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Abstract
Background Protocadherin 10 (PCDH 10), a member of the superfamily of protocadherins, is a  Ca2+-dependent homo-
philic cell-cell adhesion molecule expressed on the surface of cell membranes. Protocadherin 10 plays a critical role in the 
central nervous system including in cell adhesion, formation and maintenance of neural circuits and synapses, regulation of 
actin assembly, cognitive function and tumor suppression. Additionally, Pcdh10 can serve as a non-invasive diagnostic and 
prognostic indicator for various cancers.
Methods This paper collects and reviews relevant literature in Pubmed.
Conclusion This review describes the latest research understanding the role of Pcdh10 in neurological disease and human 
cancer, highlighting the importance of scrutinizing its properties for the development of targeted therapies and identifying 
a need for further research to explore Pcdh10 functions in other pathways, cell types and human pathologies.
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Introduction

Cell–cell adhesion is a basic process in the morphogenesis 
of multicellular organisms. Originally described as cell 
adhesion molecules, cadherins play a crucial role in cell rec-
ognition, cell communication, morphogenesis, cytoskeletal 
organization, cell migration, and neural circuit formation 
(Flaherty and Maniatis 2020; Pancho et al. 2020). According 
to sequence similarities, cadherins can be divided into three 
subfamilies: classical cadherins, desmosomal cadherins, and 

protocadherins (Pcdhs) (Halbleib and Nelson 2006). Among 
these, Pcdhs are the largest and most diverse cadherin sub-
family. Pcdhs are highly abundant in the developing brain, 
lungs and kidneys (Homayouni et al. 2001; Kim et al. 2007), 
being crucial for organ development and maintenance. Pcdhs 
are also involved in the establishment and function of spe-
cific cell–cell connections as well as in tumor development 
(Kahr et al. 2013). Based on the genomic organization, 
Pcdhs are further classified as clustered or non-clustered 
(Pancho et al. 2020).

Pcdh10 is a non-clustered Pcdh (Light and Jontes 2017) 
that is initially highly expressed in CNS and is essential 
for neuronal development (Uemura et al. 2007). Pcdh10 
has been identified as an autism-spectrum disorder gene 
(Morrow et al. 2008; Ferri et al. 2021; Hoshina et al. 2022). 
Additionally, Pcdh10 is a newly discovered tumor suppres-
sor gene which is downregulated by hypermethylation or 
genetic deletion in various malignant tumors, and is linked 
to the occurrence, proliferation, invasion and metastasis 
of tumors (Zhong et al. 2013; Qiu et al. 2016; Yang et al. 
2016, 2022). Importantly, tumor-associated Pcdh10 meth-
ylation status exhibit diagnostic and prognostic value for 
multiple human cancers, such as colorectal cancer, prostate 
cancer, cervial cancer, breast cancer, etc. (Lin et al. 2011; 
Jao et al. 2014; Deng et al. 2016; Liu et al. 2018b). Pcdh10 
methylation does not occur in healthy tissues. However, the 
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research of Pcdh10 is still in its early days, and there are 
many unknown biological characteristics and functions that 
have not yet been discovered.

In this review, we explore the role of Pcdh10 in neurolog-
ical disease and human cancer, and provide further insight 
into the molecular mechanisms and disease-relationship that 
Pcdh10 controls.

The biological features of Pcdh10

Non-clustered PCDHs can be classified into three groups: 
δ1, δ2 and ε subgroup based on their structure and function 
(Kim et al. 2011). Most non-clustered Pcdhs have 6 or 7 
extracellular cadherin repeats in the ectodomain, a trans-
membrane, and a cytoplasmic domain. Both Pcdhδ1 and 
Pcdhδ2 members contain conserved cytoplasmic motifs 
(CM1 and CM2) in their cytoplasmic domain, while Pcdhδ1 
members have an additional protein phosphatase-1α binding 
domain (RRVTE, CM3).

Pcdh10, originally named OL-protocadherin, belongs 
to Pcdhδ2 and is located on chromosome 4 in humans and 
chromosome 3 in mice. It contains 6 extracellular cadherin 
repeats in the ectodomain, a transmembrane domain and 

a unique cytoplasmic domain (Hirano et al. 1999; Kim 
et al. 2011). Similar to other members of non-clustered 
Pcdhs, Pcdh10 mediates calcium-dependent cell–cell 
adhesion by homophilic binding through the extracellular 
cadherin domains, although this binding ability is gener-
ally weak (Hirano et al. 1999). Since cytoplasmic domains 
of non-clustered Pcdhs are distinct, they can act as major 
regulators via interacting with a variety of intracellular 
binding partners (Kim et al. 2011). A short isoform and 
a long isoform of Pcdh10 have been identified in human. 
Pcdh10 in mice contains a short isoform (iso1) and three 
long isoforms (iso2, iso3 and iso4), all of which only dif-
ferent at their carboxyterminal end of cytoplasmic domain 
(Kleinberger et al. 2022). Interestingly, all three long iso-
forms of mouse Pcdh10 contain several conserved motifs 
in their cytoplasmic domains (Kleinberger et al. 2022), 
suggesting that shared interacting partners are key for the 
basic functioning of Pcdh10 proteins. For example, mouse 
Pcdh10 interacts with Nck-associated protein 1 (Nap1), 
Sra-1/PIR121/cytoplasmic interacting FMR1 protein 2 
(CYFIP2), Abl interactor 1 (Abi-1), hematopoietic stem/
cell progenitor protein 300 (HSPC300) and WAVE1 to 
generate a Pcdh10-associated WAVE regulatory complex 
(Nakao et al. 2008). Overexpression of Pcdh10 recruits the 
WAVE regulatory complex at inter-axonal contact sites, 
which results in reorganization of F-actin and N-cadherin 

Fig. 1  Mechanisms of Pcdh10 activity required to drive and main-
tain physiological and brain developmental functions. A Pcdh10 
can bind Nap1, CYFIP2, Abi-1, HSPC300 and WAVE1 to form a 
Pcdh10-WAVE regulatory complex. By recruiting the WAVE regula-
tory complex to inter-axonal contact sites, Pcdh10 regulates F-actin 
organization and N-cadherin redistribution. Redistributed N-cadherin 

is unable to induce contact inhibition, leading to increased cell migra-
tion of glioblastoma cells. B Nuclear MEF2 activation initiates Mdm2 
transcription, which results in ubiquitination of PSD-95. Pcdh10 then 
binds to ubiquitinated PSD-95 and links it to the proteasome for deg-
radation, resulting in synapse elimination
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at these locations, and subsequently regulates cell migra-
tion of astrocytoma U251 cells (Fig. 1a). However, how 
Pcdh10/ Nap1/WAVE1 complex affect actin assembly 
needs to be further clarified.

PCDH10 in brain development

PCDH10 is detectable in nonneuronal tissue such as heart, 
kidney, lung and trachea (Wolverton and Lalande 2001), 
however its predominant expression is in the CNS (Kim 
et al. 2007), further indicating that Pcdh10 is critical for 
neural development. A high level of expression of Pcdh10 
is detected in the striatum, piriform cortex, and preop-
tic region of the mouse brain at E13.5, but its expression 
in the globus pallidus is weak (Uemura et al. 2007). In 
all brain regions, Pcdh10 plays a key role in axon out-
growth and guidance. It has been shown, for instance, that 
Pcdh10 knockout mice do not form the cerebral peduncle, 
corticospinal tract, and striatonigral pathway, while cor-
ticofugal axons halting in the ventral telencephalon and 
thalamocortical axons fail to reach the internal capsule 
(Uemura et al. 2007). During embryonic and postnatal 
development, Pcdh10 is also expressed in the olfactory 
system, and variable levels of Pcdh10 are detected in 
olfactory sensory neurons and the diverse olfactory bulb 
glomeruli (Aoki et al. 2003; Williams et al. 2011). Pcdh10 
expression is activity-dependent within olfactory sensory 
neurons, as reducing sensory odorant-evoked activity by 
naris occlusion or expression of an inactive form of cyclic 
nucleotide gated A2, reduces the expression of Pcdh10. 
Circuit formation is highly dependent on this regulation of 
expression, as the misexpression of Pcdh10 significantly 
impairs glomeruli formation in the olfactory system (Wil-
liams et al. 2011).

Neurons of the lateral and basolateral amygdala in 
mice heterozygous for Pcdh10 also have more filopodia 
and dendritic spines and (Schoch et al. 2017), and Pcdh10 
appears to be necessary for the elimination of hippocam-
pal and cortical synapses (Tsai et al. 2012). Pcdh10 acts 
as the downstream molecule of myocyte enhancer factor 
2 (MEF2), which initiates the transcription of Murine 
double minute 2 (Mdm2). Post-synaptic scaffolding pro-
tein 95 (PSD-95), the synaptic scaffolding protein, was 
ubiquitinated by Mdm2 in response to MEF2 activation. 
Pcdh10 then binds PSD-95 and links it to the proteasome 
for ubiquitination and degradation, leading to synapse 
elimination (Fig. 1b). These data imply that Pcdh10 is an 
important player in dendritogenesis, axon development 
and synaptogenesis.

Pcdh10 in neurological disease

Autism spectrum disorders (ASD, also known as autism) 
is a highly genetically heterogeneous neurodevelopmental 
disorder characterized by impaired social communications. 
ASD commonly co-presents with other neurological con-
ditions, such as epilepsy, intellectual disability or bipolar 
disorders. Several studies have identified Pcdh10 act as 
an autism associated gene (Morrow et al. 2008; Bucan 
et al. 2009).

It has been reported that the pathophysiology of autism 
is highly related with homozygous deletion of Pcdh10 in 
families with ASD (Morrow et al. 2008). Patients with 
homozygous Pcdh10 deletion exhibit disrupted elimina-
tion of activity-dependent excitatory synapses, as a result 
of altered ubiquitination and degradation pathways (Tsai 
et  al. 2012). In line with the study, Hoshina and col-
league showed that Pcdh10 deletion in mice display mild 
impairment in their social recognition and communication 
responses, suggesting that Pcdh10 mutations may cause 
ASD-related symptoms (Hoshina et al. 2022).

Heterozygous male mice of this mutant strain dis-
play sociability defects (Schoch et al. 2017) and altered 
γ oscillations (Port et al. 2017), which are known to be 
crucial for fear memory retrieval (Bocchio et al. 2017). 
Accordingly, a recent study showed that juvenile and adult 
Pcdh10-heterozygous mice displayed an increase in imma-
ture dendritic spine density, reduced NMDAR expression, 
altered γ synchronization of the basolateral amygdala, and 
disrupted fear conditioning behaviours (Ferri et al. 2021). 
Interestingly,  Pcdh10+/– females showed deficits only as 
adults in the cued fear memory, which might relate to 
hormonal changes. However, the mechanism underlying 
the Pcdh10 knockdown-induced behavioral differences 
between sexes is unclear.

In addition to ASD, several recent studies have impli-
cated human Pcdh10 in other neurological conditions, 
such as familial amyloidotic polyneuropathy (FAP), obses-
sive–compulsive disorder (OCD), major depression (MD) 
and schizophrenia (Fromer et al. 2014; Goncalves et al. 
2016; Qin et al. 2016; Bodea et al. 2017; Tang et al. 2019). 
A large-scale single nucleotide polymorphism genotyping 
data on chromosome 4 suggested that Pcdh10 is one of 
the susceptibility genes of schizophrenia and bipolar dis-
order (Tang et al. 2019). Similarly, 428 methylated genes, 
including Pcdh10, have been linked to early-onset major 
depression in an epigenome-wide association study of 75 
monozygotic twin pairs (Roberson-Nay et al. 2020). As 
aforementioned, deletion of Pcdh10 in mice does not affect 
the growth of striatal and nigrostriatal axons, but rather 
leads to defects in development of excitatory synapses in 
the dorsal basolateral nucleus of the amygdala, reduces 
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anxiety, and causes fear and stress in ASD, OCD and MD 
(Hoshina et al. 2022). These results imply a strong associa-
tion between Pcdh10 and relevant psychiatric disorders, 
including ASD, OCD and MD, and also suggest Pcdh10 
as a potential target for designing anxiolytics.

Role of Pcdh10 in cancers

Numerous studies have reported that Pcdh10 acts as 
a tumor suppressor in a wide range of human tumors. 
Although the Pcdh10 gene is widely expressed in normal 
tissues, it is silenced or decreased in malignant tumors.

Pcdh10 in colorectal cancer

Colorectal cancer (CRC) is one of the most common types 
of malignant tumors. Pcdh10 is well-known as a tumor 
suppressor in colorectal carcinogenesis, invasion and 
metastasis (Zhong et al. 2017).

Several studies have reported that aberrant CpG meth-
ylation of the Pcdh10 promoter is observed in 43–85% 
of colorectal cancer tissues, indicating that downregu-
lated Pcdh10 caused by methylation is a common feature 
of colorectal carcinogenesis (Yu et al. 2010; Silva et al. 
2013; Zhong et al. 2013). A recent microarray analysis 
has reported that Pcdh10 expression is lost in more than 
half of patients with CRC (Skuja et al. 2019), raising the 
possibility that genetic deletion could be another mecha-
nism for Pcdh10 inactivation in CRC. Mutations in BRAF 
genes, which are linked to dysregulated DNA methylation 
(Tanaka et al. 2010), has been found in about 10% of CRC 
cases (Caputo et al. 2019). Dobre and colleagues further 
demonstrated BRAF positive cases have higher Pcdh10 
methylation levels than BRAF negative cases (Dobre et al. 
2021). Taken together, Pcdh10 genetic modification and 
epigenetic inactivation play critical roles in the develop-
ment of CRC.

In support of a role for Pcdh10 as a potential antion-
cogene, re-expressing Pcdh10 in colorectal cancer RKO 
cells leads to G1 cell cycle arrest without affecting apop-
tosis (Zhong et al. 2013). More specifically, Pcdh10 could 
inhibit cell proliferation and survival by modulating p53/
p21/Rb and Bcl-2 pathways in CRC cells (Jao et al. 2021). 
Meanwhile, it also suppressed epithelial‐mesenchymal 
transition (EMT), a cellular biological process that pro-
motes cancer cells to migrate, and stemness in CRC by 
negatively affecting the EGFR/AKT/GSK3β/β‐catenin 
signaling pathway (Jao et al. 2021).

In addition to tumor inhibition, methylation of Pcdh10 
may serve as a non-invasive biomarker for CRC diagnosis 
as Pcdh10 methylation that is present in tissues could be 

detected in serum/plasma (Danese et al. 2013). Pcdh10 
methylation detected in plasma increases with increasing 
methylation rate in tumor tissues only in early CRC (stage 
I/II). Additionally, allelic loss of Pcdh10 was ascertained 
in primary CRC tumors, and highly related with tumor 
progression and distant metastasis, suggesting that its 
allelic loss predicts an adverse prognosis (Jao et al. 2014). 
Moreover, patients receiving adjuvant treatment with no 
methylation in Pcdh10, SPARC and UCHL1, had longer 
disease-free rates and overall survival rates than those 
with hypermethylation (Heitzer et al. 2014). In contrast, 
unmethylated genes were related to shorter survival in 
surveillance group. These findings suggest that promoter 
methylation status of Pcdh10, SPARC  and UCHL1 provide 
a suitable tool for predicting prognosis of stage II colorec-
tal cancer patients.

Pcdh10 in tumors of the female reproductive system

Tumors in the female genital tract represent a leading cause 
of morbidity and mortality among women worldwide. Cervi-
cal and endometrial cancers are two very different diseases, 
having differing pathogenesis and treatments. However, 
PCDH10 promoter hypermethylation is a frequent hallmark 
observed during the progression of cervical and endometrial 
cancers, as previously reported (Narayan et al. 2009; Wang 
et al. 2009; Zhao et al. 2014; Bhat et al. 2017).

According to GEO2R analysis, Pcdh10 is downregu-
lated and is likely to be one of the most significant genes 
in tumor differentiation in endometrial cancer (Liu et al. 
2018a). Endometrial cancer is the most common gyneco-
logic malignant cancer and about 80% of these cancers 
are endometrial endometrioid carcinomas (EEC). Pcdh10 
is repressed in EEC cells due to its promoter CpG hyper-
methylation. A novel PCDH10-Wnt/β-catenin-MALAT1 
regulatory axis that contributes to ECC development and 
progression, delays tumor growth and induces cell apop-
tosis (Zhao et al. 2019). Yang and colleagues also identi-
fied DEPDC1 as a downstream mediator of Pcdh10, and they 
further demonstrated that Pcdh10 suppress cell proliferation 
and induce apoptosis through DEPDC1-caspase signaling in 
EEC cell lines (HEC-1-A and KLE) (Yang et al. 2016). In 
the future, it would be interesting to investigate the clinical 
significance of Pcdh10 and MALAT1/DEPDC1. Moreover, 
a recent study has reported that low expression of Pcdh10 is 
associated with high Enhancer of Zeste Homolog 2 (EZH2) 
expression and Histone H3 (H3K27me3) enrichment in the 
tissue of endometriosis patients (Xiaolei et al. 2022). Silenc-
ing EZH2 by siRNA reduced H3K27me3 enrichment and 
increased PCDH10 expression, resulting in decreased inva-
sion and migration of endometrial stromal cells and pro-
viding a target for the treatment of endometriosis patients 
(Xiaolei et al. 2022).
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Similarly, Pcdh10 is also inactivated epigenetically in 
75% cervical cell lines (Ying et al. 2006). In cervical 
Hela cells, knockdown of HOTAIR lncRNAs inhibits the 
Wnt/β-catenin signaling cascade by decreasing promoter 
methylation of Pcdh10, demonstrating the potential mech-
anism of how Pcdh10 reguates the progression of cervical 
cancer (Salmeron-Barcenas et al. 2019). Notably, analysis 
of Pcdh10 in cervical scrapings is superior to the Human 
Papillomavirus (HPV) test, implying its potential function 
as a specific diagnostic biomarker (Lin et al. 2011). Col-
lectively, these findings demonstrate the potential role of 
Pcdh10 in inducing the development of different tumors 
of the female genital tract.

Pcdh10 in gastric cancer

Gastric cancer (GC) is the third most common fatal 
form of cancer around the globe and the detailed mecha-
nism underlying gastric carcinogenesis remains unclear. 
Pcdh10 expression is silenced or down-regulated in 
gastric cancer cells and tissues (Yu et al. 2009; Li et al. 
2012b), suggesting it may act as a tumor suppressor in 
GC. Re-expression Pcdh10 in MKN45 gastric cancer cells 
inhibited tumor growth, cell proliferation and invasion, 
induced cell apoptosis, and also increased the expres-
sion of pro-apoptotic genes including Fas, Caspase8, 
Jun, and CDKN1A; the anti-proliferation gene FGFR; 
and the anti-invasion gene HTATIP2 (Yu et al. 2009). 
Another study showed Pcdh10 overexpression in gastric 
cancer cell lines (MNK74, 7901 and AGS) suppressed 
cell proliferation but had no effect on cell apoptosis (Li 
et al. 2012b). Further investigations are required to fully 
understand the function of Pcdh10 in regulating apoptosis 
in gastric cancer.

Numerous studies have indicated that aberrant meth-
ylation of Pcdh10 could be used as a non-invasive bio-
marker to facilitate diagnosis and prognostic guidance for 
gastric cancer patients (Deng et al. 2014; Hou et al. 2015; 
Schneider et al. 2015; Pimson et al. 2016). For example, 
using MSP qPCR method, Pimson and colleagues dem-
onstrated that Pcdh10 promoter methylation was detected 
in 94.06% of plasma DNA from gastric cancer patients 
whereas it was found in only 2.97% of matched controls, 
serving as a reliable non-invasive diagnostic indicator for 
GC (Pimson et al. 2016). In terms of prognosis prediction, 
Pcdh10 promoter methylation at CpG site was found in 
91.92% in GC tissues (Deng et al. 2014). GC patients with 
5 or more methylated CpG sites of PCDH10 promoter 
were dramatically related to poorer survival rates. Mean-
while, using multivariate survival analysis, the authors 
demonstrated methylation of combined CpG sites (− 115, 
− 108, − 13, and + 3) was an independent predictor, with 

overall survival, of gastric cancer patients postoperatively 
(Deng et al. 2014). Multiple studies have also confirmed 
this finding (Hou et  al. 2015; Schneider et  al. 2015). 
Therefore, Pcdh10 methylated at CpG sites has signifi-
cant clinical applicability for GC prognosis evaluation.

Pcdh10 in pancreatic cancer

Pancreatic cancer (PC) is one of the most lethal diseases 
worldwide (Kamisawa et al. 2016). To date, surgical resec-
tion is the best choice for treatment of PC, however, the 
recurrence rate of patients who undergo resection remains 
very high (Ilic and Ilic 2016). Therefore, the identification 
of new predictive biomarkers and exploration of the patho-
genesis is crucial for the development of novel therapeutics 
for management of PC.

Previous study identified that Pcdh10 expression is 
silenced by methylation in pancreatic cancer cell lines, and 
re-expression of Pcdh10 prevents the malignant biologi-
cal process of PC cells (Qiu et al. 2016). An earlier study 
analyzed Pcdh10 promoter methylation in pancreatic tumor 
samples, but high-resolution melting analysis failed to detect 
a significant association between Pcdh10 promoter methyla-
tion status and tumor-staging (Yu et al. 2010). Recently, high 
methylation levels of Pcdh10 were found to correlate with 
worse progression-free survival rates instead of the overall 
survival, suggesting that Pcdh10 methylation status predicts 
poor prognosis in patients with pancreatic ductal adenocar-
cinomas (Curia et al. 2019).

In terms of anti-tumor effects, Pcdh10 overexpression 
can prevent the proliferation, migration, invasion ability of 
pancreatic cancer cells and trigger apoptosis by activating 
the AKT pathway (Qiu et al. 2016). Meanwhile, Pcdh10 
can interact with human telomerase reverse transcriptase 
(hTERT) to reduce telomerase activity, hence mediating the 
inhibitory effect of PC phenotype (Zhou et al. 2015). Zhang 
and colleagues demonstrated that the Pcdh10 gene could 
generate circular RNA of Pcdh10 (circPcdh10) in PC tissue, 
indicating a worse prognosis (Zhang et al. 2021).

Pcdh10 in other cancers

The deletion of Pcdh10 has been reported in various human 
tumors. In addition to the aforementioned CRC, GC, PC, 
cervical and endometrial cancers, Pcdh10 loss has been 
observed in non-small-cell lung cancer (NSCLC; (Tang 
et al. 2012), nasopharyngeal and esophageal cancer (Ying 
et al. 2006), bladder cancer (Lin et al. 2012, 2013), hepa-
tocellular carcinoma (Fang et al. 2013; Bing et al. 2018), 
multiple myeloma (Li et al. 2012a), lymphoid malignan-
cies (Narayan et al. 2013), medulloblastoma (Bertrand et al. 
2011), breast cancer (Liu et al. 2018b), and prostate cancer 
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(Li et al. 2011), implying that Pcdh10 plays an oncosuppres-
sor role in tumors.

In support of a role for Pcdh10 as a tumor suppressor, 
restoration of Pcdh10 in hepatocellular carcinoma cell 
lines inhibits proliferation and induces cell apoptosis via 
suppressing PI3K/Akt signaling pathway (Ye et al. 2017). 
In multiple myeloma cells, rescue of Pcdh10 expression 
induces apoptosis by impeding the the NF-κB pathway (Li 
et al. 2014), and suppresses cell proliferation via the nega-
tive modulation of Wnt/β-catenin/BCL-9 signaling (Xu et al. 
2015). In oncogenic KRAS-mutated NSCLC mouse model, 
KRAS mutation increases the expression of Miz1, which 
in turn suppresses Pcdh10, leading to enhanced cell prolif-
eration and promotion of lung tumorigenesis (Yang et al. 
2022). Further evidence that Pcdh10 acts as an oncosup-
pressor derives from the observations that downregulated 
Pcdh10 expression caused by methylation predicted poor 
prognosis in patients with hepatocellular carcinoma (Bing 
et al. 2018), breast cancer (Liu et al. 2018b; Xu et al. 2021), 
prostate cancer (Wang et al. 2014; Deng et al. 2016), and 
non-small-cell lung cancer (Harada et al. 2015). These data 
also indicated that Pcdh10 methylation was a potential prog-
nostic biomarker for those human cancers.

It should be noted that Pcdh10 might act as a tumor 
oncogene in gliomas, as it is essential for the proliferation 
and tumorigenicity of human glioblastoma cell lines GB2 
and GB16 (Echizen et al. 2014). In human astrocytoma cell 
(U251), the cytoplasmic domain of Pcdh10 can interact with 
Nap1 and recruit the WAVE complex, and this interaction 
promotes adhesion and motility at the cell junctions to facili-
tate migration (Nakao et al. 2008). However, Pcdh10 signal-
ing has the opposite effect in medulloblastoma cells, where 
Pcdh10 expression is decreased due to DNA hypermethyla-
tion and histone modification, but its restoration impedes 
migration (Bertrand et al. 2011). Similarly, after treatment 
with cytochalasin H in U87MG malignant human glioma 
cells, the proliferation is inhibited along with upregulated 
Pcdh10 expression (Heidarzadeh et al. 2019). It is not yet 
clear how Pcdh10 can promote tumorigenicity under one 
circumstance and impede it under another.

It is interesting to note that the methylation status of 
Pcdh10 may be able to predict the response of lymphomas 
to doxorubicin (Narayan et al. 2013), a common chemo-
therapeutic drug used to treat a variety of human cancers. 
Both B-cell (100%) and T-cell (79%) acute lymphoblastic 
leukemia frequently exhibit Pcdh10 promoter hypermethyla-
tion. Non-Hodgkin lymphoma (NHL) cell lines with down-
regulated Pcdh10 expression were less sensitive to leukemia 
specific drugs including dexamathasone and methotrexate, 
while T-cell and B-cell lymphoma cell lines with Pcdh10 
methylation or down-regulated expression showed doxoru-
bicin resistance, providing new evidence for the selection of 
treatment plans (Narayan et al. 2013). Meanwhile, Pcdh10 

could be a potential target gene for establishing epigenetic 
therapies in lymphomas. Imatinib is a molecular target drug 
used to treat chronic myeloid leukemia. In imatinib-resistant 
K562 leukemia cell line (KR cells), silencing of hBEX1 can 
repress imatinib-induced apoptosis (Ding et al. 2009). Gain 
expression of hBex1 enhanced PCDH10 expression and 
partially restored sensitivity to imatinib, implying a novel 
hBex1/PCDH10 pathway which contributes to drug resist-
ance. However, the mechanism of the involvement of Pcdh10 
in apoptosis has not been examined (Table 1).

Potential epigenetic therapies targeting 
Pcdh10

An increasing number of studies have demonstrated that 
Pcdh10 plays an important role in cancer. Therefore, explor-
ing therapeutic strategies targeting Pcdh10 may be of great 
importance in the management of several types of tumors.

Therapeutic strategies that target Pcdh10 may be relevant 
to CRC. Zhou et al. demonstrated that hsa_circ_0001666 
functions as a tumor suppressor by directly binding miR‐
576‐5p and lessening its inhibitory effect on the target 
gene Pcdh10, thereby inhibiting cell proliferation, metas-
tasis, EMT progression and stemness as well as triggering 
apoptosis of CRC cells (Zhou et al. 2021). Notably, hsa_
circ_0001666 can also suppress Wnt/β‐catenin signaling, 
a well‐known cancer‐promoting pathway, via promoting 
PCDH10 expression.

As previously mentioned, HOTAIR lncRNA acts as 
the upstream regulator of Pcdh10 in cervical hela cells 
(Salmeron-Barcenas et al. 2019). The expression of multi-
ple mRNAs, including MAGI2, AJAP1, SOX17, PCDH10, 
and TET1, was downregulated by HOTAIR knockdown, 
which also reduced the activity of the Wnt/-catenin signal-
ing pathway. Similarly, HOTAIR interacted with miR-148 
and DNMT1, promoting the methylation of PCDH10, and 
bringing about oncogenic changes in GC (Seo et al. 2021). 
Moreover, canonical oncogenic lncRNA MALAT1 can bind 
EZH2 to counteract PCDH10 by inducing the methylation 
of its promoter, resulting in an increase in GC cell migration 
and invasion (Qi et al. 2016).

CircPcdh10 promotes tumor progression of pancreatic 
cancer by increasing hTERT expression through interacting 
with miR-338-3p (Zhang et al. 2021). Further experiments 
confirmed that there was a targeted regulatory association 
between CircPcdh10 and miR-338-3p/hTERT; the inhibitory 
effects of circPCDH10 depletion on the viability, prolifera-
tion, invasion, and migration of PC cells were significantly 
abolished by treating with miR-338-3p inhibitor and hTERT. 
Similarly, a recent study revealed an oncogenic transcription 
factor FOXM1 which activated expression of miR-552, and 
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further inhibited downstream target genes including Pcdh10, 
DACH1 and SMAD, which in turn promoted tumor progres-
sion and resulted in poor prognosis in PC patients (Wang 
et al. 2021). However, the in-depth molecular mechanisms 
underlying these conditions require further elucidation. In 
general, these results highlight the potentiality of targeting 
Pcdh10 gene in human cancers (Fig. 2; Table2).

Conclusion

The functions of Pcdh10, its regulatory targets and the 
role it plays in human pathologies, remain largely unex-
plored. Pcdh10 is considered to play important roles in 
brain development and is implicated in human neurologi-
cal disorders like autism, obsessive–compulsive disorder, 

major depression and schizophrenia. Pcdh10 has also 
been implicated in a range of human cancers, acting as a 
tumor suppressor and playing key roles in regulating tumor 
growth, invasion and metastasis. In contrast, Pcdh10 has 
also been shown to be an oncogene for the tumorigenesis 
of glioblastoma. Further research is required to fully eluci-
date the role of Pcdh10 in neurological conditions and dif-
ferent types of the cancers, and determine whether Pcdh10 
is implicated in any other human condition. In addition, 
aberrant methylations of Pcdh10 have been recognized as 
a non-invasive biomarker for tumor diagnosis and prog-
nosis. Though the involvement of Pcdh10 in the patho-
genesis of neural diseases and human cancers has been 
recently established, our understanding of the molecular 
functions and related signaling pathways involved is lim-
ited. Moreover, the genes targeting Pcdh10 function and 
the relevant molecular mechanisms involved also remain 
to be investigated but could provide further insights into 
therapeutic strategies that could be developed for the treat-
ment of Pcdh10-regulated conditions. Our review focuses 
on the known conditions where Pcdh10 is disrupted and its 
potential as a cancer biomarker, however given the various 
pathways regulated by Pcdh10, further research is likely to 

Table 1  Functions of Pcdh10 in various cancer

EGFR Epidermal growth factor receptor, EMT epithelial-mesenchymal transition, DEPDC1 DEP domain containing 1, EZH2 enhancer of Zeste 
Homolog 2, CDKN1A cyclin Dependent Kinase Inhibitor 1A, FGFR2 fibroblast growth factor receptor 2, HTATIP2 HIV-1 tat interactive protein 
2, hTERT human telomerase reverse transcriptase, Miz1 Myc-interacting zinc-finger protein 1, hBex1 human brain expressed X-linked 1

Disease Expression Property Genes/Proteins/Pathways Function References

Colorectal cancer Down Antioncogene p53/p21/Rb, Bcl-2, EGFR/
AKT/GSK3β/β‐catenin 
signaling pathway

Proliferation, apoptosis, EMT, 
stemness

Jao et al. (2021)

Endometrial cancer Down Antioncogene MALAT1, wnt/β-catenin sign-
aling pathway

Tumor growth, apoptosis Zhao et al. (2019)

Down Antioncogene DEPDC1 Proliferation, apoptosis Yang et al. (2016)
Down Antioncogene EZH2, H3K27me3 Migration, invasion Xiaolei et al. (2022)

Gastric cancer Down Antioncogene Fas, Caspase8, Jun, CDKN1A, 
FGFR2, HTATIP2

Tumor growth, apoptosis, 
invasion, metastasis

Yu et al. (2009)

Down Antioncogene Unknown Proliferation Li et al. (2012a, b)
Pancreatic cancer Down Antioncogene PARP, caspase-3, caspase-9, 

Bcl-2; Akt signaling pathway
Proliferation, migration, inva-

sion, Apoptosis
Qiu et al. (2016)

Down Antioncogene hTERT Proliferation, migration, inva-
sion

Zhou et al. (2015)

Hepatocellular carcinoma Down Antioncogene PI3K/Akt signaling pathway Proliferation, apoptosis Ye et al. (2017)
Multiple myeloma Down Antioncogene NF-κB pathway Apoptosis Li et al. (2014)

Down Antioncogene Wnt/β-catenin/BCL-9 signal-
ing pathway

Proliferation Xu et al. (2015)

KRAS-mutated non-
small-cell lung cancer

Down Antioncogene MiZ1 Proliferation, tumor growth Yang et al. (2022)

Glioblastoma Up Oncogene Unkown Proliferation Echizen et al. (2014)
Medulloblastoma Down Antioncogene Unknown Migration Bertrand et al. (2011)
Lymphoid malignancies Down Antioncogene Unknown Drug resistance Narayan et al. (2013)
Chronic myeloid leukemia Down Antioncogene hBex1 Drug resistance Ding et al. (2009)
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determine its role in other conditions and further explore 
its potential as a non-invasive biomarker of disease.
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Fig. 2  Genes involved in the Pcdh10 regulatory network in human cancer. Genes listed in white background are upstream regulators of Pcdh10, 
genes listed in light yellow background are downstream regulators of Pcdh10

Table 2  A summary of lncRNA/miRNAs/circRNA targeting Pcdh10 in cancer

EMT epithelial-mesenchymal transition, DNMT1 DNA methyltransferase 1, EZH2 enhancer of zeste homolog 2, hTERT human telomerase 
reverse transcriptase, FOXM1 forkhead box protein M1

lncRNA/miRNA/circRNA Cancer type Functions Molecule/Pathway References

Hsa_circ_0001666/miR‐576‐5p Colorectal cancer Proliferation, EMT, metastasis, stemness, 
apoptosis

Wnt/β‐catenin pathway Zhou et al. (2021)

HOTAIR Cervial cancer Unknown Wnt/β-catenin pathway Salmeron-Barce-
nas et al. (2019)

HOTAIR-miR-148 Gastric cancer Proliferation, apoptosis, invasion, migration DNMT1 Seo et al. (2021)
MALAT1 Gastric cancer Migration, invasion EZH2 Qi et al. (2016)
CircPcdh10/miR-338-3p Pancreatic cancer Proliferation, invasion, migration hTERT Zhang et al. (2021)
miR-552 Pancreatic cancer Migration, metastasis FOXM1 Wang et al. (2021)
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