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Abstract

Frontal cortex is thought to underlie many advanced cognitive capacities, from self-control to 

long term planning. Reflecting these diverse demands, frontal neural activity is notoriously 

idiosyncratic, with tuning properties that are correlated with endless numbers of behavioral and 

task features. This menagerie of tuning has made it difficult to extract organizing principles 

that govern frontal neural activity. Here, we contrast two successful yet seemingly incompatible 

approaches that have begun to address this challenge. Inspired by the indecipherability of single-

neuron tuning, the first approach casts frontal computations as dynamical trajectories traversed by 

arbitrary mixtures of neurons. The second approach, by contrast, attempts to explain the functional 

diversity of frontal activity with the biological diversity of cortical cell-types. Motivated by the 

recent discovery of functional clusters in frontal neurons, we propose a consilience between these 

population and cell-type-specific approaches to neural computations, advancing the conjecture that 

evolutionarily inherited cell-type constraints create the scaffold within which frontal population 

dynamics must operate.

Introduction

Frontal cortex is thought to underlie a wide variety of cognitive capacities–ethologically 

crucial functions like long-term planning [1], short-term memory, cognitive control [2], 

social cognition [3], and self-reflection [4]. More generally, frontal cortex acts to monitor, 

combine, modulate, and control activity across brain regions, on a variety of timescales, 

and its involvement in high-level behavior has been summarized as an additional layer of 

hierarchical processing within neocortex. Indeed, a wealth of studies have found that the 

activity of frontal cortical neurons correlates with a seemingly endless number of features–

from sensory and spatial information to decisions and economic value to abstract concepts 

and rules. Is it possible to organize these diverse neural activity patterns into a core set of 
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specific roles frontal cortical neurons perform in support of the computations involved in 

higher cognitive behaviors?

In visual cortex, a neuron’s tuning curve, that is, the correlation of neural activity with 

external features, is suggestive of the operation that neuron might perform. A visual cortical 

neuron responds only to specific visual features (like edges) in a certain region of retinotopic 

space, and its computational role can be described as filtering the incoming sensory data 

through its receptive fields [5]. Although this description is incomplete, it has inspired 

convolutional neural networks [6], models that not only predict the activity of visual cortical 

neurons [7], but have also revolutionized computer vision. Alas, the neural tuning approach 

has not led to the discovery of the analogous neural roles in higher cognition, or a new deep 

learning revolution. Rather it has just led to a taxonomy of occupants for the cortical-tuning 

zoo. So then, how can we begin to search for organizing principles that reveal the functions 

of these frontal neurons?

This question is now being tackled by new approaches, with major breakthroughs coming 

from two disparate directions. One approach focuses on organizing frontal neural dynamics 

by looking for patterns in population neural activity [8–10]. Separately, another approach 

focuses on classifying single-cortical-neurons into different anatomically and genetically 

defined cell types [11]. After reviewing recent insights from both approaches, we argue that 

cell-type specific connectivity motifs constrain the computational role played by individual 

frontal neurons.

Inferring computations from neural population dynamics

Classic approaches for interpreting neural activity rely on analysis of a subset of recorded 

single neuron firing rates by aligning the activity to relevant task phases and condition-

averaging, to create peri-stimulus time histograms (PSTHs). While this approach has had 

famous success summarizing neural activity relatively close to the sensory periphery, frontal 

PSTHs can display baffling complexity [12]. That is, coding for task-relevant variables are 

randomly mixed throughout the neural population, and only by considering the contributions 

of many neurons together can the state of the external variable(s) be consistently read out 

from the neural activity [13]. This “mixed selectivity” has been observed in a range of 

frontal [12,14] and parietal [15] areas. Thus, facilitated by the advent of new technologies 

to record, and data analysis techniques to analyze large populations of neurons, considering 

neural populations as a unit has become the dominant approach of systems neuroscience 

across the brain, and particularly in frontal cortex.

As a brief background, population dynamics can be represented as trajectories in a high-

dimensional space, with axes defined by the firing rate of each neuron [12]. By themselves, 

these high dimensional trajectories are simply a change of basis and provide no additional 

information over a list of classical PSTHs. However, combined with techniques to find 

lower-dimensional subspaces or manifolds in which neural trajectories move (collectively 

referred to as dimensionality reduction [16]), considering neural populations as a trajectory 

has inspired the application of mathematical techniques (like dynamical systems [8], 

geometry [17], and topology [18]) to search for patterns in neural data (Figure 1a). 

Population approaches have many advantages over single-neuron analyses–they often have 
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less selection bias (because all or most recorded neurons are considered), they are applicable 

online and in single trials, and they have enabled brain-computer-interface based motor-

control and communication for severely disabled human patients [19]. The population 

trajectory approach was popularized by seminal contributions in the field of motor learning 

[20], preparation [21], and control [22]; summarized elsewhere [9,13,23].

The neural population approach has revealed dynamical operations that are generally 

useful for flexible decision-making. Flexible, context-dependent sensory decision making 

is a prototypical case where mixed selectivity dominates single-neuron responses [12]. 

In context-dependent decision making tasks, as opposed to being represented by single 

neurons, context has been observed to change the shape of the neural activity landscape, to 

preferentially bias application of one decision rule over another [14,24–27] (Figure 1b). That 

is, if we imagine frontal cortex as a funnel into which various sensory variables are poured, 

and out of which comes a decision, context can change the shape of the funnel, effectively 

biasing which decision the trajectories roll towards. This context dependent-change in 

dynamical landscape is an emerging motif often found in frontal cortical operations. Rather 

than changing the shape of the neural funnel, computational flexibility can also be achieved 

by changing the inputs or initial conditions (e.g., where the sensory-balls start out inside 

the funnel) of the system dynamics [28] (Figure 1). This computational strategy has been 

observed in interval timing reproduction tasks [29–32], where afferent and intrinsic input 

play the role of setting initial conditions of population dynamics.

Although we focused on studies where computation was performed through alteration of the 

input or shape of the neural state space, the population dynamics approach, combined with 

the simplifying assumption of low-dimensional single-trial latent factors [33], has also been 

used to predict behavioral responses during learning [34–36] and more generally on a trial-

by-trial basis [34,37–42]. Further, low dimensional trajectories might be computationally 

desirable, as they are robust to noise [43], and may support both memory [44–46] and 

generalization [45].

These approaches outlined above have led to new ways of conceptualizing computations 

performed by neural populations, but they are not a panacea. Descriptions of population 

dynamics often occur in a latent space abstracted from the underlying neurons [8]. Thus 

population-computation hypotheses can be both hard to intuitively understand, and direct 

tests of these hypotheses would require arbitrary spatiotemporal control of neural dynamics 

[47,48]. Further, these approaches often include dimensionality reduction, a technique 

which can be sensitive to details like behavioral complexity, number of neurons recorded, 

fraction of a population encoding the variable of interest, length of recording, amount of 

preprocessing, and many other factors [49,50].

Carving neural representations at their joint: Identifying functional neuron types

The low-dimensional dynamics perspective is often motivated by the long-standing 

challenge of distilling the diverse neural tuning profiles found in frontal cortex to a 

principled understanding of computations. As an alternative to considering the instantaneous 

neural activity as a point in an N-neuron dimensional space, each neuron can be considered 

as a point in a space defined by its tuning to different task and behavioral features, as well 
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as by its temporal activity profile across the trial. A handful of recent studies have examined 

the structure in this high dimensional space and have discovered that neuronal profiles 

are not uniformly/randomly distributed, rather they cluster together in dynamics and/or 

tuning. Under the hypothesis that neurons in these groups play similar roles in population 

computations, these studies provide a new link between neural identity and computational 

role. Thus, these studies, reviewed in this section, highlight a new perspective on cell-types, 

definable by functional properties (e.g., temporal dynamics, high dimensional tuning).

Analyzing neural activity during decisions that required integrating sensory and reward 

information, Hirokawa et al. [51] found that lateral orbitofrontal cortical (lOFC) neurons 

were tuned to privileged mixtures of task features which corresponded to specific “decision 

variables.” They developed a clustering approach to identify neurons with similar response 

profiles, in terms of tuning or temporal dynamics, and found thatthe neural population 

was highly structured with distinct groups of neurons having different coding profiles. 

Surprisingly each of the functional types had a clear interpretation based on a simple 

model of the choice behavior, quantitatively matching decision variables such as decision 

confidence, reward magnitude, and integrated value (Figure 2).

In search of functional clusters, Hocker et al. [55] re-analyzed recording data from a 

value-based decision task that separately manipulated reward probability and amount to 

understand the role of reward history under risk [56]. They found multiple functional 

clusters of lateral OFC neurons with one cluster encoding reward history directly preceding 

the animal’s choice. similar to a functional cluster observed by Hirokawa et al [51] The 

authors suggest this group of neurons could play a causal role in driving reward-history 

behavior biases.

Namboodiri et al.[52] applied the same clustering approach to calcium imaging data, so they 

could investigate the activity of ventral orbital and medial OFC (vmOFC) neurons while 

mice learned a Pavlovian trace-conditioning task. Importantly, the different vmOFC clusters 

had distinct temporal (and tuning) dynamics that peaked at different phases of the task, 

allowing the authors to use optogenetics to specifically disrupt activity in only subsets of 

clusters, to tease apart differential cluster contributions to association learning, maintenance, 

and extinction. Finally, Onken et al. developed a statistical framework to establish the 

existence of categorical groupings of neurons in primate OFC [53]. Interestingly, in many 

cases mentioned here, the authors found a correspondence between clusters found in a space 

only consisting of tuning features, and one consisting of only neural dynamics. That is, 

neurons code for specific conjunctions of features, at specific phases intrial progression, as 

would be expected if the neural activity represented the dynamical evolution of a cognitive 

algorithm.

Together, these studies suggest that neural activity in frontal cortex might have interpretable, 

categorical structure along specific temporal and tuning dimensions. If this is true, why have 

previous studies reported randomly mixed neural activity? This discrepancy may be due 

to differences in brain regions or species analyzed; most studies discussed in this section 

assessed neural coding in orbitofrontal cortex, whereas random mixed selectivity has been 

reported in prefrontal cortex [23] or even non-frontal regions like posterior parietal cortex 
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[53]. Alternatively, it is possible that what seems like random mixed selectivity might simply 

be a function of behavioral tasks that are either too low-dimensional, or that are ill-matched 

to the brain region studied [51].

To investigate how task demands might constrain neural coding strategies, Dubreuil et 

al. [54] analyzed recurrent neural networks trained to perform a variety of common 

neuroscience tasks. By analyzing their trained networks, they determined that the presence 

of specialized groups of neurons is necessary when task demands require flexible 

computations. Similarly, by analyzing neural dynamics in recurrent neural networks, 

monkeys, and in humans (using functional magnetic resonance imaging), all trained to 

perform a context dependent decision-making task, Flesch et al. [55] found more evidence 

for categorical computations than for random high-dimensional projections.

Thus to observe categorical encoding it seems critical to use appropriately cognitively 

demanding tasks that provide and require a rich embedding of the task-relevant variables.

We emphasize that these theoretical results do not simply apply to the task the animal 

is performing, but rather to the computations required of the brain region of interest. For 

example, in the case of Hirokawa et al., the behavioral task required that animals form a 

decision integrating time-varying reward expectations with sensory uncertainty, a flexible 

computation with multiple components that critically depends on lOFC [56]. To drive home 

this point, as a counterexample we would not expect that neurons in visual cortex would 

display categorical encoding of these specific decision variables, even in an identical task.

In summary, if one wishes to adjudicate between categorical and randomly mixed coding 

types, it ‘is important that the task provides a sufficient number of coding dimensions and 

that those dimensions fall within the brain region’s computational roles. Thus, given the 

important role the frontal cortex plays in flexible, context-dependent decision-making, these 

theoretical and experimental results support the idea that distinct cognitive operations might 

be realized by distinct groups of frontal neurons each with specific algorithmic roles. Can 

we find a correspondence between these functional neuron types and the more well-known 

structural neuron types?

Cell-type-specific computations in frontal cortex

The last decade has seen a revolution in our toolkit for categorizing the taxonomy of cortical 

neurons, based on gene expression [57], projection target [58], and single-cell morphology 

[59]. These advances have led to the identification of specific functional roles of different 

cortical inhibitory neuron types, such as a gain modulation or disinhibition [60,61]. There 

is also increasing appreciation for a division of labor across inhibitory neuron types during 

behavior with a potential to control the flow of information across regions at behavioral time 

scales ([62–67]) Similarly, new studies have demonstrated the organization of long-range 

subcortical connectivity of frontal pyramidal neurons [68–72] into motifs, often suggestive 

of an operational role. For example, a projection from the prefrontal cortex to the basal 

forebrain might be suggestive of top-down control of arousal [73].
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In a follow-up experiment to the functional clustering work discussed above, Hirokawa et 

al. [51] used electrophysiology and optogenetic tagging to record from a subset of lOFC 

neurons that project to the striatum (Figure 3a–c). These neurons were astonishingly uniform 

in their activity profile, with sustained activity persisting from reward receipt through the 

inter-trial interval, and only diminishing with the onset of the next trial’s stimuli. These 

neurons all belonged to one of two functional clusters that encoded positive and negative 

integrated value, respectively. Intriguingly, using a different behavioral task, Hocker et 

al. [74] identified a functional cluster of OFC neurons whose dynamics bore a striking 

resemblance to the striatumprojecting OFC neurons in Hirokawa et al. (Figure 3d). These 

neural responses show key features required for a temporal credit assignment mechanism 

critical in reinforcement learning [75]. In two entirely different tasks, Terra et al. [76] and 

Bari et al. [77] found the medial PFC-striatum projecting neurons also displayed sustained 

activity across task phases. Taken together, these results reveal that the frontal cortex 

to striatum projection comprises a core circuit module for prolonged communication of 

decision variables to the behavioral learning and execution circuitry of the striatum.

The cell-type-specific architecture of cortical dynamics has been extensively studied in a 

remarkable series of experiments by Svoboda and colleagues in motor cortex. Guo et al 

[78] analyzed a subset of layer 5b neurons that project to the thalamus, which in turn 

project reciprocally back to the same local cortical region. Such recurrent loops are a 

ubiquitous feature in cortical architecture [71], and thalamocortical loops in particular are 

crucial for controlling cortical excitability – runaway activity in these loops can lead to 

epileptic seizures [79]. Indeed, the authors demonstrated that these thalamocortical loops in 

mice were responsible for sustaining delay period preparatory motor activity, in anterolateral 

motor cortex (ALM) during a delayed response task. Economo et al. [80] further elucidated 

the role of different subgroups of pyramidal projection neurons–while a subset of neurons in 

the upper part of layer 5b neurons project to the thalamus, a distinct subgroup of pyramidal 

neurons in the lower part of layer 5b project to the medulla, a motor output nuclei in the 

brainstem. They demonstrated that these anatomical projections are the circuit mechanism 

through which ALM pyramidal neurons were able to segregate preparatory motor activity 

and activity that drives motor output (Figure 3e–g). These results provide a cell-type-specific 

solution for a long-standing mystery in motor neuroscience: how does preparatory activity 

in motor cortex exist without driving motor output? A similar role for thalamus projecting 

medial PFC neurons in sustained activity has been identified by two different groups, Bolkan 

et al. [81] and Schmitt et al. [82], pointing toa cell-type-specific computational motif, in 

which thalamocortical loopssupport sustained activity.

It is important to note that neural activity is not always found to be separable along axes 

defined by projection-output specified cell types. For example, Spellman et al.[83] find 

heterogeneous coding of specific task-features in PFC-striatum projection neurons (however, 

they did find a laminar gradient of reward coding in mouse PFC, following the distribution 

of input axons from the anterior cingulate cortex). Negative results in projection-specific 

coding studies could arise for several reasons, including the lack of a specific need for that 

projection in the task at hand, or the dominance of another projection which anatomically 

overlaps with the studied projection. Alternately neural coding in a given pathway might 

seem “mixed” when considered with respect to particular experimental variables of interest–
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however, there might still be patterns in the tuning to all task features (especially given high 

enough task complexity), and in their dynamical time course. This less biased search for 

patterns in neural activity reflects a search for an algorithmic role for neural activity (e.g., 

the maintenance of sustained activity, which in turn is a mechanism of working memory), 

rather than the correlation of neural activity with experimenter pre-supposed task features.

Thus, we refer to “functional cell-types” in cases when a group of neurons is found to 

play a shared computational role. Functional cell-types need not be connectivity defined or 

genetically distinct, however given that connectivity and biophysical properties determine 

neural dynamics, it is our belief that in most cases “functional” cell-types will overlap 

with those defined biologically. Further elucidation of the prevalence of functional types 

will be necessary to determine whether these types should be considered as computational 

primitives necessary for flexible cognitive behavior, as predicted by theory [54].

Future & outlook

Broadly speaking, our hypothesis is that cognition is constructed from building blocks 

of certain core dynamical computations, with distinct contributions from physiologically 

different types of neurons. The Lego set of cognition may include several of these cell-type-

specified building blocks, as well as general learning-based modules whose activity is only 

understandable at a (sub)population level. We hope the studies we have reviewed here 

impress the reader that despite the many advantages of population approaches, there is often 

practical utility in anatomically grounded approaches. We see no reason that just because 

some neurons in a particular region or task display heterogeneous, uninterpretable single-

neuron coding, that the entire program of identifying individual neurons with interpretable 

roles should be abandoned.

Frontal cortex, like the rest of neocortex, has stereotyped microcircuitry with specific long-

range input and output connections. Theoretically, such network connectivity is known to 

determine individual neuron dynamics [84–86] and subcortical output targets are often tied 

to specific sensors and effectors (e.g., the retina, but also hormone release, etc.), strongly 

constraining their function. From an evolutionary perspective, it seems unparsimonious that 

biology would go to the trouble of substantial entropy reduction to create and genetically 

encode the exquisite order of brain circuit architecture [71,87], if the repeated long-range 

and local circuit modules did not play some adaptive role. Indeed, there is increasing 

understanding about evolutionary conservation of key long-range projections and other 

cell-types in vertebrates [88–90] that may be constrained by shared ecological objective 

functions [91].

We propose that biological cell-types with developmentally specified architecture and 

physiology can be thought of as an evolutionary prior on the type of computation 

performable by a given set of neurons. The mapping between computation and biological 

cell-types is bound to arise as evolution retains architectures that provide useful constraints 

on neural dynamics across ecologically relevant behaviors. As a practical consequence, 

observing the activity of specific cell-types can serve the same role as dimensionality 

reduction across anonymous neural populations–providing an interpretable handle on 

computations.

Christensen et al. Page 7

Curr Opin Neurobiol. Author manuscript; available in PMC 2023 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our hypothesis can be seen as a marriage between the “Hopfieldian” (neural dynamics are 

the primary level of explanation for cognition) and the “Sherringtonian” (single neurons and 

their interactions are the primary explanation for cognition) views. As argued by Barack 

and Krakauer [92], we propose that neural dynamics are indeed the appropriate level at 

which to search for encoding of cognitive variables. However, unlike Barack and Krakauer, 

we believe these dynamics can be (and indeed must be, in cases when task complexity is 

high and connectivity is non-random [54,84]) implemented by functional classes of neurons, 

corresponding to groups of neurons with specific non-random connectivity motifs. If we are 

correct, the field’s increasing knowledge of cell-type-specific neural circuitry will provide 

badly needed prior information in the search for what computations are implemented by 

neural populations–an under-constrained problem in any realistic experimental regime.

Thus, rather than be disheartened by the need to include more biological detail into our 

models, we are excited about the opportunity those elements provide in progress towards 

understanding the frontal cortex and beyond. Not only will such a biologically grounded 

understanding of neural computations help us validate and generalize our theories, but it 

holds the potential for new understanding of neuropsychiatric treatments–-that typically act, 

through drugs, at the level of neurons and the receptors they express, and only indirectly 

influence population dynamics.
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Figure 1. 
a. Schematic of population analysis of neural activity, showing transformation from recorded 

PSTHs to neural state space, to a dimensionality reduced space. b. Schematic of changes in 

population activity manifolds observed in flexible context-dependent decision-making tasks. 

Insets show two ways (warping of manifold shape, and changing of initial condition) that 

population activity can be updated based on task context.
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Figure 2. 
Schematic of functional clustering approach. The top row depicts clustering neural activity 

according to tuning or dynamics, then identifying the clusters as decision variables in a 

model of rodent behavior (bottom row).

Christensen et al. Page 15

Curr Opin Neurobiol. Author manuscript; available in PMC 2023 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
a. Schematic of OFC-striatum projection. b. Recordings from a subpopulation of OFC 

neurons that project to the striatum (identified via optogenetic tagging), whose activity is 

sustained throughout the inter-trial-interval and represents integrated value of the previous 

choice. Figure reproduced from [51]. c. Clustered population raster of all recorded OFC 

neurons. The population presented in panel b. closely resembles the activity of the cluster 

marked “B.” Figure reproduced from [51]. d. Activity in a single cluster of OFC neurons 

whose activity is sustained throughout the inter-trial-interval and represents integrated value 

of the previous choice, and whose activity resembles that of the striatal-projecting neurons 

in panels b. Figure reproduced from [74]. e. Schematic of ALM circuits identified in a series 

of papers by the Svoboda laboratory. f. Histology showing the segregation of medulla and 

thalamus projecting neurons in layer 5 of ALM. Figure reproduced from [80]. g. (Left) 

choice selectivity in thalamus projecting and medulla projecting ALM neurons respectively 

throughout the sample and delay task periods. Only thalamus projecting neurons maintain 
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choice selectivity during the delay period. (Right) medulla projecting neurons display 

movement selectivity after the go cue.
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