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Abstract

Almost all biological reactions are pH dependent and understanding the origin of pH dependence 

requires knowledge of the pKa’s of ionizable groups. Here we report a new edition of PKAD, the 

PKAD-2, which is a database of experimentally measured pKa’s of proteins, both wild type and 

mutant proteins. The new additions include 117 wild type and 54 mutant pKa values, resulting 

in total 1742 experimentally measured pKa’s. The new edition of PKAD-2 includes 8 new wild 

type and 12 new mutant proteins, resulting in total of 220 proteins. This new edition incorporates 

a visual 3D image of the highlighted residue of interest within the corresponding protein or 

protein complex. Hydrogen bonds were identified, counted, and implemented as a search feature. 

Other new search features include the number of neighboring residues <4A from the heaviest 

atom of the side chain of a given amino acid. Here, we present PKAD-2 with the intention to 

continuously incorporate novel features and current data with the goal to be used as benchmark for 

computational methods.
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1. Introduction

Ionizable residues play an integral part in the structure, function, and solubility of 

monomeric proteins and oligomeric protein complexes, and are the key factor contributing 

to pH-dependence of biological processes (1; 2; 3; 4). Undoubtably salt-bridges, a pair of 
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oppositely charged amino acids, are frequently found to be essential for structural integrity 

of macromolecules (5; 6; 7), protein-protein (8; 9), protein-RNA (10) and protein-DNA (11) 

interactions. However, their contribution to the above-mentioned phenomena depends on 

their ionization state, which requires knowledge of their pKa’s and the corresponding pH of 

the water phase (12; 13). Thus, the interplay between solution pH and pKa’s of ionizable 

groups results in pH-dependence of the reaction. The pH at which the process or the reaction 

are optimal is termed pH-optimum (14; 15; 16), and it was shown that pH-optimum of 

protein stability and protein activity are correlated (16).

Many pH-dependent processes are documented in literature, both experimentally and 

computationally. It was suggested that proteins participating in pH regulation can be 

classified into two categories; positive and negative pH-regulators (17), and such proteins 

participating in melanosome formation have distinctive different pH-optimum (18). It 

should be noted that the frequently of protonation states in unbound and bound states 

are not the same, resulting in proton uptake/release upon macromolecular binding (19; 

20; 21). The pH-dependent phenomena are frequently coupled with ligand binding and 

conformational dynamics (22; 23) . Furthermore, the presence of a lipid membrane affects 

the proton-coupled conformational dynamics (24), peptide binding (25; 26; 27), and pKa’s 

of membrane proteins (28; 29; 30; 31). All these examples indicate the importance of 

pKa’s of ionizable groups in various processes in molecular biology. However, experimental 

measurements are time-costly and not applicable in genome-scale investigations, and 

computational methods need large sets of experimentally determined pKa’s for either 

benchmarking or training.

The most widely used and accurate method for experimentally determining pKa’s of 

ionizable restudies is the multidimensional nuclear magnetic resonance (NMR) spectroscopy 

(32; 33). Other methods have been used for measuring pKa’s such as, potentiometric 

titration, calorimetry, reaction kinetics, spectrelectrophoresis, UV electrophoresis, and high-

performance liquid chromatography, but NMR is considered to be superior due to the typical 

0.1 pKa unit error (34; 35; 36; 37).

There are two distinctive computational approaches for predicting pKa’s: approaches that 

do not require training or adjustment, and approaches that require training or optimization 

of adjustable parameters. For first cases methods, one needs large set of experimentally 

measured pKa’s to benchmark their accuracy; for the second case of methods, a large set 

of experimentally measured pKa’s is needed to perform the training or obtaining optimal 

values of adjustable parameters. Constant-pH Molecular Dynamics Simulation (CpHMD) 

(38; 39) represent the first class of methods and does not require training. It considers 

ionization changes simultaneously with conformational changes in MD or Monte Carlo 

simulations (40; 41). Continuum electrostatics, Poisson-Boltzmann, or Generalized Born 

based approaches, use static structures which require optimization of the internal dielectric 

“constant” value (42) or Gaussian-based representation of atomic density (43; 44). Other 

approaches include Generalized-Born or Debye-Huckel approximation which are based on 

the chemical properties of residues near ionizable groups (45; 46; 47; 48). Recently a 

very fast machine learning protocol was developed (49) and database of more than 12M 

precomputed pKa values were reported (50).
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This motivated us to compile experimentally determined pKa’s into a database, the PKAD 

database (51). The initial version of the PKAD contained 1350 pKa’s of wild type proteins 

and 232 pKa’s of mutant proteins, so in total 1582 experimentally measured pKa’s. The 

database also provides 3D structure of the corresponding proteins and several search options. 

Over the years, the PKAD became a valuable resource for testing and training in the field 

of pKa’s (52; 53; 54). Due to the continued research interest in ionizable residues pKa’s 

and the expansion of experimental data, it is imperative to build upon the database. At 

this time, we present PKAD-2, an upgrade of the pKa database PKAD, with the addition 

of experimental data points and new features. The PKAD-2 database contains 1456 pKa 

values for 163 wild-type proteins (117 new data points compared with PKAD) and 286 pKa 

values for 57 mutant proteins (54 new data points compared with PKAD). The new data was 

acquired from current literature. In addition to providing experimentally measured pKa’s, 

the PKAD-2 contains an interactive 3D model of the protein or protein complex, with the 

ionizable residue of interest visualized for every data point. The new search features include: 

the number of contacting residues <4A from the side chain of the residue of interest, and 

the number of hydrogen bonds (HB) associated with the residue of interest, organized 

by arrangement. Advanced searches for number of hydrogen bonds for each residue are 

divided into subcategories; #HB Side Chain-Side Chain (sidechain-sidechain), #HB Side 

Chain(Donor)-Back Bone (Residue of interests side chain acting as donor of hydrogen-

Backbone of another residue), #HB Side Chain-Back Bone(Donor) (Residue of interest 

Backbone is donating hydrogen to another residues side chain), #HB Side Chain(A)-Back 

Bone (Residue of interest is accepting hydrogen from the Backbone of another residue), 

#HB Side Chain-Back Bone(A) (Backbone of residue of interest is accepting hydrogen from 

side chain of another residue), and #HB Back Bone-Back Bone (Number of hydrogen bonds 

between back of residue of interest and backbone of another residue). The PKAD-2 database 

is accessible from http://combio.clemson.edu/ lab/software/5/.

Consistent with PKAD database, PKAD-2, lists the associated Protein Data Bank (PDB) 

(55) ID, the error (uncertainly) in pKa’s measurements, salt concentration, pH range and 

temperature used for pKa’s measurement along with computed relative solvent accessibility 

surface area (%SASAs). The database contains pKa values for buried and exposed resides. 

The %SASA provided in the database can aid the user in filtering residues by the degree of 

exposure, while the new 3D image display will contribute to the visualization of a desired 

residue within the structure. Number of hydrogen bonds is an advanced search feature and 

provides integral information about the residue within the structure, as well as the proteins 

secondary and tertiary structure. If a user is interested in the pKa’s of residues within a 

particular secondary structure, the search provides the subcategory (#HB Back Bone- Back 

Bone) to filter all residues with this interaction. Neighboring residues contribute greatly to 

pKa’s and thus PKAD-2 provides a list of neighboring residues within 4A of the side chain, 

as well as grants the user the ability to sift through data points by number of neighboring 

residues, within this distance. This calculated data provides the user with information 

pertaining to the microenvironment of a residue and what closely located neighbors may 

interact or affect its pKa. Our goal is to provide an up to date compilation of pKa 

values, number of hydrogen bonds, and number of contacting residues for corresponding 
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3D structures to assist in the development and benchmarking of computational approaches to 

predict pKa’s.

2. Database Development

The PKAD-2 database contains 1456 pKa values for 163 wild-type proteins and 286 pKa 

values for 57 mutant proteins. All the entries from the previous development, the PKAD 

database, were retained and new entries were added. The new data was acquired from 

published literature (52–54; 56–72). This resulted in the following distribution: among the 

experimental pKa’s listed in the database 31% are Glu, 28% Asp, 12% Lys and 21% His 

residues. Sparce data points for Arg, Tyr , Cys, N and C -termini were available. The pKa’s 

of Ser and Arg resides are high and therefore difficult to determine by titration due the 

denaturing of protein at such an alkaline pH, leading to few, if any experimental datapoints 

(73).

The number of hydrogen bonds and neighboring residues, for a specific amino acid, within 

its subunit was calculated using ChimeraX-1.4 (74). To be counted, the bond was required to 

classified as a strong hydrogen bond. This was defined by the distance between the proton 

acceptor and donor to be between 1.6A to 2.4A or the distance from heavy atoms to be 

<=3A apart. Data analyzed was broken up into categories based on the roles and structural 

level of the hydrogen bond. For instance, a hydrogen bond between two side chains and 

one between the backbones of two residues were listed in separate categories. Neighboring 

residues were defined as residues of the same subunit that could be found less than 4A from 

the heavy atom in the side chain of the residue of interest.

The application comprises two layers: a backend layer and a frontend layer. The backend 

layer is built on top of MongoDB (www.mongodb.com), a non-relational database 

management system that accommodates archiving a large amount of structured pKa data. A 

Node.js (nodejs.org/en/) server communicates with the database server to generate a cached 

version of data to be used by the frontend application, reducing the overall server load in 

the production environment. The frontend layer is built with React (reactjs.org/), Typescript 

(www.typescripting.org/) & iCn3D, which loads the cached JSON file, renders it on a table, 

and provides an interface for users to sort and query the data (75). It also implements 

the iCn3d library for an in-house interactive 3D viewer, which allows rendering of the 3D 

structure of protein and its residue.

The application presents two distinct tabs allowing users to navigate between the pKa’s of 

ionizable residues in wild-type and mutant proteins. The search field allows for querying 

table data based on the PDB ID, residue name, or residue ID. Users can also filter the 

table data with the pKa range, %SASA range, number of contacting residues, and types of 

hydrogen bonds. Each PDB ID links to an interactive 3D structure viewer allowing users to 

view, zoom, and highlight the residue and the protein structure within the website.
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3. Results and Discussions

Wild type proteins

Summarized in Table 1 is the average pKa’s for all wild type protein residues and the 

number of values for each residue type. Out of the 1456 wild type resides, the most 

experimental pKa values came from Asp, His, Glu, and Lys (Table 1). The ranges of 

measured pKa’s for each amino acid type varied significantly, with Asp and Cys showing 

the largest range. Furthermore, the Table 1 provides the intrinsic pKa’s as well which allows 

for estimation of the effect of protein microenvironment on the corresponding pKa’s. It was 

found that residues with the greatest % difference away from their intrinsic values are Glu 

(44.6%), Cys (34.0%), and His (42.3%). Figure 1 displays the distribution of pKa values by 

amino acid type for the four residues with a substantial amount of experimental data.

The lowest pKa found was 0.5 for Asp76 in Ribonuclease T1 (RNase T1) and for Asp70 in 

T4 lysozyme. The side chain of Asp76 in RNase T1 is 99% buried, and forms four hydrogen 

bonds with (i) a buried, conserved water molecule, (ii) Thr91, (iii) Tyr11 and (iv) Asn9. 

These hydrogen bonds stabilize the aspartate and therefore drastically lower the pKa. In T4 

lysozyme, the side chain of Asp70 makes a salt bridge with His31, resulting in the low pKa 

of 0.5. The highest marked pKa is 12.1 from multiple Lys residues in the P43G mutant form 

of calbindin D9K. The residue Cys40 in rhh protein (UniProtKB Q54323), was determined 

to have a pKa above 14.9. This cystine is found in a hydrophobic dimer interface, thus 

experiencing large de-solvation penalty.

Figure 2 shows %SASA plotted against the wild type pKa’s. Despite a lack of an appropriate 

sample size for comparison, acidic residues show a negative correlation between %SASA 

and pKa, indicating the more buried the residue is the higher the pKa and the more energy 

required to remove its proton (Figure 2a.). A positive correlation was found for basic 

residues; the more buried the residue, the smaller is the pKa (Figure 2b). One might expect 

that buried residues, if not supported by favorable interactions, should have their pKa’s 

shifted toward an uncharged state (higher for acidic and lower pKa’s for basic groups). 

However, in wild type proteins, the de-solvation penalty is frequently compensated by 

favorable interactions.

Figure 3 shows the relationship between number of hydrogen bonds and measured pKa’s 

for wild type proteins. The wild type data, together, represents a correlation between the 

greater number of hydrogen bonds and the ease of ionizability (lower pKa). It is expected 

that hydrogen bonds stabilize a residue granting an increased ability to hold the ionization 

charge, lowering the pKa value for acidic groups. For basic residues, it is expected the 

opposite trend. The hydrogen bonds that basic donates should make their pKa’s higher. 

The data points also indicate that other factors beyond or in addition to hydrogen bond 

interactions influence a specific residues pKa’s.

Mutant proteins

Experimentally measured pKa values were collected for 286 residues in mutant proteins, 

and out of them 37% His residues, 30% Glu, 15.2% Lys. Less frequently found residues 

included Arg, Tyr, Cys, and the C-terminus. Mutant protein pKa values carried a range 
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of 10.9. We consider two types of mutant proteins: (a) mutant proteins (type I) that the 

mutation is not at the site where pKa’s is measured, and (b) mutant protein (type II) such 

that the mutated residue pKa value is reported. Furthermore, in some cases, pKa values 

from proteins with multiple replacements are listed. Data points classified as mutant type I 

compose 62% of the values from mutant proteins and there are 21 pKa values from proteins 

with multiple mutations (Table 2). Table 3 provides the number of pKa values for each 

amino acid residue.

His pKa values in this set of data are typically larger than its intrinsic value, which is similar 

to the wild type protein data for this residue. Despite large clusters of similar pKa values, 

the range was widespread. His was typically not the residue in the sequence that incurred the 

mutation, thus 95% of the values were mutant type I.

Glu pKa composes almost a third of the mutant data and was the replacement residue 

(mutation II) about half of the time. Due to Glu’s acidic and polar structure it is an excellent 

candidate for knocking out the function of nonpolar and basic amino acids in knock out 

trials, due to the contrasting properties. With most of Glu pKa between 3 and 5, this factor 

may also play a role in the choice of Glu to replace another residue with a different pKa, 

perhaps to study its enzymatic function. This residue also has a wide range of exhibited pKa 

values in various proteins, from 2.9 to 9.4. The mean pKa of Glu in the mutant protein data 

was also higher than its intrinsic value, indicating a general destabilization within protein 

structure.

In mutant protein data, Lys showed the largest range of pKa values. Its average pKa value 

was lower than its intrinsic value. The reason is that many Lys pKa values come from mutant 

type II proteins, where Lys was introduced in the hydrophobic core of the protein.

4. Conclusion

PKAD-2 database holds experimentally measured pKa values and many autonomous 

residue specific informational features. It provides a user-friendly interface and visualization 

of a residues location. As new experimental values are measured the size of the 

database will increase to include these data points. The database is accessible via http://

compbio.clemson.edu/lab/software/5/.
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Fig. 1. 
Distribution of pKa values for wild type residues with the most experimental data points
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Fig. 2. 
Scatterplots of %SASA vs. pKa for acid wild type residues Glu and Asp (2a) and basic wild 

type residues His and Lys (2b)
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Fig. 3. 
pKa vs number of hydrogen bonds for wildtype residues
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Table 1.

Summary of experimentally measured 1456 residue-specific wild-type pKa values collected from literature

Residue ID No. of measurements Average pKa Lowest pKa Highest pKa Intrinsic pKa

ASP 450 3.56 0.5 9.9 3.9

GLU 455 4.13 2.1 7.2 6.5

HIS 264 6.61 2.5 9.19 4.3

LYS 168 10.69 6.5 12.12 9.8

TYR 50 10.50 9.14 >12.5 10.4

CYS 22 6.10 2.88 >14.9 8.6

N-term 22 7.64 6.91 9.14 8.0

C-term 25 3.15 2.4 4.03 3.7

a
footnoteA.

b
footnote B.
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Table 2.

Summary of mutation type of proteins from collected literature

Mutation No. of measurements

Mut type I 176

Mut type II 91

Multiple Mut. 19
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Table 3.

Number of measurements of Mutant residues by amino acid type

Residue ID No. of measurements

Asp 39

Cys 13

Glu 81

His 103

Lys 41

Arg 3

Tyr 3

C-Term 3
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