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Accurate and Rapid Detection of Peritoneal Metastasis from
Gastric Cancer by AI-Assisted Stimulated Raman Molecular
Cytology

Xun Chen, Zhouqiao Wu, Yexuan He, Zhe Hao, Qi Wang, Keji Zhou, Wanhui Zhou,
Pu Wang, Fei Shan, Zhongwu Li, Jiafu Ji, Yubo Fan,* Ziyu Li,* and Shuhua Yue*

Peritoneal metastasis (PM) is the mostcommon form of distant metastasis and
one of the leading causes of death in gastriccancer (GC). For locally advanced
GC, clinical guidelines recommend peritoneal lavage cytology for intraoperative
PM detection. Unfortunately, current peritoneal lavage cytology is limited by
low sensitivity (<60%). Here the authors established the stimulated Raman
molecular cytology (SRMC), a chemical microscopy-based intelligent cytology.
The authors firstly imaged 53 951 exfoliated cells in ascites obtained from
80 GC patients (27 PM positive, 53 PM negative). Then, the authors revealed
12 single cell features of morphology and composition that are significantly
different between PM positive and negative specimens, including cellular
area, lipid protein ratio, etc. Importantly, the authors developed a single cell
phenotyping algorithm to further transform the above raw features to feature
matrix. Such matrix is crucial to identify the significant marker cell cluster,
the divergence of which is finally used to differentiate the PM positive and
negative. Compared with histopathology, the gold standard of PM detection,
their SRMC method could reach 81.5% sensitivity, 84.9% specificity, and the
AUC of 0.85, within 20 minutes for each patient. Together, their SRMC method
shows great potential for accurate and rapid detection of PM from GC.

1. Introduction

Gastric cancer (GC) ranks third in cancer-related deaths
worldwide.[1] The leading cause of death in GC is metas-
tasis, in which most common form (50–60%) is peritoneal

X. Chen, Y. He, Z. Hao, K. Zhou, W. Zhou, P. Wang, Y. Fan, S. Yue
Key Laboratory of Biomechanics and Mechanobiology
Ministry of Education
Institute of Medical Photonics
Beijing Advanced Innovation Center for Biomedical Engineering
School of Biological Science and Medical Engineering
Beihang University
100191 Beijing, China
E-mail: yubofan@buaa.edu.cn; yue_shuhua@buaa.edu.cn

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/advs.202300961

© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

DOI: 10.1002/advs.202300961

metastasis (PM).[2,3] Since GC patients with
or without PM receive substantially differ-
ent treatment strategies, including surgery
and neoadjuvant therapies, accurate PM di-
agnosis is of great clinical significance for
treatment and prognosis.[4–6]

The gold standard for PM diagnosis in
GC is histopathological examination of peri-
toneal tissue biopsy, which is invasive and
thus suggested to be obtained intraopera-
tively under laparoscopy. The procedure of
histopathological diagnosis of PM is time-
consuming and cannot provide results in
a timely manner during surgery. Alterna-
tively, preoperative computed tomography
offers a way to detect PM noninvasively, but
it is not sensitive enough, which leads to fa-
tal false negatives.[7,8] Peritoneal lavage cy-
tology, developed based on the theory that
PM of GC is induced by colonization of
exfoliated GC cells in the peritoneum, has
been shown to be more sensitive than com-
puted tomography, and more efficient and
less invasive than histopathology.[9] Owing

to these advantages, clinical guidelines in various countries
have recommended peritoneal lavage cytology for patients with
locally advanced GC during surgery,[10–12] which can be po-
tentially extended to preoperative diagnosis and postoperative
follow-up.[13] Nevertheless, the accuracy of conventional peri-
toneal lavage cytology for PM diagnosis is still limited, with
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sensitivity even lower than 60%,[14–18] and highly relies on
pathologists.[19]

To increase the detection accuracy of GC cells in ascites, several
biochemical and molecular biology methods have been devel-
oped, such as enzyme-linked immunosorbent assay (ELISA)[20]

or flow cytometry-based detection of specific proteins,[21,22] re-
verse transcriptase polymerase chain reaction (RT-PCR) or fluo-
rescence in situ hybridization (FISH)-based detection of specific
genes.[23–28] However, these methods are too time-consuming for
intraoperative detection. More recently, a label-free optically in-
duced electrokinetics microfluidic method was developed to ef-
ficiently separate GC cells from ascites of six patients with pu-
rity up to 71%,[21] but its performance on PM detection was not
shown. Therefore, a new cytology method with both high accu-
racy and efficiency is urgently needed for detection of PM in GC.

Besides gene and protein expression, altered cell metabolism
has been recognized as a hallmark of human cancers.[29,30] Can-
cer cells dysregulate metabolic pathways by high rates of lipid
synthesis to support rapid growth.[29,30] GC cells have been found
to accelerate lipid synthesis and reduce lipid hydrolysis,[31,32]

which leads to increased accumulation of excessive lipids in
lipid droplets (LDs).[31,32] More importantly, dysregulated lipid
metabolism has been shown to promote cancer metastasis,[33] in-
cluding PM.[34] Particularly, as discovered by metabolomics, a va-
riety of lipid molecules, such as triglycerides, sterols, fatty acids,
could be used as biomarkers for PM of GC.[35]

For single cell molecular analysis, Raman spectroscopy is a
commonly used label-free method. Several studies have demon-
strated the potential of Raman spectroscopy in cytopathology
for diagnosis of cancers, including cervical cancer, lung cancer,
and oral cancer.[36–38] AI algorithms improved the robustness
of Raman spectroscopy for high-precision cancer diagnosis.[39]

However, due to the weak spontaneous Raman signals, Raman
spectroscopy-based cytology took up to 8 h for a complete anal-
ysis without spatial information. With remarkably boosted Ra-
man signals, simulated Raman scattering (SRS) microscopy is a
desirable method of label-free and high speed molecular imag-
ing at the single cell level.[40,41] In recent years, SRS microscopy
with Raman tags[42] has been widely used in the study of can-
cer metabolism[43] and diagnosis.[44] For instance, Ji et al. for the
first time employed two-color SRS microscopy to achieve virtual
H&E staining, that is stimulated Raman histology (SRH),[45,46]

and later on Hollon et al. demonstrated deep learning-based
SRH could realize intraoperative brain tumor diagnosis.[47] The
SRH method has been applied in diagnosis of multiple human
cancers.[48–52] Unfortunately, because cytology is not the gold
standard for PM diagnosis in GC, the concept of SRH that pri-
marily depends on morphology cannot be transferred to cytology-
based PM diagnosis. Taken together, future cytology method of
PM detection in GC probably requires an efficient acquisition of
the information regarding both cellular morphology and compo-
sition, which is readily accessible by SRS microscopy.

In this study, we developed the stimulated Raman molecular
cytology (SRMC), an SRS microscopy-based intelligent cytology
method for diagnosis of PM from GC. By incorporating deep
learning based single cell segmentation algorithms with three-
color SRS imaging at the Raman bands corresponding to DNA,
protein, and lipid, we first extracted 19 single cell features of
morphology and composition from the exfoliated cells of ascites.

Among them, 12 features including cellular area, lipid protein ra-
tio, and lipid droplets number, etc. of exfoliated cells (N = 53 951
cells) were significantly different between PM positive and neg-
ative. Then, by newly developed hybrid K-means cell clustering
and principal component analysis (PCA) algorithm (K-PCA), the
differential raw features were dimensionally reduced and trans-
formed to feature matrix in clustered latent space, which allowed
us to find out the significant marker cell population. Finally, the
feature divergence of significant marker cells was used to differ-
entiate the PM positive and negative. A panel of machine learn-
ing classifiers, such as support vector machine (SVM), linear dis-
criminate analysis (LDA), and logistic regression (LR), were used
to train the PM diagnostic model with the feature matrix and
the ground truth of PM results as inputs. By cross-validation,
the sensitivity and specificity of our SRMC method for PM de-
tection were 81.5% and 84.9% respectively (n = 80 patients)
within 20 min. Particularly, by providing composition informa-
tion, the sensitivity of PM detection by the SRMC significantly
improved from 59.25% to 81.5%, suggesting that both cellular
morphology and composition are essential for accurate diagno-
sis. Collectively, our SRMC method may open up new opportuni-
ties for accurate and rapid detection of PM in GC with minimal
invasion.

2. Results

2.1. Workflow of Stimulated Raman Molecular Cytology

As shown in Figure 1, the workflow of SRMC is described.
1) First, the three-color SRS imaging were performed on the
exfoliated cells collected from the ascites of patients with locally
advanced GC (Figure 1a). Specifically, we acquired the SRS
images of the Raman band for CH2 stretching in lipids around
2850 cm−1, the Raman band for CH3 stretching in proteins
around 2930 cm−1 and the Raman band for CH3 antisymmetric
stretching in DNA around 2965 cm−1, respectively. 2) Second,
individual exfoliated cells were segmented based on the SRS im-
ages of DNA Raman band, by using deep learning based Stardist
model (Figure 1b). 3) Third, a variety of features on cellular
morphology and composition of single exfoliated cells for each
patient were extracted. The features with statistically significant
difference between PM positive and PM negative specimens
were further selected to create the raw feature map (Figure 1c). 4)
Fourth, the raw feature map then went through dimensionality
reduction by principal component analysis (PCA) to get the
latent space, including PC1, PC2 components etc. for each cell.
The principal component was then transformed by K-means
clustering to get transformed feature matrix in clustered latent
space of PCA, such as PC1-center value, PC2-center value, etc.
that were the medians of the corresponding PC values for each
cell cluster (Figure 1d). Here, we defined this hybrid PCA and K-
means clustering algorithm as K-PCA, in which the PCA filtered
out features with low standard deviation and K-means clustering
built features spacing between clusters. The transformed feature
matrix by K-PCA represented divergence of features for each
cell cluster. The PC1 versus PC2 plot showed feature matrix of
PC 1/2/3 values of Cluster #1/#2/#3 cells from PM positive and
PM negative specimens (Figure 1d). 5) Finally, the transformed
feature matrix was used to train machine learning-based PM
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Figure 1. Workflow of stimulated Raman molecular cytology (SRMC). a) Sample preparation and SRS imaging. b) Single cell segmentation based on
three-color SRS images. c) Single cell feature extraction and selection. d) Feature matrix transformation from raw features by K-PCA algorithm. e) Cell
phenotyping by K-PCA, and PM positive and negative detection by machine learning classifiers.

diagnostic models with histopathology as the ground truth. The
performance of our SRMC method in PM detection, such as
sensitivity, specificity, and the area under receiver operating
characteristic (ROC) curve, were further evaluated by leave-one-
out cross-validation (Figure 1e). The detailed procedures were
described in Section 4.

2.2. Single Cell Segmentation and Feature Extraction

By using deep learning Stardist network (Figure S1a, Supporting
Information), we achieved single cell segmentation based on
the SRS image of DNA Raman band around 2965 cm−1 with
great performance (Dice parameter 0.89, IoU 0.81, and RRSE
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2.3%), which was significantly better compared to conventional
watershed or flood fill methods (Figure S1b,c, Supporting In-
formation). As shown in Figure S2, Supporting Information,
the feature extraction workflow was described in detail. The
morphology features, including cellular area, minor axis length,
major axis length, circularity, roundness, eccentricity, perimeter,
and solidity, were extracted based on cell masks obtained from
the 2965 cm−1 channel. The composition features, including
lipid intensity, protein intensity, and lipid protein ratio, were
extracted based on the intensity values obtained from 2850 cm−1

and 2930 cm−1 channels within the cell masks. According to the
2850 cm−1 channel, we recognized LDs by adaptive thresholding,
which allowed quantification of LD area, LD number, LD area
fraction, and lipid intensity within LD area. Based on calculations
of 2850 cm−1 and 2965 cm−1 channels, nuclei could be identi-
fied by adaptive thresholding, which permit measurements of
nucleus area, cytoplasm area, and cytoplasm area fraction. Then,
the lipid intensity and protein intensity within cytoplasm could
be quantified. The detailed procedures of feature extraction were
described in Section 4.

2.3. SRMC of Gastric Cell Lines

Considering that peritoneal lavage exfoliated cells in GC pa-
tients are primarily composed of benign gastric epithelial cells,
mesothelial cells, and malignant GC cells, we performed SRMC
on three presentative cell lines, including gastric epithelium
GES-1, differentiated carcinoma SNU-16, and mesothelium
HMrSV5. As shown in Figure S3a,b, Supporting Information,
we first extracted three features of cellular morphology (area, cir-
cularity, and roundness) and four features of chemical compo-
sition (lipid intensity, protein intensity, lipid protein ratio, and
LDs area fraction) for individual cells. Among these features, the
lipid intensity was significantly greater in malignant cancer cells
compared to normal epithelial and mesothelial cells, suggesting
that malignant GC cells might accumulate more lipids than other
types of exfoliated cells. In addition, the correlation coefficients
were relatively high within morphology features (for instance,
roundness, and circularity) or within composition features (for
instance, lipid intensity and protein intensity), but were relatively
low between morphology and composition features (Figure S3c,
Supporting Information). By using LDA algorithm based on all
the features, we could differentiate the GC cells from normal
epithelium and mesothelium with the accuracy of 98.36% and
100%, respectively (Figure S3d, Supporting Information). These
results from cell lines demonstrated the potential of the SRMC
method for GC cell detection by integrating single-cell morphol-
ogy and composition features.

2.4. Differential Features of Cellular Morphology and
Composition between PM Positive and Negative Specimens

We quantitatively characterized 53 951 individual exfoliated cells
in ascites obtained from 80 GC patients (27 PM positive, 53
PM negative). As shown in Figure S4, Supporting Information,
10 features of cellular morphology and 9 features of chemical
composition were extracted. Student’s t-test was used for com-
parisons between groups. The t-value is to quantify the difference

between two group means. A larger t-value shows that the differ-
ence between the group means is greater than the standard error,
indicating a more significant difference between two groups.
The p-value is the conditional probability of obtaining at least as
t-value from data distribution of two groups, and p-value < 0.05
was considered statistically significant. Among all the features, 7
morphology features, including cellular area, major axis length,
minor axis length, perimeter, solidity, cytoplasm area, and round-
ness, and 5 composition features, including protein intensity,
lipid protein ratio, and lipid intensity within cytoplasm, protein
intensity within cytoplasm, and LD number were significantly
different between PM positive and PM negative specimens.
As shown in the t-value hot map, the top three differential
features were protein intensity, lipid protein ratio, and cellular
area. Nevertheless, the differences in composition and mor-
phology features between PM positive and negative specimens
were not very evident, which was likely due to the existence of
heterogeneous populations in each specimen. Therefore, we
proposed to further analyze the features by PCA and clustering
algorithms.

2.5. PM Related Significant Marker Cell Population Identified by
K-PCA Algorithm

Since exfoliated cells in PM positive specimens are composed of
both tumor cells and normal cells (primarily mesothelial cells),
it is necessary to identify the significant marker cell population
with specific signatures for PM diagnosis. First, the raw feature
dataset was processed with dimensionality reduction by PCA,
which produced the primary PC1 and PC2 components account-
ing for >90% of total features. Then, the feature components
were transformed by K-means clustering to get transformed
feature matrix of clustered latent space, including Cluster1-
PC1, Cluster1-PC2, Cluster2-PC1, Cluster2-PC2, Cluster3-PC1,
Cluster3-PC2, etc. Cluster-number defined the number of cells
for each cluster. The principal components of cell features indi-
cated three nearest neighbors by assessing the lowest neighbor
distance. Therefore, we used three clusters for cell phenotyping.
Without dimensionality reduction, the raw features were related
to PM results with low correlation coefficient (R2

< 0.3) (Figure
S5 and Table S1, Supporting Information). With dimensionality
reduction by K-PCA, the Cluster1-PC1 component was related
to PM results with improved correlation coefficient (R2 = 0.67)
(Figure S5, Supporting Information). The details of cell num-
bers and PC values for each cluster of 80 patients are shown in
Table S2, Supporting Information. For instance, Patient ID
NEG#1(PM POS) has 29 Cluster1 cells, 180 Cluster2 cells, and
306 Cluster3 cells respectively, and Cluster1-PC1 and Cluster1-
PC2 are 1737.094 and 173.373 respectively. Patient ID POS#1(PM
POS) has 15 Cluster1 cells, 277 Cluster2 cells, and 304 Clus-
ter3 cells respectively, and Cluster1-PC1 and Cluster1-PC2 are
1351.002 and 45.233 respectively. Patient ID NEG#2 (PM NEG)
has 51 Cluster1 cells, 296 Cluster2 cells, and 245 Cluster3 cells
respectively, and Cluster1-PC1 and Cluster1-PC2 are 844.614 and
−7.123 respectively. Based on the hot maps of raw features and
feature matrix before and after K-PCA (n = 80 patients), Cluster1
number and Cluster1-PC1 were obviously different between PM
positive and negative (Figure S5, Supporting Information). PC1-
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Figure 2. Feature matrix transformation by K-PCA algorithm. a) Exfoliated cell numbers of 80 patients by clustering. b) PC1 values of clusters (Cluster 1,
2, 3) of 80 patients with a threshold of Cluster1-PC1. c) PC2 values of clusters (Cluster 1, 2, 3) of 80 patients. d) Plot of PC1 versus PC2 for representative
CY NEG#1 (diagnosed with PM positive), POS#1 (diagnosed with PM positive) and CY NEG#2 (diagnosed with PM negative), POS#2 (diagnosed with
PM positive) before and after K-means clustering. e) Representative SRS images of CY NEG/POS#1 and CY NEG/POS#2. f) Quantitative comparisons of
features (LD number, lipid intensity, cellular area) among clusters in CY NEG/POS#1 and CY NEG/POS#2. The box and whisker plots represent median
values (center lines), mean values (horizontal bars), minimum and maximum (outliers), 25th to 75th percentiles (box edges) and 1.5× interquartile
range (whiskers), with all points plotted. ***p < 0.0005, **p < 0.005, *p < 0.05, ns: no significant difference.

values of PM positive specimens were significantly higher than
those of PM negative specimens.

We analyzed the cell number (Figure 2a), Cluster1,2,3-PC1
(Figure 2b) and Cluster1,2,3-PC2 (Figure 2c) of 80 patients (27
PM positive, 53 PM negative). Notably, the Cluster1-PC1 values
were more closely correlated with PM results than conven-
tional cytology (CY) results of the same patients. A threshold
of Cluster1-PC1 was obtained based on ROC curve (Figure S5,

Supporting Information). Specifically, there appeared to be a
threshold (threshold = 1380) of Cluster1-PC1 for determining
PM NEG/POS by the ROC curves to get the best diagnostic sensi-
tivity and specificity (AUC= 0.785) (Figure 2b). The Cluster1-PC1
was higher than the threshold in CY NEG#1 patient diagnosed
with PM positive (Figure 2b), but lower than the threshold in
CY NEG#2 patient diagnosed with PM negative (Figure 2c). By
comparing the K-PCA latent spaces from two representative
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Figure 3. Significant marker cell identification by K-PCA algorithm. a) Quantitative comparisons of features among clusters (Cluster 1: significant marker
cells; Cluster 2 and 3: other cells) between all PM positive and negative specimens. The box and whisker plots represent median values (center lines),
mean values (horizontal bars), minimum and maximum (outliers), 25th to 75th percentiles (box edges) and 1.5× interquartile range (whiskers), with
all points plotted. ***p < 0.0005, **p < 0.005, *p < 0.05, ns: no significant difference. b–d) Representative SRS images (2850 cm−1 and 2930 cm−1)
with clusters identified by K-PCA algorithm and tumor/normal cells identified by pathologists using the conventional cytology of the same specimen
as reference, for PM positive specimen with high percentage of tumor cells, PM positive specimen with low percentage of tumor cells, and typical PM
negative specimen without tumor cells. Scale bar, 20 μm.

pairs of patients, as shown in Figure 2d, the principal compo-
nents of Cluster1 from PM positive specimens dispersed to
much greater distance within clusters relative to those from PM
negative specimens, suggesting that Cluster1 probably contained
features closely related to PM. Thus, Cluster1 was defined as the
significant marker cell population as shown in Figure 2e. The
PC1 versus PC2 plot of CY NEG#1 (diagnosed with PM positive)
was indeed similar to those of PM positive. After cell clustering,
we could characterize the morphology and composition features
for different clusters of cells. As shown in Figure 2f and Figure
S6, Supporting Information, morphology and composition fea-
tures, such as cellular area, lipid intensity and LD number, were

significantly different among different clusters. As shown in
Figure 3, we analyzed differences of features between all the PM
positive and negative specimens. The overall 10 features such as
cellular area, perimeters, cytoplasm area, cytoplasm area fraction,
lipid intensity, protein intensity, lipid protein ratio, protein inten-
sity within cytoplasm, lipid intensity within cytoplasm and LD
number were significantly different between PM positive and
negative after K-PCA (Figure 3a). In terms of different clusters,
the features, such as area, perimeter, cytoplasm area fraction,
cytoplasm area and LD number, were significantly different
between significant marker cells (Cluster 1) and other cells
(Cluster 2 and 3) (Figure 3a). These results together indicate
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Figure 4. PM detection by SRMC using machine learning classifiers. a) Upper: Input feature matrix (PC1, PC2, cell number of tumor cell) of PM positive
and negative specimens by the ML-PCA method (SVM). Down: Input feature matrix (PC1, PC2, cell number of Cluster 1) of PM positive and negative
specimens by the K-PCA method. b) Upper: Confusion matrix, positive probability with cross-validation, and ROC curve by the ML-PCA method (SVM)
with a threshold to get best sensitivity and specificity. Down: Confusion matrix, positive probability with cross-validation, and ROC curve by the K-PCA
method with a threshold to get best sensitivity and specificity. c) Upper: Final detection results of 80 patients by ML-PCA (SVM) compared with ground
truth. Down: Final detection results of 80 patients by K-PCA compared with ground truth.

that our K-PCA algorithm has a potential to accurately evaluate
PM by introducing more information on composition besides
morphology used in conventional cytology.

Moreover, we explored the relationship between significant
marker cells and tumor or normal cells. The SRS images of exfoli-
ated cells were first stitched into larger scale (Figure S7, Support-
ing Information) that could be comparable with the H&E cytolog-
ical images of the same locations in situ. Based on the labeling of
normal and tumor cells on the cytological images by pathologists,
we then integrated machine learning (ML) methods with PCA,
called ML-PCA here, to differentiate tumor cells from normal
cells. The accuracy, sensitivity, specificity and the area under ROC
curve (AUC) of ML-PCA methods were 93.8%, 94.1%, 93.6%, and
0.98 for SVM based ML-PCA, and 90.5%, 92.0%, 90.1%, and 0.96
for LDA based ML-PCA (Figure S8, Supporting Information). As
shown in Figure 3b–d and Figure S9, Supporting Information,
the significant marker cell population in PM positive was pri-
marily included in the tumor cell population, especially for PM
positive specimens with high percentage of tumor cells. In the
meanwhile, the significant marker cell population in PM neg-
ative specimen belonged to the normal cell population. These

findings suggest that the significant marker cell population pos-
sibly contains features in which the divergence highly correlates
with PM. The differences of features between significant marker
cells and other cells identified by K-PCA were more evident than
the differences of features between tumor cells and normal cells
identified by ML-PCA, especially for PM positive specimens with
high percentage of tumor cells (Figure S10, Supporting Informa-
tion). Collectively, in SRMC method, we do not need to follow
conventional cytology to capture all tumor cells, but rather use K-
PCA algorithm to identify the significant marker cells with spe-
cific morphology and composition features, in which the diver-
gence is likely related to PM.

2.6. Demonstration of PM Detection by SRMC

The transformed feature matrix was further used as input fea-
tures in machine learning models for PM prediction. As shown
in Figure 4a, the feature matrix obtained by K-PCA (Cluster1-
PC1, Cluster1-PC2, Cluster1-number etc.) could differentiate
PM positive and negative more clearly than the feature matrix
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obtained by ML-PCA. The feature matrix was then trained and
validated with the ground truths of PM diagnosis by using ma-
chine learning methods, including SVM, LDA, and LR. With
leave-one-out cross-validation, PM positive probability of each
patient, ROC curve, and confusion matrix were shown in Fig-
ure 4b and Figure S11, Supporting Information (details in Ta-
ble S3, Supporting Information). In terms of supervised ML-
PCA method, SVM performed better than LDA and LR for dif-
ferentiation between PM positive and PM negative, with AUC
of 0.797, 63.0% sensitivity and 88.7% specificity at an appro-
priate cutoff (Figure 4b). The results of LDA and LR classi-
fiers for ML-PCA were shown in Figure S11, Supporting In-
formation. Compared to supervised ML-PCA, un-supervised K-
PCA gained much better performance for PM detection, with
AUC of 0.85, 81.5% sensitivity and 84.9% specificity at an ap-
propriate cutoff, by using LR classifier (Figure 4b). The results
of SVM and LDA classifiers for K-PCA were shown in Figure
S11, Supporting Information. As shown in Figure 4c, the PM
prediction results based on ML-PCA and K-PCA for each pa-
tient were delineated. The directly visualized comparisons with
the ground truths further demonstrated the great performance
of K-PCA based PM detection. These results suggest that our
SRMC method is capable to detect PM with high sensitivity and
specificity.

2.7. Interpretation of Feature Contribution in PM Detection by
SRMC

In order to interpret the result by SRMC, we analyzed importance
coefficient of the single-cell features (Figure 5). The diagnostic
performance of SRMC using both morphology and composition
features was significantly better than that using either morphol-
ogy or composition features. Specifically, the sensitivity increased
from 59.25% to 81.5%, the accuracy increased from 76.25% to
83.75%, the specificity increased from 75.48% to 84.9%, nega-
tive predictive value (NPV) increased from 80.35% to 90%, and
positive predictive value (PPV) increased from 62.85% to 73.3%
(Figure 5a). The improved sensitivity was predominantly con-
tributed by composition features, whereas the improved speci-
ficity was mainly contributed by morphology features. In terms
of NPV and PPV, both morphology and composition features
contributed.

Moreover, we analyzed the importance coefficients of feature
matrix, which contributed to final PM results (Figure 5b). Impor-
tance coefficients represent the relationship between the given
feature matrix and PM results, assuming that all the other ma-
trix components remain constant (conditional dependence).[54]

Through analyzing importance coefficient of feature matrix by
K-PCA, the Cluster1-number was negatively related with PM re-
sults and Cluster1-PC1 was positively related with PM results,
suggesting that clustering benefit PM detection (Figure 5b). We
also quantitively analyzed the importance coefficients of raw fea-
tures, suggesting the correlation between principal components
and raw features. As shown in Figure 5c, principal components
(PC1 and PC2) had the top three highest correlations with cel-
lular area, cytoplasm area fraction, and protein intensity within
cytoplasm. Additionally, we have analyzed the correlations be-
tween LD features (LD area, LD number, LD area fraction and

lipid intensity within LD area) and cell clustering/PM diagno-
sis (Figure 5c). The correlations among the features of LD area,
LD number and LD size were high. By adding the feature of
LD size, there was no significant improvement for cell cluster-
ing/PM diagnosis. The features, including cell area, cytoplasm
area, lipid intensity and protein intensity within cytoplasm etc.,
had positive correlations with PC1 (Figure 5c); whereas the fea-
tures, including cytoplasm area, cytoplasm area fraction, lipid
intensity, and protein intensity within cytoplasm, etc., had both
positive and negative correlations with PC2 (Figure 5c). There-
fore, our quantitative interpretation demonstrates that morphol-
ogy and composition features of single exfoliated cells after
clustering contribute to accurate PM detection by the SRMC
method.

3. Discussion

In this study, we have developed the SRMC, a label-free SRS
microscopy-based intelligent cytology method, for detection of
PM in GC. Integration of three-color SRS microscopy with deep
learning segmentation model provided both morphology and
composition features of single cells. Our hybrid PCA and K-
means clustering analysis further transformed these raw features
to feature matrix and enabled identification of the significant
marker cell population, the divergence of which was strongly re-
lated to PM. The transformed feature matrix was finally used as
input features in machine learning models for PM prediction.
For 80 GC patients, the SRMC achieved 81.5% sensitivity, 84.9%
specificity, 83.75% accuracy, and AUC of 0.85, by using cross-
validation compared with histopathology, the gold standard of
PM detection. Moreover, the average test time for each patient
was within 20 min. As discussed below, our study demonstrates
that the SRMC may open up a new avenue for accurate and rapid
detection of PM from GC.

First, our SRMC method enhances accuracy of PM detection
for GC by integrating morphology features and composition fea-
tures of single exfoliated cells. Conventional peritoneal lavage cy-
tology entirely relies on cell morphology, which reaches speci-
ficity as high as 85% but limits the sensitivity to even lower than
60% for PM diagnosis.[16] This suggests that the morphology fea-
ture largely contributes to the specificity but is not enough to
gain the sensitivity. Thus, the concept of well-established SRS-
based virtual histology (SRH) method that primarily depends on
morphology could not be transferred to cytology. Different from
conventional cytology and SRH, our SRMC brought in composi-
tion features, which indeed significantly increased the sensitivity
from 59.25% to 81.5%. Particularly, lipid protein ratio, lipid in-
tensity within cytoplasm, and protein intensity within cytoplasm
were recognized to be the most critical composition features con-
tributing to sensitive PM detection. Additionally, we have simu-
lated the performance of PM diagnosis by single-color SRS (2850
cm−1 or 2930 cm−1 channel). Based on the 2850 cm−1 channel
alone, the accuracy of the SRMC method decreased from 83.75%
to 80%. Based on the 2930 cm−1 channel alone, the accuracy of
the SRMC method decreased from 83.75% to 77.5%. The con-
tribution of the 2850 cm−1 channel was greater than the 2930
cm−1 channel to the accuracy of SRMC method. Moreover, Liu
Zhijie et al.[48] developed AI-assisted single-shot SRS method to
produce two-color SRS images for probing both lipid and protein
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Figure 5. Feature contribution in PM detection by SRMC. a) Comparisons of the performance of PM detection (sensitivity, specificity, accuracy, NPV,
and PPV) based on either or both of morphology and composition features. b) Importance coefficients of feature matrix to PM detection results. Feature
matrix: C1 PC1: PC1 values of Cluster1, C1 Number: Cluster#1 cell number, etc. c) Importance coefficients of raw features to principal components,
PC1 value (left) and PC2 value (right). The box and whisker plots represent median values (center lines), mean values (horizontal bars), minimum and
maximum (outliers), 25th to 75th percentiles (box edges) and 1.5× interquartile range (whiskers), with all points plotted.

simultaneously. Thus, it is possible that our SRMC method could
be employed on the AI-assisted single-shot SRS system for PM
diagnosis.

Second, the performance of our SRMC method depends on ac-
curate single cell phenotyping, which combines single cell seg-
mentation and cell phenotyping. The single cell segmentation
was conducted by using pre-trained deep learning Stardist model
to achieve high accuracy, especially for those closely touching

cells that were difficult to be separated by common segmenta-
tion algorithms. The single cell phenotypes were further recog-
nized by newly developed hybrid K-PCA algorithm based on fea-
ture dimensionality reduction and clustering. Importantly, with
specific morphology and composition features, we identified the
significant marker cell cluster, the divergence of which was then
used to differentiate the PM positive and negative. Similarly, a re-
cent work demonstrated the existence of significant marker cell
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population at the edge between tumor and stroma for accurate
prediction of tumor response to immunotherapy.[55] The above
evidence collectively indicates that the significant marker cells
with specific molecular signatures support accurate detection of
PM from GC.

Third, our SRMC method using unsupervised K-PCA is signif-
icantly more precise than supervised ML-PCA for PM detection.
We made “cell to cell” inspections on SRMC and conventional
cytology of the same specimen and classified normal/tumor cell
with 93% accuracy. The 7% error of ML-PCA based cell classifica-
tion may induce bigger error for PM detection. The feature ma-
trix transformed by K-PCA was used to diagnosis PM with much
higher accuracy. With the leave-one-out cross-validation of 80 pa-
tients, LR showed the best performance for PM diagnosis among
three diagnostic models (SVM, LDA and LR) (Table S4, Support-
ing Information). The detailed explanation was described in Note
S1, Supporting Information.

Fourthly, we further investigated the mismatched results of
SRMC compared with the gold standard histopathology. As
shown in Table S5, Supporting Information, the results of SRMC
were close to histopathology but not conventional cytology. Com-
pared to histopathology, SRMC had 5 false negatives out of 80
patients. In order to find out the possible reason of false nega-
tive, we compared SRMC with conventional cytology on the same
specimen in situ. As shown in Figure S12, Supporting Informa-
tion, different from the original positive cytology result, the cytol-
ogy result obtained from the same specimen analyzed by SRMC
showed negative result (i.e., no tumor cells). Similarly, as shown
in Figure S13, Supporting Information, different from the orig-
inal negative cytology result, the cytology result obtained from
the same specimen analyzed by SRMC showed positive result.
These results suggest that the false negative in SRMC is possi-
bly related with the throughput of our method and may occur
in the specimen with very low percentage of tumor cells. In ad-
dition, compared to histopathology, SRMC had 8 false positives
out of 80 patients, which may be due to limited features obtained
from three-color SRS imaging. The sensitivity and specificity of
SRMC could be further improved by increasing throughput, for
example via stimulated Raman flow cytometry,[56,57] and by intro-
ducing more composition features, for example via hyperspectral
SRS imaging cytometry.[58]

Finally, our SRMC method may enable a variety of clinical
practices for better management of locally advanced GC. For
instance, besides rapid detection of PM during surgery, SRMC
could also facilitate preoperative diagnosis and postoperative
follow-up, which can be hardly done by histopathology due to its
invasiveness. As shown in Figure S14, Supporting Information,
we tried to assess the changes of PM upon chemotherapy after
surgery and predict prognosis. Moreover, besides PM detection,
cytology itself is also a very important indicator for potential
PM that may have not occurred yet. Fortunately, the SRMC is
based on multi-color SRS microscopy that has been previously
established to permit virtual H&E staining.[47,48] Thus, the inte-
gration of SRMC with virtual staining may be desirable to give
diagnostic results of both PM and cytology. Furthermore, the
concept of SRMC could be extended to other clinical scenarios of
cancer diagnosis using cytology, such as Pap smear for cervical
cancer, urinary cytology for urothelial cancer, bronchoalveolar
lavage fluid examination for lung cancer, etc. Taken together,

SRMC may hold great promise for becoming the next generation
of cytology in the near future.

4. Experimental Section
Cell Culture: GES-1, HMrSV5, SNU-16 cells were cultured in RPMI

1640 (Gibco, 11875119), supplemented with 10% fetal bovine serum
(Omega Scientific, FB-21), and 0.1% penicillin/streptomycin (Gibco,
15070063). Cell cultures were incubated in an incubator at 37 °C with 5%
CO2.

Clinical Sample: Peritoneal lavage fluids were collected from 80 pa-
tients diagnosed with locally advanced GC in the Peking University Can-
cer Hospital, with 27 PM positive, 53 PM negative. and 35 CY positive,
45 CY negative. The detailed sex, age, PM positive/negative, and CY pos-
itive/negative of each patient were described in Table S3, Supporting In-
formation. For each patient, half (100 mL) of the sample was inspected by
conventional cytology by pathologists, and the other half (100 mL) was an-
alyzed by the SRMC method. This study was approved by the Institutional
Review Boards of Peking University Cancer Hospital and Beihang Univer-
sity. Written informed consent was obtained from all patients before the
study was conducted.

Diagnostic Laparoscopy Staging and Conventional Cytology Examination:
Intraoperative laparoscopy was performed under general anesthesia. The
patient was placed in a supine position. A 10-mm disposable trocar (ob-
serving hole) was inserted into the sub-umbilicus, and a 30° telescope was
used. Another 10-mm trocar and a 5-mm trocar were inserted into the right
and left upper quadrants, respectively. Prior to any manipulation, 250 mL
of warm normal saline was infused into the subphrenic space, subhepatic
space, momentum, bilateral paracolic sulci, and the pouch of Douglas.
Care was taken to avoid direct contact of the irrigation with the primary tu-
mor. At least 200 mL of fluid was aspirated from the subphrenic space, sub-
hepatic space and pouch of Douglas. The fluid was immediately sent for
the SRMC and cytological examination. For conventional cytology, the ex-
foliated cells were stained with hematoxylin and eosin (H&E). Two profes-
sional pathologists examined the H&E slides independently. Patients with
negative cytology results were labeled as CY−, and patients with positive
cytology results were labeled as CY+. Subsequently, a systematic inspec-
tion of the abdominal cavity was performed clockwise from the right quad-
rant. Any suspicious lesion was biopsied and sent for histopathologic ex-
amination. Patients with negative histopathologic results were diagnosed
as PM negative (PM−), and patients with positive histopathologic results
were diagnosed as PM positive (PM+).

Preparation of the Exfoliated Cell for SRS Imaging: The ascites samples
were first centrifuged at 2000 rpm for 3 min. Then, the concentrated sam-
ples were treated by red blood cell lysate for 5 min and rinsed with phos-
phate buffered saline. The sample (≈10 μL) was dropped on the glass slide
and evenly smeared in an area of about 1 cm2. The slide was used for SRS
imaging after air-drying and stored at −80 °C for future use if needed.

Three-Color SRS Microscopy: The authors’ SRS microscope employed
a dual output picosecond pulse laser (picoEmeraldTM S, Applied Physics
and Electronics) with a repetition rate at 80 MHz and 2 ps width. The
laser has an integrated output for both the pump beam with tunable wave-
length from 700 nm to 960 nm and the Stokes beam with fixed wavelength
at 1031 nm, which are overlapped in space and time. When performing
SRS, the Stokes beam was modulated at ≈20 MHz by an electronic optic
modulator. The collinear pump and Stokes beams were coupled to a 2D
scanning galvanometer (GVS012-2D, Thorlabs) and then imported into an
inverted microscope (IX73, Olympus). A 60× water immersion objective
lens (LUMPlanFL N, 1.0 numerical aperture, Olympus) focused the lasers
into the sample. The photons were collected by a 60× water condenser
(LUMPlanFL N, 1.0 numerical aperture, Olympus). The pump beam was
selected by a short-pass filter (ET980SP, Chroma), and was detected by
a photodiode (S3994-01, Hamamatsu, Japan) equipped with a resonant
circuit that selectively amplifies the signal at the optical modulation fre-
quency. The stimulated Raman loss signal was then extracted by a digi-
tal lock-in amplifier (HF2LI, Zurich Instrument, Zurich, Switzerland). The
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output voltage from the lock-in amplifier, which represents the SRS signal,
was sampled by a DAQ card (PCI- 6363, National Instruments, Austin,
TX). A LabVIEW platform synchronized scanning of wavelength with 2D
multivariable acquisition of XY images. SRS imaging was performed by
tuning 796.8, 791.8, and 789.5 nm to get the Raman band of 2850, 2930,
and 2965 cm−1, which correspond to the C–H stretching region of lipid,
protein, and DNA, respectively. The excitation power at the sample was
≈20 mW for pump and ≈90 mW for Stokes for all cell samples. Each SRS
image contained 400 × 400 pixels. The pixel dwell time was 10 μs. The field
of view of single SRS images was 100 × 100 μm.

Image Processing and Analysis: For SRS image processing, home-built
Python programs were used to segment single cell with masks, extract
features, and classify single cell with labelled masks. The whole process
was described in Table S6, Supporting Information.

The single cell segmentation ran with the Python library stardist2D 0.7.1
under tensorflow 1.7. The feature extraction ran with the Python library
skimage 0.18.0. The cell phenotyping and dimensional reduction using K-
PCA and ML-PCA ran with the Python library sklearn 0.21.2. PCA as a linear
dimensionality reduction uses singular value decomposition (SVD) of the
features data to project it to a lower dimensional space. The input feature
data was centered but not scaled for each feature before applying the SVD.
The K-means algorithm clustered input features data by separating cells
in n groups of equal variances, through minimizing a criterion known as
sum of squares within cluster.

After cell phenotyping, labelled masks were created and saved with vir-
tual pseudo colors. The saved ROI files could be opened by the ImageJ. The
significant feature components (cellular area, perimeter, cytoplasm area,
lipid intensity, protein intensity, and lipid protein ratio etc.) of three clus-
ters were saved in csv files. Imported with the significant components, the
supervised classifiers (SVM, LR, and LDA) all ran with the Python library
sklearn 0.21.2.

The positive probability of PM, confusion matrix and ROC curve for
each of the 80 patients were plotted and saved. The whole image process-
ing and analysis (Table S6, Supporting Information) for each patient with
500 cells took less than 1 min on a customized computer equipped with
a single graphics card (EVGA GeForce GTX 2080Ti FTW3) and an Intel
i9-7920x CPU.

Large-Scale SRS Imaging: A home-built code was programmed for
large-scale SRS imaging including automatic scanning, automatic stitch-
ing, and automatic calibration. Automatic scanning was programmed by
home-built LabVIEW software. 4 × 10 images were acquired with 20%
overlay to create an FOV of 400 × 1000 μm2. After image acquisition, the
stitching algorithm programmed by MATLAB automatedly calibrated and
smoothed the edges between images. The shifts among three-color SRS
image channels were corrected. The schematic and typical results were
described in the Figure S7, Supporting Information.

Extraction of Features from Single Cells: 19 features were totally ex-
tracted, including morphology and composition, of single exfoliated cells,
as shown in Figure S2, Supporting Information. The morphology features
included area, eccentricity, major axis length, minor axis length, perime-
ter, solidity, circularity, roundness, cytoplasm area fraction, and cytoplasm
area. Major and minor axis length were the primary and secondary axis
of the best fitting ellipse with the selection cell contour. The solidity was
convex area of the convex hull that encloses single cell divided by cellular
area. The eccentricity was minor axis length divided by major axis length.
The circularity and roundness were calculated by the following equations,
respectively.

Circularity = 4𝜋 × area
perimeter

(1)

Roundness = 4 × area

𝜋 × major axis length2
(2)

The composition features included lipid intensity, protein intensity, lipid
protein ratio, lipid intensity within cytoplasm, the protein intensity within
cytoplasm, lipid droplet (LD) area, LD number, LD area fraction, and lipid
intensity within LD area. The lipid and protein intensity of each image were

calculated from the intensity of SRS image at 2850 cm−1 and 2930 cm−1

by the following formula.

(
CL
CP

)
=
(

1.28583 − 0.32401
−0.13406 1.28583

)(
SL
SP

)
(3)

SL is the signal intensity of SRS image at 2850 cm−1, SP is the signal in-
tensity of SRS image at 2930 cm−1, CL is the lipid intensity, and CP is the
protein intensity of each image. The constants were measured from pure
BSA and oil by SRS imaging at 2930 cm−1 and 2850 cm−1.

As shown in Figure S2, Supporting Information, the 8 morphology
features such as area, eccentricity, major axis length, minor axis length,
perimeter, solidity, circularity and roundness were extracted from cellular
masks by using skimage.measure function in Python script as same as the
“Measure” module at ImageJ after single cell segmentation.

Then, the lipid intensity, protein intensity, and lipid protein ratio of sin-
gle cells were also extracted using skimage.measure function based on CL,
CP, and cellular masks. Then, nucleus segmentation masks were extracted
from DNA channel by adaptive thresholding. By using skimage.measure
function, cytoplasm area were calculated by cytoplasm masks, which are
cell masks subtracted by nucleus masks. Cytoplasm area fraction was cy-
toplasm area divided by cell area. Then another two composition features
(lipid intensity within cytoplasm, and protein intensity within cytoplasm)
were calculated by CL, CP, and cytoplasm masks.

Finally, masks of LD area were obtained from 2850 cm−1 by Python
library cv2.threshold, as same as the “Threshold” module at ImageJ.
LD in single cells could be segmented due to their higher local signal
intensities compared to surrounding cellular compartments. By using
numpy.percentile function in Python script, intensity threshold value of
each image could be obtained from the overall intensity histogram. Then
based on LD masks, the LD number and LD area were extracted. LD area
fraction was LD area divided by cell area. Lipid intensity within LD area
was calculated by CL and LD mask. The segmented LDs areas were highly
consistent with visual judgment as shown in Figure S2, Supporting Infor-
mation.

Quantitative Evaluation of Single Cell Segmentation: Dice parameter,
relative mean square error (RMSE) between ground truth and automate
cell segmentation were used to quantitatively assess the performance of
cell segmentation. Dice parameter represents the overlap of segmentation
area by stardist 2D and visual judgment by the formula.

Dice = 2 | stardist ∩ visual|| stardist| + | visual| (4)

RMSE represents relative mean square error of cell counting between
stardist 2D and visual judgment in each image.

RMSE = 1
N

N∑
i=1

√
(nstardist

i − nvisual
i )

2
(5)

ni
stardist means cell counting number by stardist model and ni

viusal means
cell number from visual judgement in each image i.

Statistical Analysis: The box and whisker plots with Origin 2017 rep-
resent median values (center lines), mean values (horizontal bars), mini-
mum and maximum (outliers), 25th to 75th percentiles (box edges), and
1.5× interquartile range (whiskers), with all points plotted. Student’s t-
test was used for comparisons between groups. The formula for the two-
sample t-test (Student’s t-test) is shown below.

t =
x1 − x2√

s2( 1
n1

+ 1
n2

)
(6)

In this formula, t is the t value, x1 and x2 are the means of the two groups,
s2 is the standard error of the two groups, and n1 and n2 are the num-
ber in each of two groups. Here, the t-value was to quantify the difference
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between two group means. A larger t-value showed that the difference be-
tween the group means was greater than the standard error, indicating a
more significant difference between two groups. The p-value was the con-
ditional probability of obtaining at least as t-value from data distribution
of two groups, and p-value < 0.05 was considered statistically significant.
t-value and p-value were performed by Origin 2017 using Student’s t-test.

The positive and negative classification for PM was evaluated with ROC
curve analysis. The area under the ROC curve (AUC) ranging from 0 to 1
evaluated the ability of a model to accurately distinguish two categories.
A threshold of Cluster1-PC1 and Cluster1-PC2 respectively in Figure S5,
Supporting Information, for determining PM NEG/POS was obtained by
the ROC curves to get the best diagnostic sensitivity and specificity. The
ROC analysis was performed by Origin 2017.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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