4677. doi: 10.1021/acs.jctc.2c01227

Table 1. Results of the Trained Models on the Validation and Test Data Sets for Various Architecturesa.

  Validation
Test
Model ↑Acc. ↓Loss ↑r2 ↑Acc. ↓Loss ↑r2
GCSConv 0.44 0.23 0.76 0.46 0.23 0.77
GCSConv (no edges)b 0.60 0.56 0.44 0.60 0.54 0.47
GCSConv (extra nodes)c 0.75 0.72 0.31 0.75 0.66 0.34
GCNConv 0.59 0.46 0.57 0.59 0.45 0.55
Dense 0.00 1.00 –1.0 0.00 1.00 –1.00
a

Data Set is Inline graphic.

b

All edges were simply set to 1.

c

Number of nodes was increased from 23 to 291. Evaluation time increases to 14.1 ms per variant.