Skip to main content
. 2023 Mar 24;19(14):4668–4677. doi: 10.1021/acs.jctc.2c01227

Table 3. Performance of the GCN and LM-GCN Models on Various Data Setsa.

    GCN model
LM-GCN model
Data set
Train
Validation
Train
Validation
Train Eval. ↑r2 ↓loss ↑r2 ↓loss ↑r2 ↓loss ↑r2 ↓loss
D1 D1 0.819 0.182 0.813 0.188 0.808 0.158 0.805 0.194
D2 D2 0.574 0.427 0.552 0.435 0.667 0.310 0.651 0.356
D3 D3 0.502 0.498 0.497 0.489 0.642 0.347 0.625 0.368
D4 D4 0.596 0.405 0.588 0.405 0.601 0.399 0.597 0.405
D5 D5 0.786 0.213 0.778 0.227 0.852 0.152 0.855 0.147
D5 D1 0.602 0.403 0.638 0.361
D4 D3 0.396 0.587 0.449 0.542
a

The architecture of the LM-GCN model is shown in Figure 6. The size of the data sets is 10,000 examples, with 80:20 split for training and validation, respectively.