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Functional variant rs10175368 which affects the expression 
of CYP1B1 plays a protective role against breast cancer in a 
Chinese Han population
Jiarui Liua,b,*, Lijia Zhanga,b,*, Mingwen Tanga,b, Xinyu Chena,b, Caiyun Yanga,b, 
Yong Lic, Jin Fengd, Yan Denge, Xin Wangf and Yi Zhanga,b

Objective Cytochrome P450 1B1 (CYP1B1) 
genetic variants are relevant in the pathogenesis of 
breast cancer. Exploring the relationships between 
CYP1B1 functional variants and breast cancer could 
improve our understanding of breast cancer molecular 
pathophysiology.

Methods This is a two-stage hospital-based case–
control study of a Chinese Han population. Genotyping 
was performed to identify candidate gene variants. 
3DSNP, ANNOVAR, and RegulomeDB were used to 
determine functional single nucleotide polymorphisms 
(SNPs). The relationship between candidate variants and 
breast cancer risk was evaluated through unconditional 
logistic regression analysis. The PancanQTL platform was 
used to perform cis and trans expression quantitative trait 
loci (eQTL) analysis of positive SNPs. The GSCA platform 
was then used to compare the gene expression levels of 
potential target genes between breast cancer tissue and 
normal tissue adjacent to the cancer.

Results rs10175368-T acted as a protective factor 
against breast cancer based on an additive model [odds 
ratio (OR) = 0.722, 95% confidence interval (CI) = 0.613–
0.850; P < 0.001], and was identified as a protective factor 
in the postmenopausal population (OR = 0.601; 95% CI, 
0.474–0.764; P < 0.001). eQTL analysis and analysis of 

differential expression in carcinoma and paracancerous 
tissues revealed that the expression level of CYP1B1-AS1 
was associated with rs10175368 and that CYP1B1-AS1 
had significantly higher expression levels in breast cancer 
tissues than in paracancerous tissues.

Conclusion We show, for the first time in a Chinese 
Han population, that the functional variant rs10175368 
plays a protective role against breast cancer, especially 
in the postmenopausal population. European Journal of 
Cancer Prevention 32: 450–459 Copyright © 2023 Wolters 
Kluwer Health, Inc. All rights reserved.
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Introduction

Breast cancer (Lukina et al., 2021) is currently the most 
prevalent malignancy in women and the second most 
common cancer worldwide (Sung et al., 2021). There were 
approximately 429 105 new cases of breast cancer and 
124 002 fatalities among Chinese women in 2022 (Xia et 
al., 2022). Breast cancer incidence and mortality rates are 
continually rising, establishing it as a significant public 
health issue, affecting the physical and emotional well 
being of women worldwide (Park et al., 2021). Therefore, 
the identification of precise biomarkers of breast cancer 
susceptibility is crucial to improving disease prevention 
and outcome.

The pathophysiology and etiology of breast cancer are 
still not fully understood. Breast cancer, which is a com-
plex disease, emerges due to a multitude of hereditary 
and environmental factors, as determined through exten-
sive biochemical and population-based epidemiological 
research (Lichtenstein et al., 2000; Antoniou and Easton, 
2006; Zhang et al., 2012; Jing et al., 2020; Barańska et al., 
2022; Sarink et al., 2022). Estrogen is known to play a sig-
nificant role in the development of breast cancer and it 
regulates various physiological processes, including cell 
growth, proliferation, development, and differentiation 
(Frasor et al., 2003; Kiyama and Wada-Kiyama, 2015). 
Further, higher estrogen levels may increase the risk of 
breast cancer (Ali and Coombes, 2000; Clemons and Goss, 
2001; Platet et al., 2004). Cytochrome P450 1B1 (CYP1B1), 
a member of the second subfamily of cytochrome P450 
family I, is a crucial metabolic enzyme in humans 
(Cavalieri and Rogan, 2006), and high expression levels of 
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CYP1B1 were found in breast, ovarian, and uterine tissues 
(Saini et al., 2009; Min et al., 2022). As a critical factor in 
the initiation and development of hormone-related malig-
nancies, CYP1B1 catalyzes the conversion of 17-estradiol 
to 4-hydroxylated estradiol (4-OH-E2), thus playing a 
central role in estrogen metabolism (Gajjar et al., 2012; 
Zhao et al., 2021). In breast cancer, 4-OH-E2 goes through 
a redox cycle that results in the production of oxides as 
well as chemically reactive estrogenic semiquinone and 
quinone intermediates (e.g. E2-3,4-semiquinone and 
E2-3,4-benzoquinone metabolites), which in turn react 
with purines in DNA to generate purine-free adducts and 
cause DNA damage (Cavalieri and Rogan, 2016; Li et al., 
2017), thereby promoting estrogen-associated breast can-
cer (Park et al., 2012; An et al., 2019). Hanna et al. (2000) 
showed that genetic changes in CYP1B1 are linked to dif-
ferential estrogen metabolism, which suggests that these 
may also contribute to individual variations in the risk of 
estrogen-driven breast cancer occurrence.

The association of genetic polymorphisms with breast 
cancer is of interest to researchers worldwide. Disease-
causing mutations are implicated in most cancers 
(Apostolou and Fostira, 2013). Among the functional single 
nucleotide polymorphisms (SNPs) found in the CYP1B1 
gene, those located in the promoter or exon regions are 
more likely to influence breast cancer development and 
progression than regular SNPs (Economopoulos and 
Sergentanis, 2010). Therefore, identifying functional 
SNPs is crucial for improving breast cancer prevention as 
well as our knowledge of its pathophysiology.

Research on genetic susceptibility to breast cancer has 
gradually transitioned from the genome-wide associa-
tion study (GWAS) to the post-GWAS era (Fachal and 
Dunning, 2015). Scientists now utilize state-of-the-art bio-
informatics tools to interpret and uncover the full range of 
susceptibility-associated SNPs. Population-based epide-
miological studies are used for the identification of novel 
functional gene variants that are truly pathogenic. The use 
of bioinformatics tools is therefore imperative for the iden-
tification of functional CYP1B1 variants associated with 
breast cancer risk. Many of the currently identified breast 
cancer risk-associated SNPs need to be further explored 
and validated. In this study, we employed a bioinformat-
ics approach to explore functional CYP1B1 gene variants. 
A two-stage case–control study was conducted to identify 
the variants most likely to influence breast cancer risk.

Materials and methods
Selection of candidate single nucleotide 
polymorphisms
SNPs in the CYP1B1 gene and 5-kb flanking regions were 
obtained from the National Center for Biotechnology 
Information (NCBI) dbSNP database (https://www.
ncbi.nlm.nih.gov/) and the Ensembl database (https://
www.ensembl.org/index.html). SNPs with a minor 

allele frequency (MAF) < 0.05 in the Chinese Han 
population, as per the 1000 Genomes Project (http://
www.1000genomes.org), were excluded. All SNPs were 
functionally annotated using 3DSNP (v2.0, https://omic.
tech/3dsnpv2/) (Lu et al., 2017), ANNOVAR (Wang et al., 
2010), and RegulomeDB (v2.1, https://regulomedb.org) 
(Boyle et al., 2012) (Fig. 1). SNPs were selected based on 
the functional annotation scores. The specific annotation 
scoring scheme is shown in Table 1.

Subjects participating in the case–control study
The association between the candidate SNPs and breast 
cancer risk in a Chinese Han population was comprehen-
sively assessed through a two-stage case–control study. The 
study subjects – all Han Chinese women from Guizhou and 
neighboring provinces within China – were unrelated. The 
exclusion criteria did not include age or histological sub-
types. The first stage of the study was carried out at Guizhou 
Provincial People’s Hospital and The First People’s Hospital 
of Bijie city. The second stage of the study was carried out 
in the Affiliated Hospital of Zunyi Medical University. 
Subjects were patients with histopathologically confirmed 
breast cancer, newly diagnosed between June 2019 and June 
2022, who had not yet received radiotherapy or chemother-
apy. Patients with a history of metastasis to other organs or 
other cancer types as well as patients showing two or more 
malignancies at the same time were excluded. The control 
group included subjects who participated in health screen-
ing at the corresponding hospital during the same period. 
Control cases were frequently matched by age (±5 years). At 
the time of recruitment, each participant provided written 
informed consent before having their personal information 
and a peripheral venous blood sample (2 ml) taken. Subjects 
were defined as non-smokers if they had never smoked or 
smoked daily for less than a year. Otherwise, they were con-
sidered smokers. Subjects were defined as drinkers if they 
had consumed alcohol more than twice a week for at least a 
year, and as non-drinkers, if they had not.

Ethics committee approval for this study was granted 
by the Medical Ethics Committee of Zunyi Medical 
University (approval number: 2019-1-032). All of the 
subjects who volunteered to participate in the study 
provided written informed consent. Moreover, the study 
was conducted in accordance with the principles of the 
Declaration of Helsinki.

Genotyping
Genomic DNA was extracted from 2-ml peripheral 
venous blood samples collected from participants using 
the BloodZol kit (TransGen Biotech, China) according to 
the manufacturer’s recommended protocol. Patients were 
genotyped via TaqMan SNP genotyping analysis following 
PCR on a CFX96 real-time PCR detection system (CFX96; 
Bio-Rad, Hercules, California, USA). Genotyping was per-
formed without knowledge of the case/control status of the 
subjects. Approximately 5% of the samples collected from 
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breast cancer cases and controls were randomly selected for 
genotyping twice, and the results were 100% concordant. All 
methods were performed as per the approved guidelines.

Statistical analysis
Using Power v3.0 (available at https://dceg.cancer.gov/
tools/design/power; García-Closas and Lubin, 1999), the 
statistical power to identify relationships between breast 
cancer risk and SNPs was determined. Differences in the 
distribution of the demographic characteristics between 
the case and control groups were tested using the t-test or 
chi-square test. A Hardy–Weinberg equilibrium test was 
performed to identify the gene frequencies in the con-
trol group using a goodness-of-fit chi-square test. After 
adjusting for smoking, alcohol consumption, menopau-
sal status, and age, unconditional multivariate logistic 
regression analysis was used to calculate the odds ratios 
(ORs) and 95% confidence intervals (CIs) to estimate 
the association between genotype and breast cancer risk.

All P values were two-sided, and a P < 0.05 was consid-
ered statistically significant. All statistical analyses were 
performed using SPSS software (version 23.0; SPSS Inc., 
Chicago, Illinois, USA).

Expression quantitative trait loci analysis and analysis 
of differential expression in cancer and paracancerous 
tissues
We used the PancanQTL platform (http://gong_lab.
hzau.edu.cn/PancanQTL/gwas) to conduct cis and trans 
expression quantitative trait loci (eQTL) analysis of 
genetic variants against the expression levels of genes 
in the Cancer Genome Atlas Program (TCGA) data-
base to identify potential target genes that were sta-
tistically significantly different. The Gene Set Cancer 
Analysis (GSCA) platform (http://bioinfo.life.hust.edu.
cn/GSCA/#/expression) was further used to compare the 
gene expression levels of potential target genes between 
breast cancer tissue and normal tissue adjacent to the 
cancer using RNA sequencing data in TCGA to deter-
mine whether the expression levels of the target genes 
were associated with breast cancer.

Results
Selection of candidate single nucleotide 
polymorphisms
A total of 2439 CYP1B1 SNPs were obtained from the NCBI 
dbSNP database and the Ensembl database. After 3DSNP, 
ANNOVAR, and RegulomeDB annotation, 312 SNPs 

Fig. 1

Methodology roadmap.
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were predicted to have biological function. Subsequently, 
SNPs with MAF < 0.05 in Southern Han Chinese individ-
uals were excluded, and a total of 25 SNPs were obtained 
(Table 2). The inclusion criteria were a 3DSNP score > 0, 
RegulomeDB score > 4, and ANNOVAR score > 900 
according to the scoring criteria in Table 1. Finally, the two 
SNPs most likely to have functional consequences, that is, 
rs10175368 and rs2551188, were selected (Table 3).

Participant characteristics
The characteristics of the participants in the two-stage 
case–control study are presented in Table 4. In stage 1, 
the cases and controls were well matched based on age 
and menopausal status, with P values of 0.152 and 0.47, 
respectively. Similar distributions of age and menopausal 
status between the two groups were also observed in stage 
2 (P > 0.05).

A total of 808 cases of breast cancer and 954 healthy 
controls were analyzed in the combined study. The 
mean age was 50.24 years (±10.19) in the combined 
case group and 49.70 years (±10.26) in the combined 
control group. There was no statistical difference in 
the distribution of age (P = 0.265) and menopausal sta-
tus (P = 0.434) between the combined cases and con-
trols. In total, 416 (51.49%) and 392 (48.51%) patients 
with breast cancer were of premenopausal and post-
menopausal status, respectively. In total, 419 (51.86%), 
344 (42.57%), and 45 (5.57%) patients with breast 
cancer were estrogen receptor-positive, estrogen 
receptor-negative, and estrogen receptor unknown, 
respectively.

Association between candidate single nucleotide 
polymorphisms and breast cancer risk
Results from the first stage revealed a significant asso-
ciation between rs10175368 and breast cancer develop-
ment. After adjusting for smoking, drinking, menopausal 
status, and age, individuals with the CT and TT geno-
types were shown to have a lower risk of breast cancer 
than those carrying the CC genotype, with ORs of 0.607 
(95% CI, 0.480–0.831; P = 0.008) and 0.338 (95% CI, 
0.202–0.681; P = 0.001), respectively. Additive model 
results also indicated that the T allele at this locus was 
a protective factor against breast cancer, with an OR of 
0.628 (95% CI, 0.532–0.736; P < 0.001). No statistical 
association was found between rs2551188 and breast 
cancer risk. An OR of 0.860 (95% CI, 0.718–1.052; 
P = 0.123) was obtained via the additive model. The 
recessive and dominant models were not statistically 
significant (Table 5).

Association between candidate single nucleotide 
polymorphisms and breast cancer risk
The genotype distribution of rs10175368 and rs2551188 
in the second stage and the combined stage and their asso-
ciation with the risk of breast cancer are shown in Table 6. 
At the combined stage, after adjusting for smoking, drink-
ing, menopausal status, and age, the individuals with the 
CT and TT genotypes were shown to have a lower risk 
of breast cancer than those carrying the CC genotype, 
with ORs of 0.756 (95% CI, 0.618–0.925; P = 0.007) and 
0.456 (95% CI, 0.283–0.735; P = 0.001), respectively. The 
additive model results also indicated that the T allele at 
this locus was a protective factor against breast cancer, 

Table 1  Scoring schemes and related funtional notes for 3DSNP, ANNOVAR, and RegulomeDB

Database Functional categories Score Description Note 

3DSNP 3D interacting genes, Enhancer state, 
Promoter state, Transcription factor 
binding sites, sequence motifs altered, 
conservation

>0 – Functional categories with no record 
for a SNP are omitted and will not be 
measured in the total score.

ANNOVAR Gene-based Annotation; Region-based 
Annotation; Filter-based Annotation

>0 – A higher annotation score indicates the 
stronger signal intensity observed. It 
indicates the higher probability that the 
SNP has the corresponding function.

RegulomeDB Protein Binding, Motifs, Chromatin 
Structure, eQTLs, Histone Modifica-
tions, and Related Data

1a eQTL + TF binding + matched TF motif + matched 
DNase footprint + DNase peak

Likely to affect binding and linked to 
expression of a gene target

1b eQTL + TF binding + any motif + DNase footprint + 
DNase peak

1c eQTL + TF binding + matched TF motif + DNase peak
1d eQTL + TF binding + any motif + DNase peak
1e eQTL + TF binding + matched TF motif
1f eQTL + TF binding/DNase peak
2a TF binding + matched TF motif + matched DNase 

footprint + DNase peak
Likely to affect binding

2b TF binding + any motif + DNase footprint + DNase 
peak

2c TF binding + matched TF motif + DNase peak
3a TF binding + any motif + DNase peak Less likely to affect binding
3b TF binding + matched TF motif
4 TF binding + DNase peak Minimal binding evidence
5 TF binding or DNase peak
6 Motif hit

eQTL, expression quantitative trait loci; SNP, single nucleotide polymorphism; TF, Transcription factor.
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with an OR of 0.722 (95% CI, 0.613–0.850; P < 0.001). 
The distribution of the control rs10175368 genotype 
was consistent with the Hardy–Weinberg equilibrium 
(P = 0.924), and the MAF was 0.245, which is close to that 
obtained in the 1000 Genomes Project. For rs10175368, 
the statistical power required to obtain an OR of 1.5 for 

our sample size was 0.967. No statistical association was 
found between rs2551188 and breast cancer risk. The 
recessive, dominant, and additive models were not statis-
tically significant.

Association of rs10175368 with breast cancer risk 
based on stratified analysis
Stratified analysis was carried out according to the 
menopausal status. No association was observed in 
the premenopausal population (Table  7); however, 
among postmenopausal women, the risk of breast can-
cer was shown to be lower in individuals with CT and 
TT genotypes than in those carrying the CC genotype 
(OR = 0.625, 95% CI, 0.463–0.844, P = 0.002; OR = 0.327, 
95% CI, 0.165–0.645, P = 0.001; Table 5). Additive model 
results also indicated that the T allele at this site was a 
protective factor against breast cancer in postmenopau-
sal women (OR = 0.601, 95% CI, 0.474–0.764; P < 0.001).

Table 2 Candidate genetic loci screened by bioinformatics analysis

SNP ID Ref/Alt 3DSNP ANNOVAR RegulomeDB MAFa 

rs10175368 C/T 4.38 999 2c 0.2048
rs2551188 C/T 82.31 934 3b 0.2238
rs162332 A/G 14.05 897 3a 0.0667
s149148 G/A 10.58 892 3a 0.0762
rs162331 T/G 55.11 890 4 0.0897
rs4646430 C/G 9.36 889 4 0.0967
rs162328 G/A 12.99 887 3a 0.0619
rs458704 G/A 3.89 829 5 0.1002
rs10175472 C/T 4.54 666 4 0.1049
rs13386936 T/A 9.55 599 3a 0.0570
rs9341266 G/A 3.89 579 5 0.0609
rs2855655 T/C 158.12 529 2b 0.0667
rs3057354 T/TAA 54.81 389 3a 0.0714
rs9341254 GA/G 14.35 379 2b 0.2133
rs162556 G/A 8.25 320 3a 0.2381
rs151096 C/A 2.48 317 1f 0.0619
rs10175338 G/T 7.30 313 4 0.1657
rs162552 C/A 93.81 287 1f 0.0680
rs4670814 G/C 35.55 234 4 0.1379
rs162327 G/A 5.71 206 5 0.1557
rs10201389 A/T 2.60 129 3a 0.1786
rs10178134 G/A 12.13 111 2b 0.2048
rs162329 T/C 19.96 107 1f 0.0762
rs1056827 C/A 67.59 102 4 0.1796
rs186661 G/A 1.71 100 7 0.1141

MAF, minor allele frequency; SNP, single nucleotide polymorphism.
aMAF was downloaded from the data for Southern Han Chinese individuals in the 1000 Genomes Project.

Table 3 Details of the two single nucleotide polymorphisms  
identified as most likely to have functional consequences

Chr 
SNP 

position SNP ID Ref/Alt MAFa Annotationb 

chr2 38307860 rs10175368 C/T 0.2048 Influencing transcription 
factor binding

chr2 38302793 rs2551188 C/T 0.2238 Affecting transcription

MAF, minor allele frequency; SNP, single nucleotide polymorphism.
aMAF was downloaded from the data for Southern Han Chinese individuals in the 
1000 Genomes Project.
bPrediction results based on 3DSNP, ANNOVAR, and RegulomeDB.

Table 4 Demographic characteristics of the participants in the two-stage case–control study

Variables 

Stage 1 Stage 2 Combined

Case (350) 
No (%) 

Control (426) 
No (%) 

P 
value 

Case (458) 
No (%) 

Control (528) 
No (%) 

P 
value 

Case (808) 
No (%) 

Control (954) 
No (%) P value 

Age (mean ± SD) 49.78 ± 9.69 49.68 ± 10.44 0.152a 50.58 ± 10.53 49.65 ± 10.59 0.156a 50.24 ± 10.19 49.70 ± 10.26 0.265a

Menopausal status   0.476b   0.347b   0.434b

  Premenopausal 186 (53.14) 230 (53.99) 0.476a 230 (50.22) 281 (53.22) 0.737a 416 (51.49) 509 (53.35) 0.449a

  Postmenopausal 164 (46.86) 196 (46.01) 0.525a 228 (49.78) 247 (46.78) 0.183a 392 (48.51) 445 (46.65) 0.680a

Estrogen receptor
  Negative 149 (42.57)   195 (42.58)   344 (42.57)   
  Positive 178 (50.86)   241 (52.62)   419 (51.86)   

aP value was calculated via t-test. 
bP value was calculated via χ2test.
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Association of rs10175368 with breast cancer risk 
based on stratified analysis
Stratified analysis was carried out based on the expres-
sion of the estrogen receptor. The results showed that 
rs10175368 was significantly associated with breast can-
cer in the different estrogen receptor subgroups and that 
a lower risk of breast cancer was strongly connected to 
the T allele (Table 8).

Expression quantitative trait loci analysis of rs10175368 
and differential expression of target genes in cancer 
and paracancerous tissues
We used the PancanQTL platform to perform cis and 
trans eQTL analysis of genetic variants against the 
expression levels of genes in the TCGA database to 
identify potential target genes that were statistically 

significantly different, finding that the expression 
level of CYP1B1-AS1 (also known as C2orf58) was 
associated with rs10175368 (P = 2.8 × 10−6) and that 
CYP1B1-AS1 had a higher expression level in indi-
viduals with wild genotype AA (Fig.  2). We used the 
GSCA platform to investigate the difference in the 
expression of CYP1B1-AS1 between breast cancer tis-
sues and paracancerous tissues. The results showed 
that CYP1B1-AS1 expression was significantly higher 
in breast cancer tissues than in paracancerous normal 
tissues (P = 2.2 × 10−30) (Fig. 3).

Discussion
In the current study, we screened variations in the CYP1B1 
gene and its 5-kb flanking regions to identify functional 
variants by integrating data from 3DSNP, ANNOVAR, 
and RegulomeDB. A two-stage hospital-based case–con-
trol study was conducted in a Chinese Han population to 
examine the potential association between CYP1B1 func-
tional variants and breast cancer risk. To our knowledge, 
our findings are the first to show that the rs10175368 
mutant T allele plays a protective role against breast can-
cer in the Chinese population, especially in postmeno-
pausal women.

Breast cancer develops as a result of a multitude of 
environmental, genetic, and lifestyle factors (Sun et 
al., 2017). This is exemplified by the observation that 
only a small number of individuals subjected to a given 
mutagenic exposure develop breast cancer (Zheng et 
al., 2000; Hidaka et al., 2016). That is, the individual 
genetic makeup is a major determinant of carcino-
genesis. Patients with breast, lung, kidney, and pros-
tate cancer have elevated levels of CYP1B1, the main 
phase I drug-metabolizing enzyme (Muskhelishvili et 
al., 2001; Anttila et al., 2011; Hollis et al., 2022). Genetic 
polymorphisms in the CYP1B1 gene are responsible 

Table 5  Association of the candidate single nucleotide polymor-
phisms with breast cancer risk in stage 1

Variables 

Case (350) Control (426) 

OR (95% CI); P valuea No (%) No (%)

rs10175368 345 (98.57) 425 (99.77)  
  CC 226 (64.57) 243 (57.04) 1.00
  CT 109 (31.14) 156 (36.62) 0.607 (0.480–0.831); 0.008
  TT 10 (2.86) 26 (6.10) 0.338 (0.202–0.681); 0.001
  Recessive   0.413 (0.216–0.854); 0.006
  Dominant   0.526 (0.414–0.745); <0.001
  Additive   0.628 (0.532–0.736);<0.001
rs2551188 340 (97.14) 425 (99.77)  
  CC 215 (61.43) 252 (59.15) 1.00
  CT 111 (31.71) 150 (35.21) 0.857 (0.674–1.109); 0.235
  TT 14 (4.00) 23 (5.40) 0.728 (0.413–1.240); 0.218
  Recessive   0.719 (0.436–1.296); 0.321
  Dominant   0.843 (0.636–1.086); 0.158
  Additive   0.860 (0.718–1.052); 0.123

CI, confidence interval; OR, odds ratio.
aORs and 95% CIs were calculated using unconditional logistic regression after 
adjusting for smoking, drinking, menopausal status, and age.
The significance of the values in bold emphasise that the result is statistically 
significant.

Table 6 Association of the candidate single nucleotide polymorphisms with breast cancer risk in stage 2 and combined stages

Variables 

Stage 2 Combined

Case (458) Control (528) 

OR (95% CI); Pa 

Case (808) Control (954) 

OR (95% CI); P valuea No (%) No (%) No (%) No (%)

rs10175368 458 (100) 525 (99.43)  803 (99.38) 950 (99.58)  
  CC 299 (65.28) 301 (57.01) 1.00 525 (64.98) 544 (57.26) 1.00
  CT 143 (31.22) 191 (36.17) 0.817 (0.365–0.932); 0.008 252 (31.19) 347 (36.53) 0.756 (0.618–0.925); 0.007
  TT 16 (3.49) 33 (6.25) 0.516 (0.234–0.695); 0.002 26 (3.22) 59 (6.21) 0.456 (0.283–0.735); 0.001
  Recessive   0.593 (0.315–0.887); 0.007   0.524 (0.329–0.839); 0.007
  Dominant   0.836 (0.515–0.945); 0.001   0.708 (0.583–0.860); <0.001
  Additive   0.738 (0.562–0.886);0.001   0.722 (0.613–0.850); <0.001
rs2551188 440 (96.07) 523 (99.05)  780 (96.53) 948 (99.37)  
  CC 287 (62.67) 320 (60.61) 1.00 493 (61.01) 571 (59.85) 1.00
  CT 132 (28.82) 183 (34.66) 0.795(0.604–1.048);0.103 252 (31.19) 330 (34.59) 0.879(0.717–1.070);0.603
  TT 21 (4.59) 20 (3.79) 1.191(0.631–2.245);0.589 35(4.33) 46(4.82) 0.886(0.561–1.398);0.215
  Recessive   1.017(0.687–2.410);0.431   0.927(0.591–1.455);0.742
  Dominant   0.834(0.640–1.086);0.177   0.880(0.723–1.070);0.199
  Additive   0.907(0.726–1.133);0.390   0.905(0.768–1.066);0.234

CI, confidence interval; OR, odds ratio. 
aORs and 95% CIs were calculated using unconditional logistic regression after adjusting for smoking, drinking, menopausal status, and age.
The significance of the values in bold emphasise that the result is statistically significant.
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for inter-individual and inter-ethnic differences in dis-
ease susceptibility (Manikandan and Nagini, 2018). 
Previously reported immunohistochemical analysis 
results reveal that the minor rs10175368 genotype is 
linked to higher CYP1B1 expression, with the mobility 
shift and higher luciferase activity at rs10175368 demon-
strating greater nuclear factor binding at the minor allele 
(Kato et al., 2018). Thus, the functional SNP rs10175368 

influences CYP1B1 expression. CYP1B1 gene polymor-
phisms have been shown to alter its catalytic character-
istics as a 17-estradiol metabolic enzyme, eventually 
leading to an increase or decrease in enzyme activity 
(Agundez, 2004). Owing to its role in enzyme metab-
olism, CYP1B1 influences the development of estro-
gen-dependent tumors (Crooke et al., 2006). Studies 
have suggested that heterozygous or homozygous var-
iants of CYP1B1 may lead to significantly compromised 

Table 7 Stratified analysis of rs10175368 and menopausal status 
for breast cancer risk

rs10175368 
Cases No 

(%) 
Control No 

(%) OR (95% CI); P valuea 

Premenopausal 413 508  
  CC 254 (61.50) 294 (57.88) 1.00
  CT 145 (35.11) 189 (37.20) 0.888 (0.675–1.167); 0.394
  TT 14 (3.39) 25 (4.92) 0.645 (0.328–1.647); 0.203
  Recessive   0.725 (0.377–1.394); 0.335
  Dominant   0.850 (0.652–1.109); 0.231
  Additive   0.854 (0.681–1.072); 0.173
Postmenopausal 390 442  
  CC 271 (69.48) 250 (56.56) 1.00
  CT 107 (27.44) 158 (35.75) 0.625 (0.463–0.844); 0.002
  TT 12 (3.08) 34 (7.69) 0.327 (0.165–0.645); 0.001
  Recessive   0.383 (0.195–0.750); 0.005
  Dominant   0.573 (0.430–0.763); <0.001
  Additive   0.601 (0.474–0.764); <0.001

CI, confidence interval; OR, odds ratio. 
aORs and 95% CIs were calculated via unconditional logistic regression after 
adjusting for smoking, drinking, and age.
The significance of the values in bold emphasise that the result is statistically 
significant.

Table 8 Estrogen receptor stratification analysis of rs10175368 
and breast cancer risk in a Chinese population

rs10175368 
Cases (763) 

No (%) 
Control 

(954) No (%) 
OR (95% CI); P 

valuea 

Estrogen 
receptor +

417 950  

  CC 272 (65.23) 544 (57.26) 1.00
  CT 132 (31.65) 347 (36.53) 0.764 (0.597–

0.980); 0.034
  TT 13 (3.12) 59 (6.21) 0.441 (0.238–

0.819); 0.010
  Recessive   0.525 (0.289–

0.951); 0.034
  Dominant   0.710 (0.559–

0.902); 0.005
  Additive   0.724 (0.591–

0.887); 0.002
Estrogen 

receptor −
341 950  

  CC 226 (66.28) 544 (57.26) 1.00
  CT 103 (30.20) 347 (36.53) 0.717 (0.548–

0.938); 0.015
  TT 12 (3.52) 59 (6.21) 0.485 (0.256–

0.920); 0.027
  Recessive   0.545 (0.289–

1.027); 0.060
  Dominant   0.683 (0.527–

0.884); 0.004
  Additive   0.709 (0.569–

0.882); 0.002

CI, confidence interval; OR, odds ratio. 
aORs and 95% CIs were calculated using unconditional logistic regression after 
adjusting for smoking, drinking, menopausal status, and age.
The significance of the values in bold emphasise that the result is statistically 
significant.

Fig. 2

eQTL analysis of rs10175368 in BRCA. eQTL, expression quantitative 
trait loci.

Fig. 3

CYP1B1-AS1 expression in BRCA (tumor vs. normal). CYP1B1, 
cytochrome P450 1B1.
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enzyme function, resulting in lower levels of 4-OH-E2 
and lower corresponding adduct production, thereby 
reducing breast cancer risk (Qiu et al., 2018; Zhao et al., 
2021).

Our present findings indicate that the minor T allele of 
rs10175368 protects against breast cancer (OR = 0.722, 
95% CI, 0.613–0.850). Predictions based on the 
RegulomeDB database showed that rs10175368 affects 
transcription factor binding. Even though the precise 
mechanism underlying the protective effect is unclear, 
we hypothesized that the minor T allele of rs10175368 
may lead to a reduction in CYP1B1 expression. Lower 
CYP1B1 enzyme levels then cause a reduction in DNA 
adduct formation via 4-OH-E2 as well as via estrogenic 
semiquinone and quinone intermediates. The lessening 
of DNA damage reduces the risk of breast cancer.

Meanwhile, we found that the minor T allele of 
rs10175368 acts as a protective factor against breast can-
cer in postmenopausal women. Estrogen exposure causes 
phenotypic changes and chromosomal abnormalities in 
human non-malignant breast epithelial cells, thus driv-
ing tumorigenesis (Fernandez et al., 2006). Through the 
effects of downstream metabolites, estrogen exposure 
may indirectly damage DNA, causing chromosomal insta-
bility and subsequently cancer (Li et al., 2004; Blackburn 
et al., 2015). Changes in progesterone and estrogen levels 
have been linked to genetic variants of CYP1B1 (García-
Closas et al., 2002; Schilling et al., 2007). Moreover, estro-
gen levels vary among women with different menopausal 
statuses, with the levels being higher in premenopausal 
women (Zheng et al., 2000). Thus, we hypothesize that 
the protective effect of the rs10175368 T allele against 
breast cancer in postmenopausal women is associated 
with reduced estrogen levels.

rs10175368 was not found to be correlated with breast 
cancer risk among Caucasian and Jordanian women 
(Huang et al., 2009; Al-Eitan et al., 2019), suggesting that 
inter-ethnic genetic variation influences the effects of 
certain cytochrome P450 variants (McGraw and Waller, 
2012; Polimanti et al., 2012). Furthermore, the present 
findings highlight the existence of genetic heterogene-
ity across populations in relation to breast cancer risk. 
Hence, future research should address racial differences 
in the relationship between rs10175368 and breast cancer 
risk in larger, more diverse populations.

Herein, cis and trans eQTL analysis of the expression lev-
els of rs10175368 against the expression of target genes 
in the TCGA database using the PancanQTL platform 
revealed that the expression level of CYP1B1-AS1 was 
associated with rs10175368. Furthermore, we found that 
CYP1B1-AS1 had significantly higher expression levels 
in breast cancer tissues than in normal tissue adjacent to 
the cancer. In recent years, the long-stranded non-cod-
ing RNA CYP1B1-AS1 is gaining attention as an impor-
tant factor in the development of tumors, such as breast 

cancer and glioblastoma (Molaei Ramshe et al., 2021; Ye 
et al., 2021). A study noted that CYP1B1 was identified as 
a regulatory target of CYP1B1-AS1 (Ye et al., 2021). We, 
therefore, speculate that the polymorphism rs10175368 
may indirectly affect CYP1B1 gene expression by affect-
ing the target gene CYP1B1-AS1; however, this hypothe-
sis still needs to be tested by evaluating relevant clinical 
samples.

The present study had certain limitations. Selection 
bias may exist due to the hospital-based case–control 
study design. It is also critical to carry out comprehen-
sive molecular biology experiments to clarify the pre-
cise mechanism underlying the protective effect of the 
rs10175368 variant.

Conclusion
Our present findings suggest that the minor T allele in 
rs10175368 protects against breast cancer development 
among Chinese Han women. Given that a multitude 
of factors influences breast cancer risk, future studies 
should more comprehensively evaluate the significance 
of this variant. That is, researchers should consider the 
importance of gene–gene as well as gene–environment 
interactions. A more comprehensive assessment of 
breast cancer susceptibility and etiology can be achieved 
through bioinformatics analysis using public databases, 
with the ultimate goal of improving breast cancer preven-
tion, early detection, and treatments, to altogether reduce 
the disease burden.
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