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Received: 31 March 2022 / Revised: 18 July 2022 / Accepted: 5 August 2022 / Published online: 30 August 2022
� The Author(s) 2022

Abstract
This present study aims to investigate neural mechanisms underlying ADHD compared to healthy children through the

analysis of the complexity and the variability of the EEG brain signal using multiscale entropy (MSE), EEG signal standard

deviation (SDs), as well as the mean, standard deviation (SDp) and coefficient of variation (CV) of absolute spectral power

(PSD). For this purpose, a sample of children diagnosed with attention-deficit/hyperactivity disorder (ADHD) between 6

and 17 years old were selected based on the number of trials and diagnostic agreement, 32 for the open-eyes (OE)

experimental condition and 25 children for the close-eyes (CE) experimental condition. Healthy control subjects were age-

and gender-matched with the ADHD group. The MSE and SDs of resting-state EEG activity were calculated on 34 time

scales using a coarse-grained procedure. In addition, the PSD was averaged in delta, theta, alpha, and beta frequency bands,

and its mean, SDp, and CV were calculated. The results show that the MSE changes with age during development,

increases as the number of scales increases and has a higher amplitude in controls than in ADHD. The absolute PSD results

show CV differences between subjects in low and beta frequency bands, with higher variability values in the ADHD group.

All these results suggest an increased EEG variability and reduced complexity in ADHD compared to controls.
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Introduction

One of the neurodevelopmental disorders commonly

diagnosed during childhood is Attention Deficit Hyperac-

tivity Disorder (ADHD). Its main symptoms include

attention deficit, hyperactivity, and/or impulsivity. The

disorder affects the normal development, curricular activ-

ities, and performance of the child, leading to a high risk of

learning and social problems (Magnin & Maurs 2017). The

neuropsychological differences observed in these children

are being explained through two neurocognitive models:

the maturational delay model, and the differential devel-

opment model. The maturational delay model suggests a

protracted development of children with ADHD compared

to normal children (i.e., ADHD children would present

both EEG and behavioral parameters of younger control

children; Kinsbourne 1973; Matsuura et al. 1993). The

differential development model suggests a different pattern

of parameters on the developmental trajectory is observed

in ADHD subjects, when compared to controls, due to the

genetic or biographical background (Giertuga et al. 2017;

Saad et al. 2018; Rodrı́guez-Martı́nez et al. 2020).

Several studies have analyzed the neural correlates of

ADHD, especially those related to quantitative measures of

the brain signal through EEG (Newson & Thiagarajan

2019; Clarke et al. 2020). These have been mainly based on

linear measures, such as those involving spectral power

analysis, which has shown an atypical neuronal pattern in

resting-state conditions (Clarke et al. 2020) and during

cognitive information processing (Nazari et al. 2011).

Spectral power reductions in fast frequency bands (beta)
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increases in slow frequency bands (delta and theta; Barry

et al. 2009; Newson & Thiagarajan 2019; Clarke et al.

2020; Rodrı́guez-Martı́nez et al. 2020). Moreover, the

theta/beta ratio (TBR) and the theta/alpha have been

reported as possible ADHD differential markers (Barry

et al. 2003, 2009). Nevertheless, the results are highly

variable. For instance, Giertuga et al. (2017) showed a

decrease in all frequency bands in ADHD compared to

controls. There are still uncertainties regarding the use of

the TBR for diagnosis (Arns et al. 2013; Saad et al. 2018)

leading to a need for precise measures that would allow

more accurate characterization of ADHD neurophysiolog-

ical differences compared to control.

In the last decades, nonlinear analyses of EEG signals,

such as the variability and dynamic complexity of the

underlying neural networks have been implemented

(Takahashi et al. 2009, 2013; Garret et al. 2013; Van

Noordt & Willoughby 2021). These are based on the idea

that the human brain is a complex nonlinear system, and its

complex spatial and temporal fluctuations are part of its

intrinsic activity (Takahashi et al. 2009). In this sense,

nonlinear analyses could detect subtle changes and there-

fore new methods of interpreting complex neural dynamics

(Pincus 2006; Sohn et al. 2010). Variability provides an

estimate of the range of values of the neural signals and can

be measured through different measures such as the stan-

dard deviation (SD) (Garret et al. 2013) or the coefficient

of variation (CV) (Angulo-Ruiz, et al. 2021). Complexity,

on the other hand, quantifies the information included in

these signals and examines the irregularity or predictability

across one, or, multiple time scales (Garret et al. 2013).

Therefore, it determines the probability of finding specific

or similar patterns repeating in a time series (Costa et al.

2002, 2005). It is measured through techniques such as

entropy (Kolmogorov 1958; Pincus 1991, 1995; Richman

& Moorman 2000; Takahashi 2013), or multiscale entropy

(MSE) (Costa et al. 2002, 2005; Takahashi 2013). MSE

implies intrinsic physiological complexity, allowing the

differentiation between noise and meaningful complexity,

and detecting long-range temporal correlations, due to the

analysis across multiple temporal scales (Costa et al.

2002, 2005; Takahashi et al. 2009). Thus, MSE can, first,

reflect neurophysiological dynamics, and second, indicate

an atypical pattern implying a brain disease condition

(Costa et al. 2002; Mizuno et al. 2010). A recent study by

Bosl et al. (2022) found that the scales (from fine to coarse)

measured in the coarse-graining process are related to the

frequency bands of the power spectral density (PSD),

establishing a direct relationship between these two

metrics.

Studies related to these measures have pointed out that

variability and complexity increase during development

(McIntosh et al. 2008; Lippe et al. 2009; Garret et al. 2013;

Szostakiwskyj et al. 2017; Van Noorddt & Willoughby

2021; Angulo-Ruiz et al. 2021), and decrease with normal

aging (Takahashi et al. 2009; Nomi et al. 2017). However,

regarding variability, a possible regional specificity (Nomi

et al. 2017) and the oscillatory frequencies (Angulo-Ruiz

et al. 2021) must be taken into account as potential factors

influencing the study of EEG maturation. Moreover,

complexity has shown more significant increases and

changes in fronto-central regions (Van Noordt & Wil-

loughby 2021) during maturation. Szostakiwskyj et al.

(2017) found an increase in MSE with age for fine scales,

and a MSE decrease for coarse scales. These terms are

identifiers of the range of time scales calculated in MSE.

Thus, the fine scales correspond to a situation in which few

signal points (individual time samples) are averaged, and

the coarse scales when many signal points are averaged. It

is important to note that currently there is no standard range

for the differentiation of the scales (Shen et al. 2021).

Complexity has been studied among various clinical

populations with mental (Takahashi et al. 2010; Fernández

et al. 2013; Li et al. 2018) and neurodevelopmental dis-

orders (Catarino et al. 2011; Bosl et al. 2011, 2017; Chu

et al. 2017). In ADHD the results are still few, inconsistent

and heterogeneous, showing diverse or even contradictory

results (Fernández et al. 2009; Sohn et al. 2010; Gómez

et al. 2013; Sokunbi et al. 2013; Li et al. 2016; Reza-

eezadeh et al. 2020; Hu et al. 2021). Specifically, in EEG,

increased complexity (Li et al. 2016) and decreased com-

plexity (Rezaeezadeh et al. 2020) has been reported in

children with ADHD. Table 1 shows a review of the dif-

ferences in complexity metrics of ADHD and controls. In

general, there is an agreement of an abnormal EEG com-

plexity for brain disorders (Takahashi 2013; Chu et al.

2017). Thus, an increase or decrease in complexity could

result in inefficient information processing (Ghosh et al.

2008; McIntosh et al. 2008, 2010), abnormal underlying

physiological dynamics (Takahashi 2013), and aberrant

neuronal connectivity (Takahashi et al. 2016). Therefore, it

is suggested that healthy brains are more variable and

complex (Garrett et al. 2013), and abnormal levels of

variability and/or complexity, may be related to suboptimal

cognition (Nomi et al. 2018; Easson & McIntosh 2019).

We propose to analyze the brain signal complexity of

EEG using MSE to explore the underlying neural mecha-

nisms of ADHD children compared to a sample of healthy

children. MSE was computed in Open Eyes (OE) and

Closed Eyes (CE) experimental conditions given that MSE

is a sensitive metric to characterize nonlinear abnormalities

in brain diseases (Chu et al. 2017; Shen et al. 2021) in

resting-state conditions. However, no such application has

been approved for clinical use yet. Additionally, the anal-

ysis of the SDs EEG (Standard Deviation of the EEG at the

different scales), absolute PSD in different brain rhythms
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(mean, standard deviation across trials (SDp), coefficient of

variation across trials (CV)), and mean of relative PSD

were computed, as complementary measurements to raise a

comprehensive approach to characterize controls and

ADHD. The present study hypothesizes that (i) children

with ADHD will manifest an atypical neural pattern of

complexity compared to normo-developmental children. In

addition, although most studies have shown an increase in

MSE with age for all scales analyzed, Szostakiwskyj et al.,

(2017) have shown positive and negative slopes depending

on the scales for the relationship between MSE and age, so

we intend to test the constancy or variability of these slopes

in both groups. (ii) For SDs, we expect a decrease in EEG

variability with age in both groups for all the scales,

associated with the reduction in EEG amplitude with age.

Comparison between groups would indicate whether EEG

variability may also be a suitable metric to differentiate

ADHD from controls; (iii) for absolute PSD, and SDp we

expect a decrease with age, and amplitude differences

between groups for low-frequency bands, as well as,

variability differences with age when normalizing by the

PSD mean of different brain rhythms (CV), and (iv) an

inverse relationship with age of low frequency bands of

relative PSD, while a positive relationship for high fre-

quencies, taking into account that in MSE higher scales

represent increasingly lower frequency bands, with all

scales containing the lowest frequencies (Bosl et al. 2022).

This approach intends to provide findings to discriminate

between neurophysiological metrics based on EEG vari-

ability, complexity, and power in controls and ADHD

subjects, to explain the possible neural causes of the dis-

order, and in turn to find biological markers that would

facilitate diagnosis.

Methods

Participants

A group of children and adolescents diagnosed with ADHD

by clinical experts from two public hospital services par-

ticipated in this study. A structured interview and the

DuPaul parent questionnaire (DuPaul et al. 1998) were

conducted for the diagnosis. The ADHD group, consisting

of 40 children and adolescents aged 6 to 17 years, was

recorded under experimental OE and CE conditions. Only

subjects who (i) obtained a minimum of 50 trials without

artifacts in one or both conditions (OE and CE), and (ii)

showed diagnostic agreement between the administered

questionnaire and the clinical diagnosis were selected for

Table 1 Review of complexity articles in ADHD and control groups

Article Technique Measure Experimental

Condition

Control ADHD Results

Rezaeezadeh

et al. (2020)

EEG MSE,

and

others

Resting State

(CE)

12 12 ADHD has a more regular neural system. Reduced dynamic

complexity

Papaioannou

et al. (2021)

EEG MSE Tasks 24

adults

30

adults

ADHD: MSE is higher in ADHD than in controls during the task

Li et al.

(2016)

EEG MSE Tasks 13 13 ADHD: Higher complexity in delta and theta frequency bands;

lower complexity in alpha. Aberrant neural connectivity

Hu et al.

(2021)

fNIRS MSE Resting State 41 42 ADHD reduced brain signal variability in higher order primary

brain networks (DMN, frontoparietal attention, and visual

networks)

Sohn et al.

(2010)

EEG ApEn Resting State

(OE)

12 11 ADHD: Lower ApEn in right frontal regions at the task, but not at

rest

Sokunbi et al.

(2013)

fMRI SampEn Resting State 13

adults

17

adults

ADHD: Less complexity. Reduced entropy in frontal and occipital

regions bilaterally. Significant negative correlation between

symptoms and entropy

Gómez et al.

(2013)

MEG FuzzyEn Resting State

(CE)

14 14 ADHD more regular than controls

Fernández

et al. (2009)

MEG LZV Resting state

(CE)

14 14 Higher LZV in control than in ADHD

EEG: Electroencephalogram; fNIRS: Functional Near-Infrared Spectroscopy; MEG: Magnetoencephalography; fMRI: Functional Magnetic

Resonance Imaging; ADHD: Attention Deficit Hyperactivity Disorder; CE: Closed Eyes; OE: Open Eyes; MSE: Multiscale Entropy; ApEn:
Approximate Entropy; SampEn: Sample Entropy; FuzzyEn: Fuzzy Entropy; LZV: Lempen-Ziv Complexity; DMN: Default Mode Network
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data analysis. Therefore, the ADHD group was finally

composed of 32 children and adolescents for the OE con-

dition (M = 10.94, SD = 3.18, 25 males, 7 females,

6–17 years) and 25 ADHD children and adolescents for the

CE condition (M = 11.8, SD = 3, 21 males, 4 females,

7–17 years). Grouping by ADHD typology was not per-

formed due to the low number of subjects in each group.

Thirty-two control subjects, matched in age and gender

to ADHD in the experimental condition for OE

(M = 10.84, SD = 3.10, 25 males, 7 females, 6–17 years)

and CE (M = 11.68, SD = 2.93, 21 males, 4 females,

7–17 years), were selected from public schools through

accessibility sampling. The control subjects for CE were

reduced to 25 to equate them to the number of ADHD

subjects in the CE condition. There were no significant

differences between the two groups in age (OE: (F (1,

62) = 0.000042, p = 0.995; eta partial squared =

0.0000007) and CE: (F (1, 48) = 0.000122, p = 0.991, eta

partial squared = 0.000003) or gender (OE: (F (1,

62) = 0.00, p = 1; eta partial squared = 0.00) and CE: (F

(1, 48) = 0.00, p = 0.991, eta partial squared = 0.00). The

equating in gender and age between controls and ADHD

allowed to eliminate these factors for mean comparisons

statistical analyses.

Controls did not report neurological diseases, signs of

epileptic discharges, or psychological impairments. The

experimental protocol was approved by the biomedical

research ethics committee of the autonomous community

of Andalucı́a. The guidelines of the Declaration of Helsinki

were followed and written informed consents were

obtained from the parents.

Experimental session

Spontaneous EEG activity was obtained in the OE and CE

experimental conditions with a duration of 3 min. Subjects

were instructed to stay still and to maintain a state of

relaxation in both experimental conditions. In the OE

condition, they were also instructed to blink as little as

possible and to look at a cross in the center of the screen.

A 32-electrode cap (ELECTROCAP) (Fp1, Fpz, Fp2,

F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, M1, T7, C3, Cz,

C4, T8, M2, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, POz,

O1, Oz, O2) assembled according to the international

10–20 system was used for recording. Electrodes placed on

the scalp were referenced off-line to the mean mastoid

(M1 ? M2)/2. Horizontal eye movements were recorded

with two electrodes placed on the outer edge of each eye

and vertical movements with two electrodes placed above

and below the left eye. Impedance was obtained below 10

Kohms. Using an analog-to-digital acquisition and analysis

system (ANT amplifiers, The Netherlands), data were

recorded with a gain of 20,000 in direct current at 512 Hz

without any filtering.

Data analysis

For EEG data analyses, the EEGLAB toolboxes (Delorme

& Makeig 2004) and Matlab R2019a software package

were employed.

The EEG signal was band-pass filtered from 0.5 to

35 Hz (eegfiltnew EEGLAB function). The Artifact Sub-

space Reconstruction (ASR) algorithm was applied to

correct EEG signal artifacts that exceeded 20 times the

standard deviation of the calibrated data (clean rawdata

EEGLAB function). Data were reconstructed and epochs

(2 s in duration) that exceeded ± 120 lV in any channel

were rejected for subsequent analysis (eegthresh EEGLAB

function). Subjects with less than 50 trials were not further

analyzed. Table 2 shows the number of epochs accepted in

each group and experimental condition. ANOVA compar-

isons showed no differences in the number of epochs

accepted in both groups: For the OE condition (F (1,

62) = 0.147, p = 0.703, eta partial square = 0.002) and for

the CE condition (F (1, 48) = 1.3, p = 0.259, eta partial

square = 0.026).

Multiscale entropy analysis

MSE was computed for all channels (except M1 and M2)

with the ‘‘multiscaleSampleEntropy’’ function of Matlab

(Malik 2022) based on Costa et al. (2005). MSE analysis is

a derivation of Shannon entropy (Shannon &Weaver 1949)

and Pincus approximate entropy (Pincus 1991). It is based

on the calculation of the sampling entropy (SampEn) of the

EEG signal at multiple time scales (Costa et al. 2002, 2005;

Richman & Moorman 2000). MSE is an index of signal

complexity (Garrett et al. 2013) and is computed using a

process known as coarse-graining. Each time scale is

defined by averaging the different neighboring points of the

original time series (of length s), dividing the EEG signal

in non-overlapping windows of a different number of

samples. Subsequently, the SampEn is calculated for each

time scale. This analysis evaluates the similarity of the

Table 2 Mean and Standard Deviation of accepted trials in controls

and ADHD subjects in open (OE) and closed eyes (CE) conditions

Control ADHD

OE CE OE CE

Trials Mean 82.56 84.84 81.69 81.96

SD 8.67 5.36 9.6 11.42
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repetition frequency of patterns of m data points (p^m)

versus another of m ? 1 points (p^(m ? 1)). It is neces-

sary, for this purpose, to define a similarity limit (r) that

delimits the tolerance range for individual data points to be

considered similar (k). The similarity limit is normalized

by the EEG Standard Deviation (SD) k\ r 9 SD (Malik

2022).

Recently, it has been suggested that the coarse-grained

process is comparable to Haar wavelet approximations on

power-of-two scales, relating the different frequency bands

of traditional spectral power analysis to different scales of

the MSE (Bosl et al. 2022). In this sense, the coarser scales

would contain the lower frequencies with filtering of the

high frequencies (Kosciessa et al. 2020), and the lower

scales are the original signal with the high frequencies,

with all scales containing also low frequencies (Bosl et al.

2022).

In our study, we set the parameters m = 2 and r = 0.5

considering the recommendations given by previous EEG

signal complexity studies (Richman & Moorman 2000;

McIntosh et al. 2008; Miskovic et al. 2016; Kosciessa et al.

2020; Kloosterman et al. 2019), in which the SD parameter

permits normalizing the r parameter by the EEG standard

deviation in each particular scale. MSE was calculated for

time scale 1 to 34, which allows analysis of entropy from

the finest to the coarsest scales, as well as indirect analysis

of low frequency bands (B 7.73 Hz). The last time scale

corresponds to a time of 64.6 ms per time point and 31

time points per trial.

The equation used to compute SampEn was (Malik

2022), following the notation of Kosciessa et al. (2020):

SampEn ¼ log
pmðrÞ

pðmþ1ÞðrÞ

High values of SampEn would indicate the presence of

low temporal regularity or high complexity (i.e., many

patterns of length m do not repeat over length m ? 1)

whereas low values would indicate high similarity/regu-

larity or low complexity indicating the poverty of infor-

mation (McIntosh et al. 2008; Garrett et al. 2013).

EEG standard deviation analysis

The EEG standard deviation (SDs) was computed in the

same scales as MSE for both conditions and groups. The

EEG SDs were computed as the EEG variability in each

trial, and then, the mean of SDs across trials was obtained

in the different scales. This parameter could inform if the

variability of the EEG was different between both groups at

the different scales and at different ages (by correlating

SDs with age). The SDs parameter provides the basal

variability of EEG and would be complementary to the

PSD, which provides the energy of each EEG frequency,

and the MSE, which provides the data complexity.

Absolute and relative PSD analyses

The mean of absolute PSD in each trial was calculated for

each subject in both experimental conditions (OE and CE).

PSD was calculated in 2 s windows (1024 sampling points

at a sampling rate of 512 Hz) with the EEGLAB spectopo

function which employs the Matlab pwelch function

applying a hamming window. As spectopo calculates the

logarithm of absolute PSD (Y = 10 * Log (PSD)), each

subject’s PSD values (PSD mean (M) and standard devia-

tion (SDp) across trials) were calculated by removing the

logarithms (PSD = eY/10) to visualize the data and calcu-

late the coefficient of variation (CV) across trials. Four

frequency bands averaged in different ranges were taken

into account for subsequent analysis: delta (1–2 Hz), theta

(4–7 Hz), alpha (8–11 Hz), and beta (13–20 Hz). The

gamma band was not calculated due to the bandpass filter

(0.5–35 Hz) used in the data analysis in order to eliminate

high-frequency electromyographical artifacts.

Relative PSD was calculated using the mean of absolute

PSD (removing logarithms) of each subject at each elec-

trode and using the following formula:

XðfiÞ ¼
PSDðfiÞ

P20
i¼1PSDðfiÞ

� 100

where X(fi) is the relative PSD for a given frequency, PSD

(fi) is the absolute PSD for a given frequency, andP
PSDðfiÞ is the sum of absolute PSD across all the con-

sidered frequencies (1–20 Hz). This analysis was per-

formed for controls and ADHD in both experimental

conditions (OE and CE).

Statistical analysis

To calculate the difference between groups of MSE, SDs,

absolute PSD (mean and CV), and mean of relative PSD

metrics, the values of these parameters in neighboring

electrodes, as defined in Fig. 1, were collapsed to reduce

the dimensionality of the data (Fig. 1), for both OE and

CE. For the same purpose, the MSE results for the 34

temporal scales were organized into three broader scales

(values in ms correspond to the scales time sampling): fine

scales (1.9 ms (scale 1)—24.7 ms (scale 13)); medium

scales (26.6 ms (scale 14)—43.7 ms (scale 23)); and coarse

scales (45.6 ms (scale 24)—64.6 ms (scale 34)) as pro-

posed by Szostakiwskyj et al. (2017). The period of the

scales was computed by multiplying the EEG sample

period by the scale order.
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Employing the Statistical Package for the Social Sci-

ences 25 (SPSS) three analyses of variance (ANOVA) were

performed with the mean of the MSE for each type of scale

(fine, medium, and coarse) in each brain area as defined

above and in Fig. 1. For the first and second ANOVA, the

within-subject factors were: type of scale (levels: fine,

medium, and coarse), anteroposterior areas (levels: ante-

rior, central, and posterior), and lateral areas (levels: left,

medial and right); and the between-subject factor was the

group (Control and ADHD subjects). The first two ANO-

VAs correspond to the independent analysis of OE and CE

conditions, respectively. And for the third ANOVA, the

experimental condition (OE and CE) was added as a

within-subject factor, maintaining the previously consid-

ered factors. To have the same subjects in both OE and CE

conditions only 23 controls and 25 ADHD remained for the

third ANOVA, respectively. When significant group dif-

ferences were found in the ANOVA analysis, the inde-

pendent samples t-test (False Discovery Rate (FDR)

corrected) were computed as post-hoc tests (Benjamini &

Hochberg 1995). Statistically significant results of

ANOVA are presented for all the considered factors, but

only those including the group factor were discussed and

analyzed in post-hoc tests, given that the main objective of

the present report is the between-groups differences.

Additionally, a Spearman correlation analysis of the

MSE with the age of the subjects (expressed in days) was

applied to controls and ADHD independently, in both

experimental conditions (OE and CE). For the correlational

analysis, the values of MSE in all the electrodes were

collapsed to reduce dimensionality. The collapse of

electrodes was also applied for other variables in which

correlational analysis was computed.

The SDs of the EEG for the 34 scales, collapsed by

electrodes, followed the same statistical analysis procedure

as the MSE. (i) Spearman correlation with age, (ii) Three

analyses of variance (ANOVA), with and without factor

‘‘experimental condition’’ (OE and CE), and (iii) Inde-

pendent samples t-tests (FDR corrected) for post-hoc

analysis.

For absolute PSD statistical analysis, Spearman corre-

lation was performed between the collapse of the mean

PSD across electrodes for each considered frequency

(1–20 Hz) and the age of the subject (expressed in days).

The same correlational analysis was calculated for SDp,

CV, and relative PSD. Additionally, for the relative PSD, a

correlation analysis was performed between the relative

PSD at different frequencies with the different MSE scales

for each group and experimental condition. The coefficient

of variation was calculated by dividing the standard devi-

ation across trials of absolute PSD (SDp) by the mean of

the absolute PSD (CV = SDp/M) in all subjects and the

two experimental conditions (OE and CE) and each fre-

quency (1–20 Hz). The means of absolute and relative PSD

and CV were analyzed through three ANOVAs. The first

(for OE condition), and second (for CE condition) ANOVA

included as within-subjects factors: anteroposterior areas,

and lateral areas, and as a between-subject factor the group.

The third ANOVA added the within-subject factor ‘‘ex-

perimental condition’’ (OE vs CE). The ANOVAs were

computed independently for the four different considered

frequency bands (delta, theta, alpha, and beta).

Fig. 1 Localization and collapse

of electrodes by regions. The

colors indicate the nine defined

scalp areas for electrodes

collapse. The 30 electrodes are

divided into two spatial

dimensions (lateral and

anterior–posterior) which have

three values each one: left,

middle, and right; and anterior,

central, and posterior,

respectively
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The FDR, which was applied to the post-hoc and to

correlational analysis, was calculated according to Ben-

jamini & Hochberg (1995) as a control measure for mul-

tiple comparisons and Spearman correlations.

Results

Figures 2 and 3 show the MSE results in the OE and CE

experimental conditions, respectively. The MSE increases

as the number of scales increases. Although the fig-

ures suggest that the ADHD group presents lower MSE

values compared to the control group in both OE and CE,

the ANOVA (Table 3) shows that the statistically signifi-

cant differences between Control and ADHD (MSE con-

trols[MSE ADHD) groups were only present in the OE

condition. As indicated in the methods section, an ANOVA

including the experimental condition (OE & CE) as a

within-group factor was performed for subjects presenting

enough number of trials (Table 4). The latter ANOVA

showed statistically significant differences between the

control and ADHD groups.

While Spearman correlations (Tables 5 and 6) show a

positive correlation of the MSE with the age of the subjects

(in days) for fine scales, this relationship reverses in coarser

scales, and such for both experimental conditions (OE and

CE) and for both groups (control and ADHD). A greater

correlation (in absolute values) was observed for controls

(M = 0.521, SD = 0.172) when compared to ADHD sub-

jects (M = 0.356, SD = 0.156) in the CE condition

(p\ 0.001), (based on a t-test between the absolute cor-

relation values).

EEG variability (measured as SDs) shows a decrease as

the number of scales increases (Figs. 4 and 5), and a

decrease with age for both controls and ADHD children

(Supplementary tables 1 & 2) in both experimental

conditions.

No main or interaction effect was observed among the

within-subject factors. All the within-subject significant

results for the ANOVAs of OE, CE, and CE&OE are

Fig. 2 Multiscale Entropy (MSE) for 34 scales in control and ADHD subjects in the open eyes (OE) experimental condition in all the 9

considered areas. The blue line represents the control group and the red line the ADHD group
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displayed in Supplementary Tables 3 & 4, but they were

not further analyzed.

Figures 6 and 7 show the absolute PSD results in all the

analyzed scalp areas for both experimental conditions. The

figures suggest that PSD is higher in ADHD children in the

delta (CE) and alpha frequency band (OE), mainly in

anterior and posterior areas. However, ANOVA results

(Supplementary Table 5) show a significant effect solely

for the alpha frequency band in the interaction group x

lateral x anterior–posterior, both for OE and CE indepen-

dently. The ANOVA post-hoc analysis showed the inter-

action of factor group x lateral posterior areas for the OE (F

(1.83, 113.7) = 3.41, p = 0.040; eta partial squared =

0.052). This interaction was due to a higher difference in

alpha PSD between left-posterior areas and medial-poste-

rior areas in controls compared to ADHD (p = 0.023).

However, in ANOVA post-hoc for CE, there was no

interaction with the group in any selected area.

The results of the absolute PSD analysis including

experimental conditions (OE & CE) as a within-subjects

factor (Supplementary Table 6) show an interaction

between groups and experimental conditions in the delta

band. The post-hoc analysis (F (1, 46) = 5.39, p = 0.025;

eta partial squared = 0.105) showed a higher difference of

absolute PSD values between CE and OE of ADHD

(M = 1.55; SD = 1.17) compared to controls (M = 0.834;

SD = 0.936).

The results of Spearman’s correlation in both experi-

mental conditions showed a negative correlation of the

mean (Supplementary Tables 7 & 8) and standard deviation

of PSD with age (Supplementary Tables 9 & 10) in all

frequency bands.

Supplementary Table 11 shows the ANOVA results for

the CV in OE and CE conditions. Significant differences

between the control and ADHD groups were found in the

CV for the delta bands in both experimental conditions. In

OE CV values are higher in the ADHD group (M = 1.8,

SD = 0.069) than in the control group (M = 1.77, SD =

0.067), as well as in CE condition (ADHD (M = 1.83,

SD = 0.083), control (M = 1.77, SD = 0.065)). The effect

Fig. 3 Multiscale Entropy (MSE) for 34 scales in control and ADHD subjects in the closed eyes (CE) experimental condition in all the 9

considered areas. The blue line represents the control group and the red line the ADHD group
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of interactions including the group factor showed antero-

posterior differences in the theta and beta bands for OE.

However, only the anterior areas of the beta band showed

differences between groups when multiple comparisons

analysis was performed (p = 0.01): higher CV value in the

ADHD group (M = 1.69; SD = 0.083) compared to the

control group (M = 1.64; SD = 0.043).

The results of the CV analysis including experimental

conditions (OE&CE) as a within-subject factor (Supple-

mentary Table 12) show differences between groups in the

delta band due to a high amplitude of the CV in ADHD

(M = 1.82, SD = 0.055) compared to controls (M = 1.77,

SD = 0.054). The theta band shows an interaction between

the group and experimental conditions. Namely, the ADHD

group (p = 0.012) shows a higher CV values in OE

(M = 1.67; SD = 0.050) compared to CE (M = 1.64;

SD = 0.028), while the control group showed no differ-

ences between conditions. The interaction between the

group and anteroposterior areas of the theta band shows

that in controls the comparisons between the areas are

significant: anterior-central (p\ 0.001), anterior–posterior

(p = 0.008), and central-posterior (p = 0.018) being the

CV values of anterior (M = 1.69; SD = 0.052) and poste-

rior areas (M = 1.65; SD = 0.055) higher than central

(M = 1.63; SD = 0.039). In the ADHD group, the com-

parisons between areas were only significant between

anterior-central (p\ 0.001) and anterior–posterior

(p\ 0.001), with the anterior area (M = 1.71; SD = 0.079)

presenting a higher CV value than the posterior area

(M = 1.63; SD = 0.021), and central area (M = 1.62,

SD = 0.023). The OE&CE x anterior–posterior in the beta

band group interaction shows differences between controls

Table 3 Significant results of

the ANOVA analysis of the

Multiscale Entropy values, with

factors group of subjects

(control and ADHD), scales

(fine, medium, and coarse),

laterality, and anterior–

posterior, for open eyes (OE)

and closed eyes (CE)

conditions, independently

Open eyes Between-subjects:

Group p = .046*

F = 4.14, gl = [1, 62], eta partial squared = .063

Within-subjects:

Scales p\ .001

F = 485.97, gl = [1.24, 76.66], eta partial squared = .887

Anterior–posterior p\ .001

F = 114.83, gl = [1.22, 75.74], eta partial squared = .649

Scales x Laterality p\ .001

F = 237.97, gl = [2.39, 148.28], eta partial squared = .793

Scales x Anterior–posterior p\ .001

F = 45.04, gl = [2.03, 125.58], eta partial squared = .421

Laterality x Anterior–posterior p\ .001

F = 14.07, gl = [3.28, 203.39], eta partial squared = .185

Scales x Laterality x Anterior–posterior p\ .001

F = 45.88, gl = [4.61, 285.96], eta partial squared = .425

Closed eyes Within-subjects:

Scales p\ .001

F = 383.11, gl = [1.46, 70.15], eta partial squared = .889

Laterality p\ .001

F = 17.73, gl = [1.97, 94.47], eta partial squared = .270

Anterior–posterior p\ .001

F = 120.59, gl = [1.3, 61.24], eta partial squared = .715

Scales x Laterality p\ .001

F = 129.35, gl = [2.5, 120.51], eta partial squared = .729

Scales x Anterior–posterior p\ .001

F = 107.14, gl = [2.59, 124.26], eta partial squared = .621

Laterality x Anterior–posterior p\ .001

F = 10.42, gl = [2.64, 126.73], eta partial squared = .178

Scales x Laterality x Anterior–posterior p\ .001

F = 35.89, gl = [4.19, 201.44], eta partial squared = .428

All significant results are displayed. The results in which the group factor was significant as a main or

interactive effect are indicated with an asterisk. Please notice that gender and age were equated for control

and ADHD groups
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(M = 1.64; SD = 0.036) and ADHD (M = 1.7; SD =

0.088) in the anterior areas for the OE condition

(p = 0.005). The other significant interactions in the

ANOVA lost their significance when the multiple com-

parisons corrections (FDR) were performed. The correla-

tion between CV with age was not significant in any group

or condition.

The results of the relative PSD analysis (Table 7)

showed an interaction between lateral x anterior–posterior

x group areas in the alpha band for the OE condition. Post-

hoc analysis showed no differences between areas or

groups. Analysis including condition, OE & CE (Table 8),

as a within-subject factor, showed differences between

groups in the delta band. This difference was due to a

higher relative PSD value between OE and CE in the

control group (M = 2.57, SD = 2.88) compared to the

ADHD group (M = 0.53, SD = 3.01).

Results of Spearman Correlations for both experimental

conditions OE (Table 9) and CE (Table 10) show that

relative PSD decreases in the slow frequency bands and

increases in the fast frequency bands with age. A greater

correlation (in absolute values) was observed for controls

(M = 0.435, SD = 0.181) when compared to ADHD sub-

jects (M = 0.325, SD = 0.118) in the CE condition

(p = 0.029) (based on a t-test between the absolute corre-

lation values).

The results of the correlations between the relative PSD

(1–20 Hz) and the scales (34 scales) (Fig. 8A) show sig-

nificant positive correlations (corrected by FDR) in OE

(controls (cutoff for Rho[ 0.39, p\ 0.025), ADHD

(cutoff for Rho[ 0.39, p\ 0.027)), and CE (controls

(cutoff for Rho[ 0.47, p\ 0.017), ADHD (cutoff for -

Rho[ 0.45, p\ 0.022)), as well as significant negative

correlations in both OE and CE conditions. The significant

positive correlations were between the high frequencies

(beta) and fine scales (1–13 scales) and low frequencies

(delta, theta) with coarse scales (24–34 scales), whilst for

negative correlations high frequencies vs coarse scales and

Table 4 Significant results of

the ANOVA analysis of the

Multiscale Entropy values, with

factors group of subjects

(control and ADHD), scales

(fine, medium, and coarse),

laterality, anterior–posterior,

and open eyes and closed eyes

conditions (OE & CE)

Between-subjects Group p = .025*

F = 5.33, gl = [1, 46], eta partial squared = .104

Within-subjects Scales p\ .001

F = 381.8, gl = [1.33, 61.38], eta partial squared = .892

Laterality p\ .001

F = 10.05, gl = [1.96, 90.59], eta partial squared = .179

Anterior–posterior p\ .001

F = 113.20, gl = [1.25, 57.61], eta partial squared = .711

OE-CE x Scales p\ .001

F = 23.08, gl = [1.46, 67.23], eta partial squared = .334

OE-CE x Laterality p = .005

F = 5.75, gl = [1.93, 88.93], eta partial squared = .111

Scales x Laterality p\ .001

F = 184.59, gl = [2.4, 110.52], eta partial squared = .801

OE-CE x Scales x Laterality p\ .001

F = 22.37, gl = [2.63, 121.27], eta partial squared = .327

OE-CE x Anterior–posterior p\ .001

F = 18.19, gl = [1.42, 65.51], eta partial squared = .283

Scales x Anterior–posterior p\ .001

F = 84.42, gl = [2.3, 105.92], eta partial squared = .647

OE-CE x Scales x Anterior–posterior p\ .001

F = 27.04, gl = [2.6, 118.42], eta partial squared = .370

Laterality x Anterior–posterior p\ .001

F = 12.28, gl = [2.88, 132.57], eta partial squared = .211

Scales x Laterality x Anterior–posterior p\ .001

F = 51.19, gl = [3.99, 183.64], eta partial squared = .527

OE-CE x Scales x Laterality x Anterior–posterior p = .015

F = 2.9, gl = [5.02, 230.75], eta partial squared = .059

All significant results are displayed. The results in which the group factor was significant as a main or

interactive effect, are indicated with an asterisk. Please notice that gender and age were equated for control

and ADHD groups
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low frequencies vs medium scales (14–23 scales) were

significant. These results support the relationship between

both metrics. Partial correlations were calculated to control

for the effect of the age of the subjects, and significant

correlations between MSE and relative PSD were found. A

similar pattern was observed in correlations when age was

controlled (Fig. 8B), when compared to non age-con-

trolled correlation (Fig. 8A), suggesting a low effect of

maturation on these metrics in both groups and conditions.

Finally, in the ADHD (OE and CE) group, Spearman

correlations were computed between the different measures

Table 5 MSE at different scales vs. age (expressed in days) Spearman

correlations (Rho) for control and ADHD group in Open Eyes (OE)

condition

Scales Control ADHD

Rho p Rho p

1 .534 .004 .411 .037

2 .551 .004 .431 .066

3 .541 .004 .424 .044

4 .500 .008 .407 .035

5 .491 .009 .404 .035

6 .490 .009 .409 .036

7 .545 .004 .418 .035

8 .607 \ .001 .422 .035

9 .700 \ .001 .427 .063

10 .729 \ .001 .401 .035

11 .739 \ .001 .396 .035

12 .761 \ .001 .335 .079

13 .739 < .001 .312 .103

14 .722 \ .001 .225 .253

15 .655 \ .001 .109 .586

16 .593 \ .001 - .019 .652

17 .488 .009 - .088 .917

18 .427 .026 - .128 .531

19 .351 .075 - .209 .284

20 .242 .247 - .298 .119

21 .196 .332 - .375 .046

22 .128 .516 - .426 .051

23 .027 .883 2 .424 .041

24 - .074 .71 - .398 .036

25 - .146 .466 - .434 .088

26 - .169 .40 - .423 .038

27 - .200 .331 - .426 .056

28 - .203 .334 - .446 .089

29 - .223 .289 - .433 .076

30 - .269 .194 - .467 .012

31 - .376 .054 - .422 .036

32 - .306 .130 - .452 .011

33 - .422 .027 - .425 .047

34 - .478 .011 - .484 .017

P-values with FDR corrections for multiple comparisons. The MSE

values for all the electrodes were collapsed to compute the correla-

tions. The limit of the scales is indicated by bold. Notice the transi-

tion from positive to negative correlations as scale order increases

Table 6 MSE at different scales vs. age (expressed in days) Spearman

correlations (Rho) for control and ADHD group in closed eyes con-

dition (CE)

Scale Control ADHD

Rho p Rho p

1 .588 .005 .401 .145

2 .636 .003 .379 .161

3 .608 .003 .374 .159

4 .499 .016 .340 .182

5 .477 .022 .318 .205

6 .473 .022 .315 .194

7 .579 .005 .315 .203

8 .643 .002 .327 .198

9 .719 \ .001 .293 .211

10 .721 \ .001 .343 .186

11 .732 .001 .348 .188

12 .707 \ .001 .299 .207

13 .669 .001 .303 .208

14 .621 .003 .274 .242

15 .538 .009 .247 .284

16 .446 .031 .211 .365

17 .358 .093 .159 .506

18 .252 .245 .110 .638

19 .081 .722 .030 .886

20 - .061 .773 - .045 .854

21 - .188 .389 - .154 .507

22 - .322 .133 - .247 .295

23 2 .462 .025 2 .353 .189

24 - .474 .023 - .401 .133

25 - .536 .009 - .501 .036

26 - .525 .011 - .525 .027

27 - .543 .009 - .569 .034

28 - .558 .007 - .574 .092

29 - .560 .007 - .574 .046

30 - .588 .004 - .557 .022

31 - .616 .003 - .567 .026

32 - .621 .003 - .532 .027

33 - .632 .003 - .549 .022

34 - .684 .001 - .562 .024

P-values with FDR correction for multiple comparisons. The MSE

values for all the electrodes were collapsed. The limit of the scales is

indicated by bold. Notice the transition from positive to negative

correlations as scale order increases
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analyzed: MSE, SDs, absolute PSD (mean and CV), and

relative PSD with the behavioral measures of impulsivity

and inattention of the DuPaul questionnaire (DuPaul et al.

1998). No significant results were found.

Discussion

We analyzed a group of children with ADHD compared to

an age and gender-matched normative group under exper-

imental conditions of OE and CE using MSE, SDs, and

PSD (absolute (mean, SDp and CV) and relative (mean))

methods to observe possible alterations of brain rhythms

and evaluate the complexity and variability of the neural

EEG. We hypothesized that control children would present

differences in EEG MSE and variability compared

to ADHD children, and would show a strong correlations

between all EEG metrics and age.

For the correlational analysis of the different EEG

metrics with age, many studies support the increase of

endogenous cortical dynamic complexity with age across

lower frequency bands (McIntosh et al. 2008, 2010; Garrett

et al. 2013; Miskovic et al. 2016; Van Noordt & Wil-

loughby 2021). Such increase would be a consequence of

network functional reconfigurations that shift from more

stable to more variable states with age. Brain network

functional organization across brain maturation would be

related to MSE (McIntosh et al. 2008, 2010). However, our

study indicates a limitation of the positive relationship of

age across scales in both OE and CE conditions. The results

show that in the 34 temporal scales evaluated in resting

state there is an inversion (positive to negative) of the

relationship between MSE with age, as a function of the

scales analyzed. The inversion from the positive to a

negative relationship between MSE and age occurs in the

coarser scales for both groups: controls and ADHD. This is

in agreement with results found by Szostakiwskyj et al.

Fig. 4 Standard Deviation (SDs) for 34 scales in control and ADHD subjects in the open eyes (OE) experimental condition in all the 9 considered

areas. The blue line represents the control group and the red line the ADHD group
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(2017) who suggest that the increase of the MSE with age

becomes gradually weaker as the number of scales

increases reaching a reversal of the relationship at coarse

time scales. As such, both Szostakiwskyj et al. (2017) study

and our study support the idea that, in both groups (controls

and ADHD), local information processing increases

throughout the brain with age (positive MSE-age rela-

tionship on fine scales), and that, at later ages in develop-

ment, interactions between long-range neural populations

would be reduced (negative MSE-age relationship on

medium and coarse scales) given the low-frequency dom-

inance in coarser scales (Szostakiwskyj et al. 2017).

Similarly, previous studies with PSD suggest that the

increase in the high-frequency bands with age (Segalowitz

et al. 2010) is related to greater processing of local infor-

mation; while the decrease in low frequencies corresponds

to a decrease in long-range communication with other

neuronal populations (Gasser et al. 1988; Von Stein et al.

2000; McIntosh et al. 2008; Cragg et al. 2011). MSE

studies have shown that the scales contain information

regarding the frequencies, with fine scales having infor-

mation of all frequencies, and the coarse scales with the

low frequencies (McIntosh et al. 2008, 2010; Szostaki-

wskyj et al. 2017; Bosl et al. 2022). Our results support

these statements showing a strong relationship between the

relative PSD and the MSE with age, given by an increase in

the high-frequency bands and fine scales, and a decrease in

the low frequency bands and coarse scales with age, indi-

rectly involving a connectivity refinement pattern. Like-

wise, an indirect relationship between the establishment of

a small-world topology during development, characterized

by an increase in clustering coefficients and path lengths

with age (Boersma et al. 2011), and the increase and

decrease of the MSE and relative PSD could occur. EEG

studies with the normodevelopment population suggest that

there is an increase in small-world topology during

development as suggested by increased clustering and path

length coefficients with age (Boersma et al. 2011; Smit

Fig. 5 Standard Deviation (SDs) for 34 scales in control and ADHD subjects in the closed eyes (CE) experimental condition in all the 9

considered areas. The blue line represents the control group and the red line the ADHD group
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et al. 2012; Vértes & Bullmore 2015). The oscillatory

frequencies have also been related to connectivity in the

brain; thus, low frequency bands reflecting global activity

of brain, and high frequency bands reflecting its local

connectivity (Li et al. 2016). Present results showed a more

consistent pattern of inversion of the MSE (from fine to

coarse scales: higher frequencies to lower frequencies) and

relative PSD (from low to high frequencies) with age in

controls than in ADHD, suggesting that the establishment

of focally segregated and long-range refined integrated

topology in neural networks with maturation occurs more

clearly in controls than in ADHD.

Studies investigating mean PSD throughout develop-

ment have shown generalized decreases in absolute power

in all brain rhythms, and decreases in low-frequency bands

and increases in high rhythms in relative power (Dustman

et al. 1999; McIntosh et al. 2008; Barry et al. 2009;

Segalowitz et al. 2010; Rodrı́guez-Martı́nez et al.

2012, 2017, 2020). The results of the present study confirm

the negative relationship of absolute PSD with age in both

groups analyzed and for OE and CE, validating this EEG

parameter as a robust biomarker of EEG maturation

(Gasser et al. 1988; Segalowitz et al. 2010; Rodrı́guez-

Martı́nez et al. 2012; Miskovic et al. 2015). In this sense,

the decrease in PSD with age could be explained by the

process of synaptic pruning in which the most stable neural

connections are maintained, and the rest are pruned,

increasing the efficiency of neural transmission (Whitford

et al. 2007). The inversion of the correlation of the age with

the relative PSD, from negative correlations in low fre-

quencies to positive correlations, determines a higher

contribution of high frequencies to the EEG power as

maturation progresses (Segalowitz et al. 2010). On the

other hand, the main differences in PSD (absolute and

relative) between the groups were observed in the delta

and alpha frequency bands. For the delta band, the values

of the difference between the conditions (CE-OE) of the

absolute PSD were higher for the ADHD group, in contrast

to the relative PSD, where these values were higher for the

control group. Regarding the alpha band, the differences

Fig. 6 Absolute Power Spectral Density (PSD) in Hz in control and ADHD subjects for the open eyes (OE) experimental condition in all 9

considered areas. The blue line represents the control group and the red line the ADHD group

882 Cognitive Neurodynamics (2023) 17:869–891

123



between groups in absolute and relative PSD were found in

the OE condition. However, only the absolute PSD of the

control group shows higher difference values, between the

posterior-left and posterior-medial areas compared to

ADHD. Although the present report did not find increased

mean PSD of ADHD with respect to controls in low-fre-

quency bands, differences were obtained as effects of

interactions of the group factor with the experimental

condition. The latter could be explained by the relatively

low subjects’ sample and the variability of ADHD chil-

dren’s PSD. Similarly, it has been reported that theta was

increased in 60% of subjects and decreased in 40% of them

(Clarke et al. 2011).

The aforementioned high correlation between relative

PSD and MSE, even when the partial correlation is con-

trolled by age, suggests a functional dependency between

these two metrics, as was suggested by Bosl et al. (2022).

Similarly, previous studies which have analyzed this rela-

tionship have found a similar pattern in the relationship

between MSE and relative PSD for low and medium scales

(high frequencies) (McIntosh et al. 2008; Kosciessa et al.

2020; Van Noord & Willoughby, 2021). Considering such

relationship between scales and frequency bands (Bosl

et al. 2022) and the use of a sampling rate of 512 Hz and 34

scales (the higher scale related to frequencies B 7.73 Hz)

in the present study, the coarsest scales would be equiva-

lent to delta and theta bands, the medium scales to alpha

and low beta, and fine scales to beta. It is important to note

that due to the high pass filter the gamma band or above it

is not considered. Nevertheless, MSE is sensitive to linear

and non-linear temporal dependencies in EEG signal

irregularities, while PSD is only to linear changes (Van

Noordt & Willoughby 2021). The fact that in the present

report no clear direct differences between relative PSD of

controls and ADHD were found (significant differences

appeared as an interaction of factor effects), while these

differences were obtained in MSE as a main group factor

effect, suggests that maturational differential effects

between control and ADHD occur in non-linear temporal

Fig. 7 Absolute Power Spectral Density (PSD) in control and ADHD subjects for the closed eyes (CE) experimental condition in all 9 considered

areas. The blue line represents the control group and the red line the ADHD group
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dependencies in the analyzed samples of ADHD and

controls.

Our results of brain signal variability across scales (SDs)

and spectral power (SDp) are complementary to the MSE.

While MSE in the whole brain increases and decreases

with increasing number of scales (from higher to lower

frequencies bands) and age, SDs and SDp decrease in both

scales and frequencies (1–20 Hz) with age, and in both

experimental conditions for both groups (controls-ADHD).

These results show a decreased variability of EEG related

to the reduction of EEG absolute PSD with age, also

observed in the present results. The decrease in absolute

spectral power with age accompanied by EEG reduced

variability with age (SDs and SDp), would be a

consequence of neural pruning processes that would reduce

EEG amplitude (Whitford et al. 2007). However, calcula-

tions of SDs and SDp differ from MSE in the fundamental

aspect that MSE is computed considering a normalization

of the similarity limit (r) parameter by the EEG standard

deviation of the trial, and in that regard, MSE would be

more related computationally to the variability of the CV

across trials of the different frequency bands, given that in

the CV the standard deviation of the EEG is normalized by

the mean. The CV did not show modulation by age nei-

ther in controls nor in ADHD, but the mean comparisons

of the CV across groups showed an increased CV in delta

and beta rhythms for ADHD with respect to controls,

particularly clear in anterior areas. The latter results

Table 7 Significant results obtained in the ANOVA of the relative PSD with factors: group of subjects, anterior–posterior, and laterality

Bands OA OC

Delta

(1–2 Hz)

Within-subjects:

Anterior–posterior p\ .001

F = 170.94, gl = [1.33, 82.65], eta partial squared = .734

Laterality x Anterior–posterior p\ .001

F = 6.04, gl = [3.35, 207.9], eta partial squared = .089

Within-subjects:

Laterality p\ .001

F = 11.96, gl = [1.87, 89.73], eta partial squared = .199

Anterior–posterior p\ .001

F = 482.79, gl = [1.31, 62.73], eta partial squared = .910

Laterality x Anterior–posterior p\ .001

F = 11.54, gl = [3.17, 152.02], eta partial squared = .194

Theta

(4–7 Hz)

Within-subjects:

Laterality p\ .001

F = 37.15, gl = [1.96, 121.74], eta partial squared = .375

Anterior–posterior p\ .001

F = 45.31, gl = [1.45, 89.7], eta partial squared = .422

Laterality x Anterior–posterior p\ .001

F = 40.78, gl = [3.68, 228.11], eta partial squared = .397

Within-subjects:

Laterality p\ .001

F = 32.75, gl = [1.91, 91.93], eta partial squared = .406

Anterior–posterior p\ .001

F = 43.14, gl = [1.39, 66.81], eta partial squared = .473

Laterality x Anterior–posterior p\ .001

F = 16.35, gl = [3.14, 150.41], eta partial squared = .254

Alpha

(8–11 Hz)

Within-subjects:

Laterality p = .001

F = 7.64, gl = [1.95, 121.09], eta partial squared = .110

Anterior–posterior p\ .001

F = 101.71, gl = [1.15, 71.62], eta partial squared = .621

Laterality x Anterior–posterior p = .043

F = 2.76, gl = [3.01, 186.6], eta partial squared = .043

Laterality x Anterior–posterior x group p = .049*

F = 2.67 gl = [3.01, 186.6], eta partial squared = .041

Within-subjects:

Laterality p\ .001

F = 8.96, gl = [1.96, 94.01], eta partial squared = .157

Anterior–posterior p\ .001

F = 178.6, gl = [1.16, 55.76], eta partial squared = .788

Laterality x Anterior–posterior p\ .001

F = 6.94, gl = [2.76, 132.29], eta partial squared = .126

Beta

(13–20 Hz)

Within-subjects:

Laterality p\ .001

F = 61.12, gl = [1.45, 89.73], eta partial squared = .496

Anterior–posterior p\ .001

F = 50.39, gl = [1.34, 82.90], eta partial squared = .448

Laterality x Anterior–posterior p\ .001

F = 15.99, gl = [3.54, 219.48], eta partial squared = .205

Within-subjects:

Laterality p\ .001

F = 23.3, gl = [1.99, 95.63], eta partial squared = .327

Anterior–posterior p\ .001

F = 39.11, gl = [1.21, 58.2], eta partial squared = .449

Laterality x Anterior–posterior p\ .001

F = 21.31, gl = [3.59, 172.62], eta partial squared = .307

The ANOVA was computed independently for the open (OE) and closed eyes (CE) conditions. The results in which the factor group was

significant as a main or interactive effect are indicated with an asterisk
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Table 8 Significant results of

the ANOVA analysis of the

relative PSD values, with

factors group of subjects

(control and ADHD), laterality,

anterior–posterior and open

eyes and closed eyes conditions

(OE & CE), for each band

independently

Delta (1–2 Hz) Within-subjects:

OE-CE p = .001

F = 13.19, gl = [1, 46], eta partial squared = .223

OE-CE x group p = .021*

F = 5.75, gl = [1, 46], eta partial squared = .111

Laterality p = .005

F = 5.64, gl = [1.95, 89.53], eta partial squared = .109

Anterior–posterior p\ .001

F = 315.25, gl = [1.3, 59.69], eta partial squared = .873

OE-CE x Laterality p\ .001

F = 8.49, gl = [1.97, 90.55], eta partial squared = .156

OE-CE x Anterior–posterior p\ .001

F = 164.15, gl = [1.47, 67.77], eta partial squared = .781

Laterality x Anterior–posterior p\ .001

F = 8.34, gl = [3.39, 155.94], eta partial squared = .154

Theta (4–7 Hz) Within-subjects:

OE-CE p\ .001

F = 78.75, gl = [1, 46], eta partial squared = .631

Laterality p\ .001

F = 46.79, gl = [1.84, 84.48], eta partial squared = .504

Anterior–posterior p\ .001

F = 51.97, gl = [1.36, 62.43], eta partial squared = .530

OE-CE x Anterior–posterior p = .016

F = 4.96, gl = [1.55, 71.51], eta partial squared = .097

Laterality x Anterior–posterior p\ .001

F = 27.5, gl = [3.46, 159.14], eta partial squared = .374

OE-CE x laterality x anterior–posterior p = .009

F = 3.7, gl = [3.59, 165.49], eta partial squared = .074

Alpha (8–11 HZ) Within-subjects:

OE-CE p\ .001

F = 71.6, gl = [1, 46], eta partial squared = .609

Laterality p\ .001

F = 10.81, gl = [1.98, 91.19], eta partial squared = .190

Anterior–posterior p\ .001

F = 144.49, gl = [1.15, 52.68], eta partial squared = .759

OE-CE x Anterior–posterior p\ .001

F = 98.35, gl = [1.27, 58.25], eta partial squared = .681

Laterality x Anterior–posterior p\ .001

F = 6.61, gl = [2.99, 137.78], eta partial squared = .126

OE-CE x Laterality x Anterior–posterior p = .005

F = 4.93, gl = [2.59, 119.24], eta partial squared = .097

Beta (13–20 Hz) Within-subjects:

OE-CE p = .007

F = 7.93, gl = [1, 46], eta partial squared = .147

Laterality p\ .001

F = 41.75, gl = [1.66, 76.29], eta partial squared = .476

Anterior–posterior p\ .001

F = 46.99, gl = [1.25, 57.58], eta partial squared = .505

OE-CE x Laterality p\ .001

F = 18.97, gl = [1.58, 72.74], eta partial squared = .292

Laterality x Anterior–posterior p\ .001

F = 22.89, gl = [3.36, 154.52], eta partial squared = .332

All significant results are displayed. The results in which the factor group was significant as a main or

interactive effect are indicated with an asterisk
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suggest that spontaneous EEG is more variable in ADHD

than in controls. The higher variability in behavior and

neural responses of ADHD subjects with respect to controls

has been previously observed (Castellanos et al. 2009).

Therefore, the present results add evidence to more vari-

able activation levels in ADHD subjects compared to

controls while a higher complexity is obtained in controls

with respect to ADHD.

EEG variability as measured by SDs, SDp, and CV

could be considered as a first-order measurement of vari-

ability, which does not fully incorporate the presence of

organized patterns of different temporal scales. MSE

incorporates variability and organization of time series and

is therefore well suited to analyze physiological signals

(Garrett et al. 2013; McIntosh et al. 2010). As such,

complexity analysis of several psychiatric and psycholog-

ical impairments has shown EEG abnormalities (Catarino

et al. 2011; Bosl et al. 2011, 2017; Chu et al. 2017;

Takahashi et al. 2013; Papaioannou et al. 2021). In

developmental disorders such as ADHD, particularly, not

many studies have been conducted, leading to

inconsistencies in the results. As an example, Fernández

et al. (2009) showed a decrease in complexity (Lempel–Ziv

complexity (LZC)) with age in the ADHD group compared

to an increase in the control group; Rezaeezadeh et al.

(2020), using MSE, suggests that children with ADHD

present lower values of complexity than a normative group;

and Li et al. (2016) indicates higher values of complexity

for ADHD subjects compared to controls in delta and theta

rhythms and lower complexity in alpha rhythms. Our

findings show an increase in complexity across increas-

ingly coarser time scales, in both groups analyzed, for both

conditions OE and CE. The group comparison showed

higher MSE values for controls compared to ADHD, sug-

gesting an increasingly variable and less predictable neural

signal (Garrett et al. 2013) across different temporal scales

(Szostakiwskyj et al. 2017) in the resting state. Recently,

functional near-infrared spectroscopy (fNIRS) study shows

that children with ADHD have reduced complexity in

primary and higher-order functional brain networks, such

as the default mode network, fronto-parietal, attentional,

and visual networks (Hu et al. 2021). Therefore, the higher

Table 9 Relative PSD vs. age (in days) Spearman correlations for

control and ADHD group in open eyes condition (OE)

Frequencies (Hz) Control ADHD

R p R p

1 - .409 .059 - .204 .325

2 - .547 .005 - .032 .861

3 - .282 .157 - .101 .608

4 - .079 .667 - .176 .391

5 - .207 .282 - .278 .176

6 - .319 .117 - .382 .091

7 - .243 .212 - .317 .141

8 - .289 .156 - .291 .178

9 - .249 .210 - .319 .151

10 - .102 .609 - .125 .550

11 .358 .082 .266 .188

12 .737 \ .001 .377 .086

13 .814 \ .001 .529 .021

14 .789 \ .001 .546 .028

15 .644 \ .001 .502 .025

16 .477 .021 .447 .054

17 .362 .085 .429 .059

18 .327 .114 .386 .100

19 .369 .086 .324 .158

20 .405 .056 .281 .183

P-values with FDR correction for multiple comparisons. Notice the

transition from positive to negative correlations as frequency

increases

Table 10 Relative PSD vs. age (in days) Spearman correlations for

control and ADHD group in closed eyes condition (CE)

Frequencies (Hz) Control ADHD

R p R p

1 - .375 .101 - .135 .544

2 - .409 .087 - .259 .279

3 - .476 .043 - .341 .239

4 - .398 .089 - .323 .231

5 - .478 .048 - .587 .049

6 - .547 .026 - .533 .068

7 - .345 .122 - .519 .057

8 - .299 .172 - .357 .268

9 - .381 .102 - .130 .534

10 - .042 .841 .216 .331

11 .480 .054 .382 .304

12 .765 \ .001 .333 .231

13 .805 \ .001 .351 .246

14 .709 \ .001 .372 .270

15 .533 .027 .322 .213

16 .289 .178 .292 .259

17 .221 .302 .248 .272

18 .336 .126 .265 .286

19 .370 .099 .256 .269

20 .445 .059 .289 .247

P-values with FDR corrections for multiple comparison. Notice the

transition from positive to negative correlations as frequency

increases
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complexity observed in the control group could reflect

increased information processing capacity (Szostakiwskyj

et al. 2017), greater maturation of stable behavioral

responses (McIntosh et al. 2008; Misic et al. 2010), and

effective adaptation to environmental uncertainty (Grady &

Garrett 2018), highlighting a difference in these processes

with children with ADHD. Therefore, the present results

indicate that ADHD children present more brain rhythms

variability (as indicated by CV), but a lower EEG com-

plexity (as indicated by MSE) than controls.

The present results support the maturational delay model

due to the reduced complexity in ADHD subjects com-

pared to controls, given that these children present MSE

values below biological age (Szostakiwskyj et al. 2017).

Interestingly, and as indicated before, ADHD showed a less

clear pattern (lower correlation MSE vs. age) of the

increase for the fine scales and the decrease in the coarse

scales with age than controls. A similar developmental

pattern of ADHD (lower correlation relative PSD vs age)

was also shown by relative PSD of decreasing relative

power in low frequencies and increasing in higher fre-

quencies with age. The latter results suggest not only a

maturational delay but also a differential developmental

trajectory to reach maturation as indicated by inter-group

significant differences of MSE and relative PSD correla-

tions with age.

The decreased complexity and higher variability of EEG

in ADHD compared to control children as well as the

interactive effects in PSD low-frequency bands could

suggest that children with ADHD display abnormal

Fig. 8 A Spearman Correlation

between MSE (34 scales) and

relative PSD (1–20 Hz) in

control and ADHD subjects for

both experimental conditions B
Partial Spearman correlation,

controlling for age (in days) in

open and closed eye conditions

for both groups of subjects. The

cutoff value for each

correlation, being significant

when corrected by FDR, is

indicated in the graphs. The red

color represents positive

correlations and the blue one

represents negative correlations
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functioning at the neural level for their biological age

compared to normal children (Shaw et al. 2007; Narr et al.

2009; Giertuga et al. 2017; Saad et al. 2018; Rodrı́guez-

Martı́nez et al. 2020). Nevertheless, other studies have

reported increases in complexity and/or variability (Li et al.

2016) as well as increases in PSD in low frequencies in OE

in the ADHD group (Sohn et al. 2010; Nazari et al. 2011),

so further research is still needed to achieve more consis-

tent agreements. In general, these differences could be

affected by variability in ADHD typology, medication

administration, and/or comorbidities with the disorder.

Consequently, it is pertinent to mention the limitations

of this study, such as the number of subjects analyzed, and

the small number of women included in the study. This

could be explained by the higher prevalence of the disorder

in the male population, in this matter some studies have

demonstrated the existence of gender differences in the

EEG in people with ADHD. With the EEG of women being

more homogeneous and less aberrant than men with the

disorder (Clarke et al. 2020), which could be affecting the

symptomatology, and in turn, leading the low levels of

diagnosis. Therefore, in future research, it would be rec-

ommendable to include a greater number of women in the

studies. Although a minimal number of 50 samples was

suggested for a reliable estimation of MSE, and the present

report uses only 31 samples for the coarsest scale, MSE

computation is considered accurate based on the obtained

results of pattern inversion in the correlation of MSE with

age. Nevertheless, future studies would include a longer

period of resting-state recording which would permit to

segment EEG data in longer epochs and to have enough

number of trials to compute more reliable MSE

estimations.

Conclusions

The present study showed a decrease of MSE as well as an

increase in EEG variability (CV) in ADHD compared to

controls. These results suggest a less stable neural envi-

ronment and a lower capacity to adapt to new situations in

ADHD with respect to controls. The results also indicate,

that in both groups an increase in MSE with age occurs for

fine scales while a decrease occurs for coarse scales. The

latter results suggest that during development strengthen-

ing of local connections, while refinement of long-range

connections occurs, which is compatible with the estab-

lishment of a small-world network topology across devel-

opment, more homogenously established in controls than in

ADHD.
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