TABLE 1.
Summary of AMP prediction approaches using GDL methods.
| Predictor’s name | Applied prediction method | Outperforms | Paper Reference |
|---|---|---|---|
| sAMPpred-GAT | Graph Attention Neural Networks (GAT) | amPEPpy, AMPfun, AMPEP, ADAM-HMM, Ampir, AMPScannerV2, AmpGram, Deep-AMPEP30a, CAMP-ANN | Yan et al (2022b) |
| AMPs-Net | GCN | AMPScanner, AI4AMPs, CAMPR3, AMPDiscover, AMPlify, AMPEPpy (RF) | Puentes et al (2022) |
| LABAMPsGCN | GCN and Chebyshev Spectral CNN | CAMP-SVM, iAMP-2L, AMPfun | Sun et al (2022) |
| ACP-GCN | GCN | Convolutional neural network, long short-term memory (outperforms for accuracy) | Rao et al (2020) |