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A B S T R A C T

Obesity is increasing at an alarming rate. The effectiveness of currently available strategies for the treatment of obesity (including pharmacologic,
surgical, and behavioral interventions) is limited. Understanding the neurobiology of appetite and the important drivers of energy intake (EI) can lead to
the development of more effective strategies for the prevention and treatment of obesity. Appetite regulation is complex and is influenced by genetic,
social, and environmental factors. It is intricately regulated by a complex interplay of endocrine, gastrointestinal, and neural systems. Hormonal and
neural signals generated in response to the energy state of the organism and the quality of food eaten are communicated by paracrine, endocrine, and
gastrointestinal signals to the nervous system. The central nervous system integrates homeostatic and hedonic signals to regulate appetite. Although there
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thalamus; LHb, lateral habenula; LPBN, lateral parabrachial nucleus; MC4R, melanocortin-4 receptor; NAcc, nucleus accumbens; NTS, nucleus of the solitary tract; PFC, prefrontal
complex; POMC, proopiomelanocortin; PVN, paraventricular nucleus; RYGB, Roux-en-Y gastric bypass; SG, sleeve gastrectomy; tDCS, transcranial direct current stimulation;
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has been an enormous amount of research over many decades regarding the regulation of EI and body weight, research is only now yielding potentially
effective treatment strategies for obesity. The purpose of this article is to summarize the key findings presented in June 2022 at the 23rd annual Harvard
Nutrition

Obesity Symposium entitled “The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets.” Findings presented at the
symposium, sponsored by NIH P30 Nutrition Obesity Research Center at Harvard, enhance our current understanding of appetite biology, including
innovative techniques used to assess and systematically manipulate critical hedonic processes, which will shape future research and the development of
therapeutics for obesity prevention and treatment.
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TABLE 1
Brain regions involved in appetite and weight control1

Homeostatic
(hypothalamic) circuitry

Arcuate nucleus, paraventricular nucleus (PVN),
dorsomedial hypothalamic nucleus (DMH), and
lateral hypothalamus (LH)

Reward circuitry Amygdala, striatum [caudate putamen and nucleus
accumbens (NAcc)], ventral tegmental area (VTA),
prefrontal cortex (PFC), anterior cingulate cortex,
lateral habenula (LHb), and cerebellum

Cognitive control Prefrontal cortex (PFC), anterior cingulate cortex,
and insula

1 Many brain areas are involved in >1 type of appetite control pathway.
Introduction

The prevalence of obesity is increasing tremendously in the last 3
decades with a 27.5% increase in adults and a 47.1% increase in
children worldwide [1]. People with obesity are at an increased risk of
type 2 diabetes mellitus, CVD, nonalcoholic fatty liver disease,
neurodegenerative disease, and many cancers. The health problems
associated with obesity are substantial and lead to increased healthcare
costs. Indeed, annual healthcare costs have increased by 36% with a
77% increase in medication costs in individuals with obesity as
compared with those with normal weight [1]. Studies have shown that
weight loss of >5% can lead to beneficial effects on metabolic and
cardiovascular complications [2]. Although some recently available
pharmacological agents can result in effective and sustained weight
loss in conjunction with lifestyle and behavioral treatments, their use
can be limited by their availability, tolerability, contraindications, and
cost. Therefore, a substantial unmet need exists for effective strategies
to treat patients with obesity. Understanding the genetic, neural, and
hormonal pathways that regulate weight and appetite is critical to
finding therapeutic targets for the prevention and treatment of obesity
[3]. Although the field of obesity research is large and extends over
several decades with many major advances, this manuscript summa-
rizes findings presented by the coauthors at the 23rd annual Harvard
Nutrition Obesity Symposium entitled “The Neurobiology of Eating
Behavior in Obesity: Mechanisms and Therapeutic Targets” in June
2022. This report is not a comprehensive review of the available
research in the field but presents insights from experts speaking on
major topics of relevance to our understanding of appetite physiology,
covered at the symposium.

Lessons from Genetic Studies on Development of
Obesity

The development of obesity is strongly influenced by social and
environmental factors that affect the balance between energy intake
(EI) and expenditure and further modulated by genetic factors. Twin
studies show that identical twins have an extremely high concordance
for the body weight and fat mass distribution compared with
nonidentical twins, even if they were separated at birth, indicating a
strong effect of “nature over nurture” with regard to obesity [4]. In the
past few decades, many genetic variations have been identified, which
may modulate the response to similar environmental triggers. Although
there are rare monogenic causes of obesity that provide insights into the
key homeostatic appetite pathways (like the leptin–melanocortin
pathway), there are also many common genetic variants with small
effect sizes that contribute to obesity in the general population. People
with a high polygenic risk score derived from over 2 million common
and rare variants were found to be on average 12 kg heavier than those
with a low-risk score by 18 y of age [5]. Studies have also shed light on
the genetics of thinness [6], with recent work from Study into Lean and
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Thin Subjects (STILTS) demonstrating genes that may protect against
weight gain and provide novel drug targets for obesity prevention (htt
ps://www.stilts.org.uk/). The results from genetic studies can help un-
derstand the physiological and behavioral pathways involved in the
development of obesity, which is essential in developing effective
preventive and therapeutic interventions.

Neurobiology of Appetite and Weight

The neurobiology of food intake and appetite is complex. Critically,
these pathways evolved and adapted to ensure survival in times of food
scarcity. Within this system, peripheral hormones and neural signals act
centrally to influence appetite and food intake. These hormones and
neural impulses result in direct and indirect activation of the key sys-
tems throughout the brain—homeostatic, hedonic (reward-based), and
cognitive pathways—that are involved in energy homeostasis, reward
processing, and cognitive control of appetitive behaviors (Table 1) [7].

Leptin, ghrelin, and the melanocortin pathway

The melanocortin pathway is the key regulator in the homeostatic
regulation of appetite but also influences the reward circuitry (Figure 1).
Leptin is an adipokine that is released in proportion to the amount of fat
mass. In the fed state, leptin binds to leptin receptors on the surface of
proopiomelanocortin (POMC) neurons, resulting in release of α-mela-
nocyte-stimulating hormone, which binds to melanocortin-4 receptors
(MC4Rs) in the paraventricular nucleus (PVN) and leads to decreased
food intake by stimulating satiety neurons in the lateral parabrachial
nucleus (LPBN) [8,9]. Leptin also regulates food intake by modulating
neuronal activation of the reward system in the striatum [caudate puta-
men and nucleus accumbens (NAcc)] [10]. Leptin deficiency or defects
in its signaling result in hyperphagia and severe obesity in both human
and rodent models [11–19]. The resulting obesity from leptin deficiency
is reversed with the recombinant leptin therapy [20], further emphasizing
the critical role of this hormone in body weight homeostasis. In acute
caloric restriction, leptin concentrations decrease to defend against
starvation [21–23] and are similarly decreased in the chronic weight
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https://www.stilts.org.uk/


I. Becetti et al. The American Journal of Clinical Nutrition 118 (2023) 314–328
reduced state [24,25]. Thus, leptin is a key adipokine involved in
regulating appetite via homeostatic and hedonic regulation.

In contrast, ghrelin is a gut peptide, released in the starved state to
promote food intake. Ghrelin acts by binding to its endogenous re-
ceptor, the growth hormone secretagogue receptor, in the arcuate nu-
cleus to stimulate orexigenic agouti-related neuropeptide (AgRP) and
NPY-expressing neurons [26,27]. Growth hormone secretagogue re-
ceptor neurons are also coexpressed with dopamine neurons in the
ventral tegmental area (VTA), which is involved in regulating hedonic
FIGURE 1. Melanocortin pathway of homeostatic appetite regulation. Leptin bin
state, the fall in leptin concentrations strongly activates AgRP neurons while inhib
selective inhibitory synaptic input from AgRP neurons. The MC4R-experssing ne
in the LPBN. AgRP neurons inhibit the POMC neurons as well as VGLUT2 neu
neurotransmitter glutamate that competes with the inhibitory neurotransmitters N
glutamatergic inputs to MC4R-expressing neurons in the PVN is upregulated by th
expressing PVN satiety neurons and the satiety neurons of the LPBN. AgRP, agou
parabrachial nucleus; MC4R, melanocortin-4 receptor; POMC, proopiomelanocor
glutamate transporter 2.

316
appetite [28]. Ghrelin also modulates the dopaminergic activity in this
area, thereby regulating hedonic appetite [28].

MC4R

MC4R is a key integrator of signals governing the regulation of
appetite and body weight. Studies investigating defects in the mel-
anocortin pathway have highlighted its role in regulating weight and
appetite. Genetic deficiency of POMC results in severe obesity in
ds to the leptin receptors present on AgRP and POMC neurons. In the fasting
iting POMC neurons. MC4R-expressing neurons in PVN receive strong and
urons of PVN exhibited their antiobesity effect by stimulating satiety neurons
rons, all within the arcuate nucleus. VGLUT2 neurons release the excitatory
PY and GABA released by AgRP. In addition, postsynaptic activity of the
e actions of α-MSH/MC4R signaling, thereby further stimulating the MC4R-
ti-related protein; α-MSH, α-melanocyte-stimulating hormone; LPBN, lateral
tin; PVN, paraventricular nucleus of the hypothalamus; VGLUT2, vesicular-
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mice [29] and humans [30]. Indeed, several studies have shown that
loss-of-function mutations in the MC4R gene result in obesity, with
a correlation between the degree of loss of function and hyperphagia
[31,32]. Heterozygous mutations in the MC4R gene have been
detected more commonly than previously suspected in association
with obesity [33,34]. Setmelanotide is an MC4R agonist that results
in 10% weight loss in states of POMC or leptin receptor deficiency
[35–37]. In addition, human studies showed that gain-of-function
MC4R variants are protective against obesity [38].
AgRP and POMC neurons

The AgRP and POMC neurons project to several sites in the
brain including the PVN. Genetic defects or lesions of the PVN have
been shown to cause hyperphagia and obesity [39,40]. Moreover,
genetic disruption of the transcription factor Sim1, which is essential
for the development of the PVN, leads to hyperphagia and obesity in
mice [41,42] as well as humans [43]. In fact, signaling via the
MC4R on PVN neurons is critical in preventing hyperphagia and
obesity (illustrated in Figure 1) [44,45].

In contrast to the effects of ablation of AgRP neurons, which lead to
reduced food intake and starvation [46,47], activation of AgRP neurons
leads to hyperphagia [48,49]. Regulation of AgRP hunger neurons is
partly mediated via feedback signals that report the current state of
energy needs (for example, leptin) and by the nutrient-induced signals
from the gut, which also reduce AgRP neuron activity [50,51]. Sensory
cues, like the smell of food, that predict future eating will also rapidly
inhibit AgRP neuron activity [52–54]. These effects are mediated via
inhibitory signals from the dorsomedial hypothalamic nucleus (DMH)
[55].

Stimulation of AgRP neurons results in an aversive (unpleasant)
state [53]. Upon eating, the activity of AgRP neurons is decreased,
which reduces the aversive state and is thereby rewarding, encouraging
food-seeking behavior. In fact, AgRP neurons are inhibited by the
inhibitory neurons of the DMH [55], which are activated by the glu-
tamatergic neurons from the lateral hypothalamus (LH) [56]. Blocking
this synaptic transmission results in impaired inhibition of AgRP
neurons by food cues as well as impaired learning of food-seeking tasks
[56]. This knowledge supplies a neurobiological basis for how food
deprivation leads to food-seeking behavior to avoid aversive states,
helping to explain why dieting is difficult.

As satiety signals are transmitted from the PVN to the LPBN, an
important future direction is to identify the specific satiety neurons in
the LPBN (Figure 1) and determine the sites in the brain where they
project to regulate hunger/satiety. As the LPBN projects to “higher”
brain sites that set emotional valence, this will provide a deeper un-
derstanding of what really happens in the brain to control hunger/
satiety. Identification of LPBN neurons will be greatly enhanced by the
latest techniques that are based on single-neuron transcriptomics to
identify all the different transcriptionally defined subtypes of neurons
that exist in the LPBN.
Alterations in Brain Reward Responses
Contributing to Obesity

In the food-replete modern world, reward signaling in appetitive
pathways can supersede the homeostatic regulation, and knowledge
about its regulation is crucial to prevent and treat obesity. Functional
MRI studies show that in response to food cues, individuals with
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obesity have greater activations of brain regions that regulate reward
and motivational processes including the striatum, prefrontal complex
(PFC), and amygdala, compared with lean individuals [57,58], with
recent data identifying the cerebellum as a critical driver of
reward-related hyperphagic behavior [59]. The magnitude of these
responses to food cues predicts future weight gain and poor weight loss
outcomes after weight loss interventions [60–62]. Thus, studies in
humans suggest that the function of the reward circuits that influence
food craving and food-seeking behaviors are enhanced in people who
are susceptible to diet-induced weight gain.

Furthermore, obesity-prone rats show stronger food-seeking and
basal enhancements in striatal function compared with obesity-resistant
rats [63]. Also, eating a sugary, fatty “junk-food” diet enhances
excitatory transmission within the striatum of obesity-prone, but not
obesity-resistant rats [64]. Specifically, diet manipulation in an
experimental setting, in the absence of obesity, enhances the expression
and function of calcium-permeable-α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors in the striatum of obesity-prone but
not obesity-resistant male and female rats [64]. Calcium-permea-
ble-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
activity is required for the expression of cue-triggered food-seeking
[63], which is also enhanced after consumption of “junk-food” [65].
These data provide evidence that there are inherent enhancements in
incentive motivational responses to food cues in obesity-prone rodent
populations and that eating sugary fatty foods enhances striatal func-
tion to promote cue-triggered food-seeking in populations that are
susceptible to diet-induced obesity [66]. The elaboration of these
pathways in humans is ongoing and may help identify obesity pre-
vention strategies in the high-risk population.

Effect of macronutrient content on homeostatic and
reward regions

Multiple studies have investigated the effect of dietary interventions
on appetite pathways using neuroimaging techniques. The Framingham
State Food Study (FS2), a randomized controlled trial evaluating the
effects of different macronutrients on weight regain, shows that 20-wk
diets (in the weight loss maintenance phase) that vary in carbohydrate
and fat content contribute to weight regain by decreasing energy
expenditure (EE) and altering appetite [67]. As shown in the FS2 study,
after 18–20 wk of adherence diets with different carbohydrate content, in
the pre-prandial state, regional blood flow to the NAcc, which is a sur-
rogate measure of the activity of this area, is higher in the
high-carbohydrate group as compared with the low-carbohydrate group
[68]. Furthermore, in the post-prandial state, individuals on a low-
compared with high-carbohydrate diet demonstrate lower blood flow to
the NAcc and thereby have a lower hedonic drive for food intake [68].
The blood flow in the NAcc is negatively associated with insulin con-
centrations in the high-carbohydrate diet group [68]. These findings
augment findings from preclinical [69] and clinical [70] studies showing
significant effects of short-term intake of carbohydrates on synchronous
activity in homeostatic and hedonic circuits, contributing to the appeti-
tive drive. Furthermore, the blood flow in the NAcc is negatively
associated with insulin concentrations in the high-carbohydrate diet
group [68]. Consistent with prior work demonstrating that intact NAcc
insulin signaling is required for adequate control of food intake ac-
cording to metabolic needs [71]. This suggests that individuals with high
insulin secretion might be more susceptible to the effects of chronically
high carbohydrate intake on brain reward activity, contributing to chal-
lenges in the maintenance of diet-induced weight loss. Further
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investigations in this field may elaborate individual characteristics that
may predict weight regain and thus highlight modifiable targets for
successful weight loss maintenance. These advancements will pave the
way toward precision treatments in obesity.

Mechanisms of compulsive eating in obesity

Compulsive eating is an uncontrollable urge to eat even in the
absence of hunger and is 1 of the appetite phenotypes that are associated
with obesity. Investigators have been interested in the mechanisms of
compulsive eating for several years. When unlimited daily access to a
cafeteria-style diet is allowed, rats gain rapid amounts of weight quickly
and develop obesity within a few weeks compared with rats that have
restricted (1 h) or no access to food [72]. The food consumption in the
rats with obesity is resistant to aversive conditioned stimuli, suggesting a
pattern of compulsive-like feeding behavior [72]. Striatal dopamine D2
receptors are downregulated in rats with obesity similar to the down-
regulation observed in humans with addiction problems [73]. Similar
data are seen in humans in whom lower dopamine signaling in the
striatum is noted in individuals with obesity [74]. There are other models
of compulsive eating like intermittent access to a high-energy diet, which
has also been shown to induce compulsive eating in mouse models [75,
76]. These data demonstrate that overconsumption of palatable food
triggers maladaptive neurological responses in brain reward circuits,
leading to compulsive eating.

To further evaluate these pathways, a recent study used whole-
brain imaging technology to map the connectivity of LH gluta-
matergic neurons with brain regions that process food-relevant sen-
sory, appetitive, and motivational information [77]. It demonstrates
that the development of obesity modifies the connectivity of LH
glutamatergic neurons with brain areas that regulate states of aversion,
especially the lateral habenula, which plays a critical role in integra-
tion of reward and aversive stimuli [78]. Subsequent experiments
show that LH-derived glutamatergic transmission in the lateral
habenula regulates compulsive eating as well as other obesity-related
abnormalities [77]. Future elucidation of these pathways in the context
of development of obesity in humans will provide a novel therapeutic
target to treat obesity.

Association of Obesity and Other Behavioral Traits

Identification of the associations of obesity and other behavioral
traits, such as anxiety, aggression, autism, or depression has led to new
mechanistic insights of obesity development. Disruption of the tran-
scription factor orthopedia homeobox, which affects the development
and function of hypothalamic circuits, is associated with obesity and
anxiety [79]. Similarly, deletion of the Src homology 2B adaptor protein
1 gene, which modulates insulin and leptin signaling, is associated with
severe obesity, insulin resistance, as well as behavioral abnormalities,
including aggression and social isolation [80–82]. Src homology 2B
adaptor protein 1 has also been shown to mediate the effects of the
brain-derived neurotrophic factor on neuronal integrity and may
contribute to the obesity and disordered behavior seen in patients with
Prader-Willi syndrome (PWS) [83]. Studies have also suggested that
ghrelin has psychological effects like coping with psychosocial stress.
For example, mice with exogenously elevated ghrelin concentrations
exhibit lower anxiety and depressive behaviors, which are not observed
in ghrelin receptor knockout mice, whereas chronic stress leads to
elevated ghrelin concentrations and subsequent increased appetite,
318
which persist after cessation of the stressor [84]. Similarly, individuals
with hyperphagic major depressive disorder have higher concentrations
of ghrelin in response to a meal [85]. Taken together, these findings from
preclinical and clinical models support a role for ghrelin in
stress-induced hyperphagia. These studies can pave way for specific
treatments when obesity is associated with significant psychosocial
stress.

Inflammatory Modulators of Food Consumption and
Endocrine Action

Our evolving understanding of inflammation in the CNS has
demonstrated that cellular inflammatory responses engage in regular
maintenance and remodeling of neuronal pathways [86,87]. This
remodeling allows humans to learn and adapt in response to environ-
mental or physiologic stimuli [86,87]. Microglia and astrocytes, specific
types of glial cells that interact with neurons, undergo conformational
responses to stimuli that induce a reactive state accompanied by changes
in their morphology, known as gliosis [86,87]. Gliosis involves a release
of cytokines that act locally on other glial cells and other neurons [86,
87]. These cytokines can have positive effects on the surrounding tissues
manifested as neuroprotection and synaptic pruning and negative effects
resulting in glial scar formation that can inhibit neuronal function in the
region [86,87]. Therefore, cellular inflammation in the CNS is known to
affect the function of neurons and neural pathways, and study of these
changes in CNS regions regulating energy homeostasis is relevant to the
understanding of eating behavior.

Hypothalamic inflammation and gliosis in rodent
models of diet-induced obesity

Overnutrition with a high-fat diet (HFD) in mice results in increased
cytokine release in the hypothalamus consistent with hypothalamic
inflammation [88]. The microglia within the arcuate nucleus of the
hypothalamus are inflamed as early as 3 d after starting an HFD, and
this precedes the onset of hyperphagia, weight gain, and obesity in
mice [89]. These data suggest that hypothalamic inflammation may be
involved in obesity pathogenesis in rodent models. The HFD also in-
duces apoptosis and endoplasmic reticulum stress in POMC neurons
with resulting inflammation contributing to insulin and leptin resistance
[90–92]. These observations are further supported by the improvement
of diet-induced obesity in a mouse model of an astrocyte-specific in-
hibitor of nuclear factor kappa-B kinase subunit beta knockout, which
is an essential cofactor in inflammation [93]. Comparable results are
also seen with inhibitor of nuclear factor kappa-B kinase subunit beta
knockouts in microglia [94] or AgRP neurons [95]. These data confirm
that hypothalamic inflammation plays a major role in obesity patho-
genesis in rodent models.

Evidence for hypothalamic inflammation and gliosis
in human obesity

A post-mortem study of brain histology in tissues from human
adults shows increased reactive microglial staining in the hypothal-
amus as compared with the cortex in those with obesity and
compared with the hypothalamic tissue of those with healthy weight
[96]. In addition, studies demonstrate radiologic evidence of hypo-
thalamic gliosis and inflammation in both adults and children with
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obesity [89,97–102]. Radiologic measures of hypothalamic gliosis
are positively and prospectively associated with changes in the BMI
z-score in overweight children, suggesting that hypothalamic gliosis
may predict a change of adiposity before the onset of obesity [103].
Furthermore, evidence of hypothalamic gliosis is positively corre-
lated with visceral adiposity in adult men [104] and with glucose
intolerance, insulin resistance, and diabetes status in adults with
obesity [105], linking gliosis to the metabolic complications of
obesity.

Impact of inflammation on eating behavior

In rodents, suppression of inflammatory signaling in astrocytes or
microglia reduces hyperphagia [93,94], indicating that gliosis is driving
excess consumption of HFD in rodent models. In humans, hypotha-
lamic gliosis is associated with lesser reductions in connectivity within
the salience network after meals. The salience network is a functional
brain network that is important for coordinating behavioral responses
to internal and external stimuli and includes regions such as the insula
and anterior cingulate cortex [106].

Potential target for therapeutics development

Hypothalamic gliosis is implicated in the disruption of energy ho-
meostasis with resultant hyperphagia and increased energy storage.
Furthermore, hypothalamic gliosis, in mice, is reversible by switching
mice from an HFD to a feed pellets diet [107]. Similarly, humans
experiencing weight loss after bariatric surgery showed partial
reversibility of hypothalamic gliosis [108]. Therefore, developing
therapeutic agents targeting hypothalamic inflammation and gliosis
may be helpful in the prevention and treatment of obesity.

Gut–Brain Axis in Control of Appetitive Behavior

The gut–brain axis refers to the communication between the brain
and the gut, including the microbiome, enteral nervous system, and
endocrine hormones.

GLP-1 and the enteric nervous system

Proglucagon-derived glucagon-like peptide-1 (GLP-1) is a peptide
secreted by enteroendocrine L cells in the lower intestine after direct
contact with nutrients [109–118]. GLP-1 agonists result in a relaxation
of the gastric fundus, leading to delayed gastric emptying and reduced
food intake [113,119]. GLP-1 is an endocrine hormone [120,121],
which is rapidly inactivated by a local enzyme, dipeptidyl peptidase-4,
expressed at high concentrations in the intestine and liver [122,123].
GLP-1 also exerts its systemic effects via local neural circuits medi-
ated by gut enteric neurons [120,124]. In fact, ileal GLP-1 activates
local ileal myenteric neurons, known as intestinofugal neurons, which
subsequently activate the abdominal sympathetic celiac ganglion
[125]. The abdominal sympathetic celiac ganglion connects down-
stream to gastric nitric oxide (Nos1) neurons, the main inhibitory gut
motor neurons [126], the activation of which results in gastroparesis
and appetite suppression [125]. These signals are also transmitted via
spinal sensory neurons to the hypothalamus, elaborating an intricate
neural network linking gut peptides to brain centers associated
with the perception of gastric distension and appetite suppression
[125].
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Microbiome and behavior

The influence of the microbiome on brain and behavior is important
from birth. Indeed, mice born via cesarean section (CS) have a different
microbiome signature early in life and demonstrate long-lasting
behavioral differences as compared with mice born via vaginal birth
[127]. These changes are reversed either by co-housing CS mice with
vaginally born mice (in which case fecal matter is exchanged) or by
giving probiotic or prebiotic supplements [127]. Administration of
antibiotics to mothers leads to microbiome alteration during fetal
development and results in long-standing changes in anxiety and
cognitive behaviors in offspring mice [128]. Administration of mi-
crobial metabolite SCFAs can ameliorate increases in stress respon-
siveness induced by chronic psychosocial stress [129] as well as
regulate metabolism and appetite by directly modulating satiety path-
ways and nutrient sensing [130]. Human studies demonstrate that
adults born via CS have an elevated immune and psychological
response to acute and chronic stressors compared with those born
vaginally [131]. Numerous studies evaluating the effects of micro-
biome changes during various life stages on obesity development are
underway and will provide essential insights into the pathophysiology
of obesity.

Microbiome and brain function

Studies show that germ-free mice evidence changes in myelination,
neurogenesis, neurotransmitters, synaptic plasticity, dendritic growth,
microglia, and blood–brain barrier function [132–142]. Dietary
manipulation of adolescent mice affects the gut microbiome compo-
sition and results in altered expression of genes related to neuro-
inflammation, neurotransmission, and myelination in the PFC [143].
Furthermore, it is known that the vagus nerve is essential for trans-
mission of microbiota–gut–brain axis signaling [144,145]. The
microbiota–gut–brain axis is also implicated in regulating brain reward
function and affecting social, eating, sexual, and drug addiction be-
haviors in mice [146,147]. Data in humans with regard to the micro-
biome are also evolving but are beyond the scope of this review.

Microbiome and its relevance to obesity

Mice born via CS have increased weight gain, demonstrating an
obesogenic phenotype [148]. In addition, early alteration of the gut
microbiome in mice by administration of antibiotics to mothers during
fetal development leads to lasting metabolic effects with an increase in
the obesogenic phenotype [149].

Potential therapeutic targets

The term “psychobiotic” is used to describe agents that target the
microbiome for health benefits [150]. Studies in animal models have
used specific probiotic strains such as Lactobacillus rhamnosus JB1,
prebiotics such as fructo-oligosaccharides and galacto-
oligosaccharides, postbiotics such as SCFAs, or fermented food such
as milk kefir, some of which have proven to be effective psychobiotics
[129,144,151–153]. Other studies have used fecal microbiota trans-
plantation, with studies showing evidence that microbiota isolated from
HFD-fed mice result in significant neurobehavioral changes in
exploratory and cognitive behavior in feed pellets diet–fed mice [154].
Similarly, microbiota from humans with depression lead to
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neurobehavioral changes in rats and result in increased anxiety, anhe-
donia, and inflammation [155].

Studies have shown effects of probiotics on obesity, reducing
inflammation and metabolic changes [156,157], decreasing abdominal
adiposity and body weight [158–161], and decreasing appetite by
increasing satiety hormone secretions [162]. Efforts have been focused on
identifying probiotics that can influence gut–brain signaling [163]. This
led to the identification of a novel Bifidobacterium strain that produces
metabolites that modulate ghrelin signaling and have antiobesity effects
[164]. Supplementation with this strain results in improved glucose
tolerance, decreased corticosterone production, and decreased weight
gain in mice [165]. Although supplementation of this Bifidobacterium
strain does not result in decreased body weight in humans, it results in
improvements in blood glucose concentrations, reduction in cortisol
awakening response, and an increase in active ghrelin [165]. Therefore,
although microbiome manipulation has not yet led to effective obesity
treatment, it may serve as a useful adjunctive therapy [166].
Lessons from Targeted Interventions to Modulate
Appetite Pathways

Studies using specific interventions, summarized in Table 2, pro-
vide a unique opportunity to evaluate the appetite pathways, providing
further pathophysiologic insights.
Bariatric surgery

Bariatric surgery, currently the most effective and durable means of
weight loss in individuals with obesity, provides mechanistic insights
into appetite physiology. Roux-en-Y gastric bypass (RYGB) leads to a
30% total body weight loss after 1 y, whereas sleeve gastrectomy (SG),
the most commonly performed bariatric operation worldwide, leads to
a 25% total body weight loss [167]. Although some weight gain is
common after maximal weight loss, both surgeries lead to a durable
weight loss of around 20%–25% at 5 y after surgery [167]. Bariatric
surgery also leads to remission of many comorbidities associated with
obesity such as hypertension, diabetes, and dyslipidemia [168].

Although the initial hypothesis was that RYGB decreases EI by
restricting food intake and causing caloric malabsorption, these simple
mechanistic proposals for the actions of bariatric surgery do not
completely represent the underlying pathways [169,170]. Concentra-
tions of ghrelin, an orexigenic hormone, decrease acutely after RYGB,
unlike after diet-induced weight loss that is associated with increased
ghrelin concentrations [171]. However, ghrelin concentrations increase
about a year after RYGB, suggesting that lowering of ghrelin con-
centrations is not the only mechanism by which RYGB results in
weight loss [172]. Data show an increase in post-prandial GLP-1
concentrations after RYGB, but the benefits from RYGB persist even
after the use of GLP-1 antagonists in humans, implying that GLP-1 is
not the only driver of RYGB outcomes [172].
TABLE 2
Weight management treatments and interventions

Approved treatments Bariatric surgery Ef
Se

GLP-1 analogs Su
Ch

Experimental interventions Intranasal oxytocin Po
Transcranial stimulation Po
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These data suggest multiple mechanistic pathways that contribute to
metabolic changes after bariatric surgery, with no single mechanism yet
identified as the primary driver of the weight loss or metabolic benefit
of surgery. Multiple pathways involved in appetite control are impacted
by surgery including changes in microbiome and bile acids [173,174].
Changes in intestinal metabolism may also contribute to the metabolic
benefits of RYGB. In rodent models in which nutrient exposure is
removed from the proximal bowel to mimic RYGB, the
sodium-glucose cotransporter 3 (SGLT3), a proximal bowel nutrient
sensor that regulates glucose absorption, demonstrates reduced
signaling capacity, resulting in a decreased intestinal glucose absorp-
tion [175]. Furthermore, the portal vein milieu, which modulates he-
patic glucose handling and improves glucose tolerance, changes after
RYGB, highlighting the role of portal circulation in mediating meta-
bolic effects in this context [175,176].

In human studies, after SG, activation of hedonic circuitry activa-
tion during craving of highly palatable food decreases, whereas
cognitive control region activation increases [177]. Furthermore, he-
donic (NAcc) and homeostatic (hypothalamus) brain activation and
connectivity significantly predict weight loss 1 y after SG [177,178].
These data identify important changes in neurocircuitry after SG,
which are potentially modifiable and can impact outcomes after SG.

GLP-1 mechanisms for appetite effects

GLP-1 analogs such as liraglutide, administrated as daily subcu-
taneous injections, and semaglutide, a longer-acting GLP-1 analog
administered once weekly, are now more frequently utilized in adults
and children for weight management. GLP-1 analogs appear to be
effective in achieving sustained weight loss in conjunction with current
lifestyle and behavioral treatments. In fact, semaglutide administration
for 68 wk in adults with overweight or obesity resulted in a decrease in
mean weight by 15.8% [179]. The use of these interventions has shed
further light into the effects of GLP-1 on weight and appetite homeo-
stasis (Figure 2).

Native GLP-1 decreases blood glucose concentrations by stimu-
lating insulin secretion, suppressing glucagon secretion, and slowing
gastric emptying. The effects of intestinal GLP-1 on eating behaviors
are primarily mediated via the hepatic portal vein to allow sufficient
GLP-1 concentrations to enter the systemic circulation and reach GLP-
1 receptors in the area postrema [180]. GLP-1 may regulate gastroin-
testinal distention and its subsequent anorexigenic effects via mecha-
nosensitive vagal afferents [180]. Other populations of chemosensitive
vagal afferents end in the intestinal mucosa or reach the nucleus of the
solitary tract in the brain, partly mediating the effects of GLP-1 on food
intake [180]. GLP-1 receptors are found on key appetite-regulating
neurons in the hypothalamus particularly in the PVN and on POMC
neurons in the arcuate nucleus, allowing native GLP-1 to exert its ef-
fects on food intake [181].

Individuals with obesity have a lower GLP-1 response to oral
glucose and food intake as compared with individuals with normal
fective and durable weight loss
veral underlying mechanistic changes may contribute to the degree of weight loss
ccessful weight loss in conjunction with lifestyle interventions
ronic administration required for sustained weight loss
tential weight loss via reduced caloric intake, increased EE, and increased lipolysis
tential weight loss via reduced caloric intake and food cravings



FIGURE 2. GLP-1 mechanisms for appetite effects. (A) Local GLP-1 release causes an increase in concentration in the hepatic portal vein to reach area
postrema. (B) GLP-1 receptors on vagus nerve afferent fibers modulate the sensation of gastric distension. (C) Chemosensitive vagal afferents stimulated by
GLP-1 terminate in NTS. (D) GLP-1 receptors are found in key appetite regulating areas of the brain. Arc, arcuate nucleus; AP, area postrema; NTS, nucleus of
the solitary tract; PBN, parabrachial nucleus; PVN, paraventricular nucleus of the hypothalamus.
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weight [182]. To achieve appropriate sensation of fullness after eating,
individuals with obesity have to consume more food to achieve GLP-1
concentrations that will signal fullness [180]. Peripheral GLP-1 infu-
sion in healthy, normal weight men increases fullness and concomi-
tantly decreases hunger [183]. Comparable results are also seen with
subcutaneous injections of GLP-1 analogs with increased satiety and
fullness, as well as decreased hunger and prospective food consump-
tion [184,185]. GLP-1 analogs have also been shown to regulate ac-
tivity in brain areas such as the amygdala and insula in response to food
cues [186], suggesting further modulation of appetite and food intake
through reward-related mechanisms.

Although the administration of GLP-1 analogs has shown effective
results, long-term chronic administration appears to be necessary to
achieve and sustain weight loss [179,187]. Use of GLP-1 analogs
carries additional considerations, including potential adverse effects as
well as insurance coverage and cost [187]. Therefore, additional studies
are needed to further investigate these therapeutics as well as other
weight loss interventions. Newer studies have used combined GLP-1
and gastric inhibitory peptide analogs to produce even greater weight
responses, and further research is ongoing into the optimal use of these
agents [188].

Oxytocin effects on food intake

Oxytocin, a 9-amino acid peptide hormone produced by the hy-
pothalamic PVN and supraoptic nucleus, acts at a G protein-coupled
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receptor to regulate important physiologic processes, including food
intake and body weight [189]. Oxytocin is released into brain regions
involved in homeostatic, reward-related, and cognitive control of food
intake, as well as into the circulation through the posterior pituitary
gland [189]. Oxytocin is also produced locally within the gastrointes-
tinal tract where it binds to oxytocin receptors [189]. Although
endogenous oxytocin does not readily cross the blood–brain barrier,
peripheral oxytocin signals reach the caudal brainstem through the
vagus nerve [189].

Studies in animal models have shown that exogenous oxytocin
administration, given centrally or peripherally, induces weight loss by
reducing food intake (particularly of more palatable carbohydrate and
HFDs), increasing EE, and inducing lipolysis [190]. Independent of
its effects on weight, oxytocin improves glucose homeostasis by
increasing insulin release and sensitivity [190]. In a randomized
double-blinded placebo-controlled crossover study in men across the
weight spectrum, single-dose administration of 24 IU intranasal
oxytocin reduced caloric intake (particularly of fat), increased fat
utilization, and improved insulin sensitivity [191]. Decreased food
consumption in response to intranasal oxytocin has also been
demonstrated in women [192]. Effects of oxytocin in suppressing
homeostatic food consumption appear to be greater in individuals
with obesity compared with those with normal weight [193], whereas
effects on reward-driven eating are consistently seen across the
weight spectrum [193,194]. Mechanistic studies in humans using
fMRI show that intranasal oxytocin modulates hedonic (for example,
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reduction of VTA activation, decreased functional connectivity be-
tween the VTA and other food motivation brain regions), homeo-
static (for example, reduction of hypothalamic activation), and
impulse control (for example, increase in anterior cingulate cortex
activation) neurocircuitry [195–197]. Exogenous oxytocin also re-
sults in a reduction in impulsive behavior [198]. A small pilot study
of intranasal oxytocin administration before meals and at bedtime for
8 wk in adults with obesity demonstrates significant (8.9 � 5.4 kg)
weight loss [199].

Effects of transcranial stimulation on eating
behaviors and weight

Transcranial stimulation is a technique used to induce transient
changes in cortical activity and is being investigated as a therapeutic
method to alter behavior and help regulate food intake and food choice.
There are 2 widely used types of noninvasive brain stimulation: re-
petitive transcranial magnetic stimulation and transcranial direct cur-
rent stimulation (tDCS).

The PFC is a brain region involved in higher executive function,
such as behavioral inhibition and flexibility [200], and in regulating
control and reward-related aspects of eating behavior [201]. After a
meal, regional cerebral blood flow to the left dorsolateral PFC
(DLPFC), 1 of the areas involved in satiety, and meal termination, is
reduced in individuals with obesity compared with lean individuals
[202,203]. DLPFC is hence a potential target for intervention for
regulating appetitive behavior.

Repetitive transcranial magnetic stimulation is administered via a
large magnet over the scalp, which creates a magnetic field that
activates neurons of the left DLPFC. When used in women with
obesity, it results in stability in the number of food cravings
compared with increased food cravings in women receiving the sham
procedure [204]. Administration of tDCS to the PFC, which is per-
formed by applying 2 surface electrodes with anodal and cathodal
stimulation, results in weight loss and modification of eating be-
haviors by reducing food cravings, caloric intake, and ratings of
hunger and urge to eat [205–209]. Variability in the magnitude of
response is noted by the duration of sessions and the type of tDCS
(anodal compared with cathodal) [210]. Furthermore, long-term (15
sessions) repeated anodal compared with sham tDCS to the left
DLPFC decreases hunger ratings and urge to eat and reduces total EI
during a food taste test but did not result in weight change [209].
These data suggest that activation of the left DLPFC promotes
cognitive executive control and modifies nonhomeostatic eating
behavior in individuals with obesity.

In conclusion, the 23rd Harvard Nutrition Obesity Symposium
explored the neurobiological processes involved in appetite regulation
from multiple perspectives. Biological, genetic, imaging, and thera-
peutic advances were reviewed. This article summarizes state-of-the-art
data presented at the symposium on the latest techniques used in the
evaluation of appetite regulation and outlines important opportunities
for potential modulation of these systems through behavioral, phar-
macological, surgical, and other techniques. Importantly, the sympo-
sium also emphasized those areas where more research is needed to
more fully understand the critical mechanisms underlying appetite
regulation. It is crucial to explore these pathways with the goal of
developing therapeutic and preventive strategies for controlling obesity
and its complications.
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