Skip to main content
. 2023 Jul 13;3:1216362. doi: 10.3389/fbinf.2023.1216362

TABLE 1.

Summary of AMP prediction approaches using GDL methods.

Predictor’s name Applied prediction method Outperforms Paper Reference
sAMPpred-GAT Graph Attention Neural Networks (GAT) amPEPpy, AMPfun, AMPEP, ADAM-HMM, Ampir, AMPScannerV2, AmpGram, Deep-AMPEP30a, CAMP-ANN Yan et al (2022b)
AMPs-Net GCN AMPScanner, AI4AMPs, CAMPR3, AMPDiscover, AMPlify, AMPEPpy (RF) Puentes et al (2022)
LABAMPsGCN GCN and Chebyshev Spectral CNN CAMP-SVM, iAMP-2L, AMPfun Sun et al (2022)
ACP-GCN GCN Convolutional neural network, long short-term memory (outperforms for accuracy) Rao et al (2020)