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Simple Summary: Nitric oxide (NO) is a key molecule that has an important role in the plant life
cycle. It mediates a range of physiological processes and responses to stresses (e.g., drought, salinity,
or parasite invasion). Despite many studies, knowledge about NO involvement in these processes is
incomplete. This review describes the influence of NO on physiological and biochemical processes
and gene expression. It thoroughly discusses the interaction network of NO and other molecules in
plant cells. Moreover, it highlights mechanisms of NO-dependent defense response against infestation
with Ecdysozoa species, like nematodes, insects, and arachnids.

Abstract: Nitric oxide (NO) is an important signaling molecule that is involved in a wide range
of physiological processes in plants, including responses to biotic and abiotic stresses. Changes
in endogenous NO concentration lead to activation/deactivation of NO signaling and NO-related
processes. This paper presents the current state of knowledge on NO biosynthesis and scavenging
pathways in plant cells and highlights the role of NO in post-translational modifications of proteins
(S-nitrosylation, nitration, and phosphorylation) in plants under optimal and stressful environmental
conditions. Particular attention was paid to the interactions of NO with other signaling molecules:
reactive oxygen species, abscisic acid, auxins (e.g., indole-3-acetic acid), salicylic acid, and jasmonic
acid. In addition, potential common patterns of NO-dependent defense responses against attack and
feeding by parasitic and molting Ecdysozoa species such as nematodes, insects, and arachnids were
characterized. Our review definitely highlights the need for further research on the involvement of
NO in interactions between host plants and Ecdysozoa parasites, especially arachnids.

Keywords: abiotic stress; biotic stress; nitric oxide; peroxinitrite; pest; phytopathogen; plant-animal
interaction; post-translational modification; reactive nitrogen species; reactive oxygen species

1. Introduction

Nitric oxide (NO) is a lipophilic molecule involved in signal transduction in cells,
and its biosynthesis occurs endogenously in plants. NO belongs to the group of reactive
nitrogen species (RNS), which are known to play many roles in the regulation of plant
physiological processes [1–4]. NO is involved in seed germination, root development,
flowering, fruit ripening, senescence, stomatal movement, and photosynthesis [4–7]. It is
also involved in plant responses to abiotic and biotic stresses [2,8–10]. Nevertheless, among
the available data from previous years, the most analyzed topic was the role of NO in
the regulation of plant growth and development. NO, like other RNS, has a stimulating
effect in low concentrations, while in higher amounts, it inhibits metabolic processes [4].
The multifunctional role of NO is related to its half-life time. At a low concentration, NO
has a longer half-life time compared to a higher concentration. In the first case, NO can
diffuse in tissues for minutes (even hours) over long distances, which enables regulation of
physiological processes. On the other hand, at locally higher concentrations (short half-life
time), metabolic processes are inhibited [11,12].
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Participation of NO in physiological process is merely a part of precise combination of
external and internal signals. Seed germination is strictly regulated by a number of factors,
including NO [13]. Experimental data from recent years show that NO certainly stimulates
this process. For a long time, seed companies used nitrates and nitrites to promote the
germination of dormant seeds, due to induction of NO synthesis by the availability of these
compounds in tissues [13,14]. Subsequent analysis showed involvement of several nitrogen-
containing compounds in breaking seed dormancy (nitrate, nitrite, hydroxylamine, azide,
sodium nitroprusside (SNP)) [4,15]. Application of NO in various concentrations is able to
break seed dormancy depending on plant species. NO can also induce root development
and formation: primary root, lateral, and adventitious [13]. Moreover, NO also plays a
role in senescence. It was found that changes in local concentration of NO could delay
or alleviate senescence [12,16,17]. The main linking of NO and other factors involved in
pro-senescence activity is H2O2. Increasing accumulation of both of these components
leads to protein and lipids oxidation. This event promotes programmed cell death (PCD)
and activation of expression of PCD-related genes [18,19]. On the other hand, the impact of
ROS might be lowered through NO participation in the increased activity of antioxidant
enzymes [20].

The basic factors related to the perception of NO by plant cells are its synthesis and
catabolism. To date, several NO production and capture reactions have been described in
enzymatic and non-enzymatic pathways [21]. Moreover, it should be mentioned that NO
is involved in protein post-translational modifications (PTMs); therefore, it contributes to
plant responses to internal and external stimuli [22–24]. NO-mediated PTMs and metabolic
pathways are regulated by NO crosstalk with other signaling molecules such as reactive
oxygen species (ROS) and phytohormones. Changes in the amounts of those signaling
molecules contribute to the regulation of plant growth and development and/or stress
responses [25]. In this review, we present the current state of knowledge on NO metabolism
and its relationship with ROS, RNS, and phytohormones. In addition, we attempted to
summarize findings regarding the poorly understood role of NO in plant responses to
attack and feeding by various herbivorous Ecdysozoa parasites.

2. Biosynthesis of NO in Plants

The presence of NO in higher plants has been well-documented in the literature
over the last 40 years of research. However, the most unknown issues are NO produc-
tion and signaling. Several biosynthetic pathways in plants have been described so far.
The most speculated pathways of NO biosynthesis in plants are the reduction and oxidative
pathways [26] (Figure 1).

2.1. NOS-like Activity

The oxidative pathway of NO synthesis that occurs under normal conditions is still
not fully understood. It presupposes the existence of several homodimers of an enzyme
called nitric oxide synthase (NOS) [27,28]. Works by Bredt and Snyder [29] and Stuehr
et al. [30] reported that NOS activity in mammals was accompanied by double monooxy-
genation of L-arginine to NO and citrulline. More specifically, NOS uses two co-substrates,
molecular oxygen and nicotinamide adenine dinucleotide phosphate (NADPH), to catalyze
the oxidation of the guanidine nitrogen of L-arginine. The intermediate product of five-
electron oxidation is N-hydroxy-L-arginine [31,32]. The active human NOS isoforms are
neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS). Each of them
has distinct characteristics [33]. In addition, nNOS and eNOS are known to be associated
with NO signal-dependent cellular processes. In turn, the role of iNOS differs from other
NOS. iNOS produces NO as a cytotoxic agent in immune response/pathological conditions.
Nevertheless, these three enzymes were not fully identified in plants.
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Figure 1. Nitric oxide (NO) synthesis pathways in plants. (A) L-arginine-dependent synthesis via 

nitric oxide synthase (NOS)-like activity. (B) NO production via polyamine transformation (NOS-

like activity/copper amine oxidases (CuAO) are likely involved). (C) Non-enzymatic NO produc-

tion: reduction of nitrites by carotenoids in the presence of light; putative reduction of phenolic 

compounds to NO. (D) NO production via double reduction of nitrogen species (in the order of 

nitrate (NO3−) and nitrite (NO2−)) by nitrate reductase (NR). (E) Reduction of NO2− to NO by NiNOR 

(membrane-bound nitrite reductase) under hypoxic conditions and slightly acidic pH. (F) Electron 

transport chain-dependent NO production by complexes III and IV and putative NO generation by 

mitochondrial alternative oxidase (AOX). See text for details. 
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Figure 1. Nitric oxide (NO) synthesis pathways in plants. (A) L-arginine-dependent synthesis
via nitric oxide synthase (NOS)-like activity. (B) NO production via polyamine transformation
(NOS-like activity/copper amine oxidases (CuAO) are likely involved). (C) Non-enzymatic NO
production: reduction of nitrites by carotenoids in the presence of light; putative reduction of phenolic
compounds to NO. (D) NO production via double reduction of nitrogen species (in the order of nitrate
(NO3

−) and nitrite (NO2
−)) by nitrate reductase (NR). (E) Reduction of NO2

− to NO by NiNOR
(membrane-bound nitrite reductase) under hypoxic conditions and slightly acidic pH. (F) Electron
transport chain-dependent NO production by complexes III and IV and putative NO generation by
mitochondrial alternative oxidase (AOX). See text for details.

Potential NOS activity in plants was reported by two research groups in 1998. Durner
et al. [34] showed increased NOS-like activity in Nicotiana tabacum infected with tobacco
mosaic virus. In turn, the work of Delledonne et al. [35] attempted to determine the presence
of NOS in Glycine max infected with Pseudomonas syringae. The results showed calcium-
dependent NOS-like activity in the G. max cytosolic fraction. However, the researchers
did not report plant NOS homologues in G. max. Only a protein NOS inhibitor has
been identified. In the following years, many researchers tried to prove the activity of
NOS in plants. It has been suggested that expression of the A. thaliana NOS1 gene is
essential for L-arginine-dependent NO biosynthesis [36]. Since then, several possible NOS-
like enzymes have been proposed (Figure 1A); however, no conjectures have ever been
confirmed. Previously described Arabidopsis NOS-like enzymes were eventually classified
as GTPases and renamed Nitric Oxide-Associated 1 (AtNOA1). In addition, AtNOA1 has
been recognized as a family of GTPases with a circular permutation (cGTPase) [37–39].

Data obtained by Jeandroz et al. [40] within the international multidisciplinary consor-
tium 1000 Plants (1KP) brought a new perspective on the discussed issues. In this study,
gene sequencing was performed to obtain phylodiversity data from over a thousand land
plants and algae. Bioinformatics analysis did not confirm the presence of animal NOS
homologues in plants. It has been suggested that the absence of NOS in higher plants is
evidence of the loss of this enzyme during evolution.

Although the exact mechanism of the enzymatic production of NO from arginine re-
mains elusive, studies provide new evidence of the involvement of NOS-like activity in regu-
lating plant functions such as development [25,35,41–43], cadmium stress responses [44,45],
responses to pathogens [6,46,47], and protection against UV-B radiation [48].
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2.2. NO Synthesis via Polyamine and Hydroxylamine Pathways

Other proposed ways of producing NO under oxidative conditions are the polyamine-
and hydroxylamine-mediated pathways [32]. Researchers pointed to a possible link be-
tween NO and polyamines (PAs) in plant responses to abiotic and biotic stresses [41,42,44,49].
The production of NO through the oxidation of PAs is related to the conversion of pu-
trescine, spermine, or spermidine. These experimental data were obtained with A. thaliana
plants [45–47]. However, there is no evidence of an enzyme that converts PAs into NO.
Comparison of plant and animal PA oxidases shows different mechanisms of enzymatic
catalysis. As a consequence, animal PA oxidases are not involved in NO production [41].
However, in plants, the interaction of NO and PAs in response to stress can cause the
accumulation of osmoprotectants, e.g., proline and gamma-aminobutyric acid, during
drought [50,51].

Researchers also speculated that in plants, copper amine oxidases (CuAO) might affect
polyamine-mediated NO synthesis (Figure 1B). The work of Recalde et al. [44] systematized
knowledge about the putative role of CuAOs in NO production. Data presented by
Wimalasekera et al. [52] showed that the Arabidopsis CuAO1 mutant (with the loss of the
gene encoding this enzyme) accumulated less NO than wild-type (WT) plants under salinity.
Researchers hypothesized that during PA-dependent NO production, NO regulated NOS-
like activity and/or nitrate reductase (NR) activity. What is more, NR is also involved
in the reductive pathway of NO synthesis. The following experiment was performed by
Groß et al. [53] using Arabidopsis CuAO8 knockout mutant. The mutants contained a
lower concentration of NO than WT under salt stress and elicitor (INA—salcic acid analog)
treatment. In this case, the lower NO content was not due to the inhibition of NR, because
its activity was not changed. At the same time, CuAO8 mutants showed high arginase
activity. In addition, supplementation with arginine or an arginase inhibitor led to an
increase in NO production. These data showed the role of CuAO8 in the production of NO
via an arginase-dependent pathway.

Another putative pathway of NO biosynthesis is the oxidation of hydroxylamine to
NO. Report by Rümer et al. [54] demonstrated the ability of tobacco cell suspension cultures
to produce NO via hydroxylamine oxidation (under oxidative conditions) (Figure 1B).
However, such hydroxylamine activity was not observed in intact plants.

2.3. Non-Enzymatic Production of NO

Knowledge about non-enzymatic NO synthesis is significantly limited. Reduction of
nitrates to NO without enzymes is possible in specific conditions, such as a low pH and the
presence of nitrates in the apoplasts [6,55,56]. NO synthesis may be induced by phenolic
compounds (Figure 1C) as it was shown in aleurone layer of Hordeum vulgare. In addition,
it has been proposed that altered content of abscisic acid (ABA) and gibberellin may affect
NO production in germinating H. vulgare seeds. Another putative way of non-enzymatic
NO production is the carotenoid-mediated reduction of nitrites to NO in the presence of
light [56,57]. In the dark, carotenoids and nitrogen dioxide are converted into nitrosating
agents, which can lead to nitrosative cell damage (Figure 1C). Nevertheless, this method of
NO production is still controversial.

2.4. Role of NR in NO Synthesis

Nitrate reductase is a key enzyme involved in the assimilation and metabolism of
nitrogen in plants. It is also the best-characterized enzyme involved in NO synthesis.
As shown in Figure 1D, NR is a cytoplasmic enzyme that catalyzes the reduction of nitrate to
NO. However, it is well known that NR primarily catalyzes the reduction of nitrate to nitrite.
This reaction requires the availability of an electron donor—NADP—and the presence of
coenzymes in the form of molybdopterin, hem, and flavin adenine dinucleotide (FAD).
The next nitrogen fixation reaction is the reduction of nitrite to ammonia in the plastids
by nitrite reductase (NiR). The active NR is present in a homodimeric complex [1,58,59].
Studies have shown that NR has an additional function of nitrite: NO reductase (Ni-NR
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activity) (NAD(P)H + 3 H3O+ + 2 NO2
− → NAD+ + 2 NO + 5 H2O) [27]. It can occur

under certain conditions such as hypoxia, a highly acidic environment, and high nitrite
concentration [58,60,61]. The A. thaliana genome contains two NR-coding genes: NIA1
and NIA2 [62]. In Arabidopsis, the expression of both is required for the formation of
the active NR enzyme. Experiments with A. thaliana mutants of these genes revealed
the essential role of NR in NO synthesis in various plant physiological processes such as
stomatal closure [63,64], flowering [65], root development [66,67], and responses to biotic
and abiotic stress factors [68–70].

The work of Tejada-Jimenez et al. [71] systematized the knowledge on the reduction
of nitrate to NO in photosynthetic eukaryotes. It has been suggested that NR may catalyze
another direct NO production reaction in the algae Chlamydomonas reinhardtii [72] through
the interaction of NR with NO-forming NiR (NOFNiR). NOFNiR belongs to the Amidoxime
Reducing Component (ARC). It cooperates with NR in the production of NO through nitrite
reduction-dependent electron transfer from NAD(P)H to NO. NOFNiR activity is specific
to normoxia. NR and NOFNiR are regulated by the altered gene expression of transcription
factors and at the protein level [26,72]. However, to date there is no evidence of NOFNiR
NO production in higher plants.

However, regulation of NO synthesis by NR is also possible through the pathway
associated with truncated hemoglobin 1 (THB1), which was observed in C. reinhardtii [73].
The pathway is based on the reduction of THB1 by NR. It leads to the initiation of THB1
diaphorase activity in the presence of oxygen and the conversion of NO to nitrate. These
data were confirmed using a THB1 knockout mutant of C. reinhardtii under sulfur depriva-
tion conditions. It was observed that NO synthesis was higher in the THB1 mutant under
sulfur deprivation than in the WT [74].

2.5. A Plasma Membrane-Bound Nitrite Reductase

The ground-breaking works [75,76] demonstrated alternative NO production in N.
tabacum root extracts. A membrane-bound nitrite reductase (NiNOR) was identified, and
its activity was associated with cytoplasmic NR. NiNOR is bound to the plasma membrane.
The conversion of nitrite to NO required NAD(P)H as an electron donor. In vitro, methyl
viologen and cytochrome electron sources have been shown to stimulate NO generation.
Moreover, NO biosynthesis occurred on the apoplast side of the membrane (Figure 1E). The
highest NiNOR activity was observed under hypoxic conditions. Moreover, the availability
of nitrates and succinates influenced the reduction of nitrates to nitrites by apoplastic NR.
Consequently, this was a limiting factor for NiNOR activity. In addition, the research
showed that NiNOR was most active in an acidic environment (pH 6.1), which is similar to
the apoplastic environment. It was suggested that NiNOR may be involved in the detection
of nitrogen availability in the soil. In addition, the study of tobacco mycorrhiza showed the
participation of NiNOR in the synthesis of NO [77].

2.6. NO Synthesis in Mitochondria

The reduction of nitrite to NO in the mitochondria can be carried out by the elec-
tron transport chain (ETC). ETC-dependent NO production was observed in the roots of
H. vulgare [78]. Complexes III and IV were noted to be the main ETC sites involved in NO
synthesis (Figure 1F).

In addition, there is evidence that mitochondrial alternative oxidase (AOX) is involved
in NO production. It was assumed that increased AOX activity was accompanied by limited
NO production in N. tabacum leaves under hypoxic conditions [79,80]. Mutant tobacco
plants lacking the genes encoding AOX had lost the alternative route of the respiratory
chain, and they were characterized by higher levels of mitochondrial O2

− and apoplastic
NO compared to WT. Alternative oxidase is involved in the modulation of ROS and RNS
concentrations in plant’s mitochondria. It has been suggested that the mitochondrial
activity of AOX may reduce concentrations of ROS and RNS through limiting the leakage
of electrons from the ETC. Thus, the production of ROS and RNS is inhibited by AOX [79].
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Recent data point to two new roles for AOX in the NO metabolism depending on
oxygen levels. It has been observed that in normoxia, AOX can capture NO, which may
reduce the formation of peroxinitrite (ONOO–) and tyrosine nitration [81]. In addition,
AOX activity under hypoxic conditions led to the production of NO through supporting
phytoglobins (PGBs)—NO cycle (PGBs-NO). This has been observed in transgenic tobacco
with AOX overexpression [82,83]. Alternative oxidase reduced tyrosine nitration through
regulating PGB expression and NO production. Furthermore, under these conditions,
the AOX-PGBs-NO triad interaction could support ETC (especially complex I) through
promoting proton translocation. This AOX-mediated NO synthesis leads to the sustained
production of ATP in the mitochondria [82,84,85].

3. NO Scavenging

To maintain adequate NO content, there must be a balance between NO biosynthesis
and scavenging pathways. The reduction of NO content is related to enzymatic scavenging.
One of the scavenging enzymes is S-nitrosoglutathione reductase (GSNOR), which belongs
to the alcohol dehydrogenase (ADH) family [86–88]. GSNOR participates in the conversion
of S-nitrosoglutathione (GSNO) to glutathione disulfide (GSSG) and ammonia (NH3) as
well as protein S-nitrosylation (R-SNO) (Figure 2A). Moreover, the availability of GSNO
depends on the interaction between NO and reduced glutathione (GSH) in the presence of
oxygen. Consequently, low GSH content leads to the production of a stable form of NO—
GSNO (endogenous low-weight S-nitrosothiol (SNO)). Accordingly, GSNO is recognized
as a cellular source of NO and its transporting form [86,88,89]. It is assumed that a lack
of GSNOR activity promotes the regulation of NO signaling through R-SNO of specific
cysteine residues in proteins [90].
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Figure 2. NO scavenging pathways in plant cells. (A) The interaction of reduced glutathione (GSH)
and nitric oxide (NO) in the presence of light leads to the production of S-nitrosoglutathione (GSNO).
In the next steps, GSNO can be converted to glutathione disulfide (GSSG) and ammonia (NH3).
GSNO is involved in the S-nitrosylation of cysteine residues (Cys-SNO). (B) Phytoglobin (PGB)–NO
cycle. Under hypoxic conditions, nitrate (NO3

−) is reduced to nitrite (NO2
−) in cytosol by nitrate

reductase (NR). Then, NO2
− is transported to the mitochondrion, where it is converted to NO via

an alternative respiration pathway, resulting in the production of a negligible amount of adenosine
triphosphate (ATP).

In addition, studies on Arabidposis demonstrated a possible mechanism of AtGSNOR1
autophagy with R-SNO under hypoxic conditions. Enzyme autophagy was enabled by
S-nitrosylation of the Cys-10 residue in AtGSNOR1. In consequence, there were changes in
GSNOR1 conformation, which led to the possible interaction of the autophagy machinery
with the AUTOPHAGY-RELATED8 (ATG8) interacting motif [90]. These results suggest
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that NO-dependent PTMs were induced in the Arabidopsis mutant lacking R-SNO in
GSNOR. Therefore, it is an example of GSNOR autoregulation at different oxygen contents.
This mechanism can occur, for example, during transient hypoxia, such as in the initial
phase of seed germination [91]. In the case of seed germination of A. thaliana, an increased
concentration of GSNO was observed, accompanied by an increased expression of the
GSNOR1 gene. This was possible due to the simultaneous regulation of GSNOR and NO
expression under hypoxia [90].

Furthermore, NO capture is regulated by PGBs (Figure 2B), previously known in plants
as non-symbiotic hemoglobins [92,93]. Phytoglobins are hem-containing proteins. Their
participation in NO homeostasis is related to the ability to bind NO and other diatomic
molecules (e.g., oxygen). PGBs can be divided into four subfamilies, the symbiotic class and
the other three non-symbiotic classes [27,94,95]. The first class, known as phytoglobins1
(Phytogbs1), has a high affinity for oxygen and the ability to capture NO molecules under
hypoxic conditions [93,96]. Meanwhile, it has been observed that plants under anaerobic
conditions used nitrite as an alternative electron acceptor for alternative respiration [97,98].
In this case, the phytoglobin (PGB)-NO cycle plays a significant role in the production of
ATP and the reduction of NO content. First, hypoxia-induced PGB converts NO to nitrate,
and in turn, nitrate is reduced to nitrite by cytosolic NR. Then, nitrite is transported to
the mitochondria, where it acts as terminal electron acceptor. This reaction leads to the
production of NO, which can diffuse back into the cytosol. Consequently, the available NO
would be oxidized to nitrate, which can be a substrate for NR [96,99,100]. The PGB-NO cycle
does not generate a large amount of energy stored in ATP [28,101,102]. Moreover, this cycle
could participate in hypoxia in the production of NAD+ through fermentation [99]. It is also
believed that the activity of this cycle requires the presence of cofactors for the conversion
of nitrogen compounds. Thus, the PGB-NO cycle is involved in maintaining the balance of
the amount of NADH/NAD+ and NADPH/NADP+ and the ratio of ATP/ADP [103–105].

The work of Armstrong et al. [106] presented a complex model of the response of root
tissues to anoxia (in watery soil). The researchers hypothesized that PGB was involved in
modulating NO and O2 levels in the roots surrounded by “an anaerobic core”. Thus, the
PGB-NO cycle could scavenge excess reactive species and alleviate energy crises. Similar
results were obtained in H. vulgare plants under water stress [107]. Researchers linked
PGB’s regulation of NO to plant responses to stresses; for example, the activity of the
PGB-NO cycle was also observed in legume nodules under drought and it participated
in energy regeneration [108]. Nitrogenase, an enzyme involved in symbiotic nitrogen
fixation (SNF), is sensitive to the presence of O2. Therefore, legume nodules are kept in
low-oxygen conditions by leghemoglobin [108,109]. An increasing amount of NO has
also been observed under hypoxic conditions, and it triggered PGB-NO respiration. This
interaction helps to maintain the energy status in the nodules during drought.

On the other hand, the work of Kumari et al. [110] proposed a probable role of the
PGB-NO cycle in the mycorrhizal symbiosis of plants. Phytogbs1 was hypothesized to
play a role as a regulator of NO homeostasis, which enabled the symbiotic colonization
of roots and the recognition of potential pathogenic microorganisms. The PGB-NO cycle
regulates the concentration of NO in plant tissues not only under stress conditions, but also
in physiological processes. The report of Cochrane et al. [111] showed that overexpression
of Phytogbs1 in H. vulgare under hypoxic conditions led to a higher ATP/ADP ratio. On the
other hand, Phytogbs1 knockdown correlated with an increase in protein R-SNO as well as
ADH and GSNOR activities. Barley plants with Phytogbs1 overexpression were the only
ones that grew in normoxia, and their seeds germinated under hypoxia. These data also
suggested the role of PGB in NO capture, which affects the energy state of plants under
low oxygen. Moreover, several reports indicated different links between the PGB-NO
cycle and other factors during germination. Oxygen deficiency in the aleurone layers of
germinating barley seeds and seedlings led to the expression of Phytogbs1 and Phytogbs3
genes. Phytoglobins were induced in the aleurone layers through an increase in gibberellic
acid concentration and α-amylase activity. In turn, ABA promoted seed dormancy through
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changes in the expression of alcohol dehydrogenase (ADH) genes. It has been suggested
that the PGB-NO cycle regulates the ethanol fermentation pathway during germination.
Therefore, the PGB-NO cycle is an alternative pathway for obtaining energy in hypoxia.
In addition, a study by Kumari et al. [112] showed the participation of the PGB-NO and
AOX cycles in the germination and growth of Oryza sativa plants.

4. The Role of NO in PTMs

The biological function of NO is also related to PTMs. In this review, we would like to
describe three protein modifications in which the effects of NO are clearly visible, namely,
R-SNO, nitration, and the phosphorylation of proteins.

4.1. S-Nitrosylation

The most important NO-dependent protein modification is R-SNO. This non-enzymatic
reversible reaction leads to the covalent addition of NO to the sulfur group of cysteine
residues in the target protein. As a result of R-SNO, SNOs are formed [113,114]. In plants,
R-SNO is reported to be involved in various physiological processes such as responses
to environmental stresses [115–117] and phytohormone signaling [118,119]. In this case,
the formation of SNOs is possible via nitrogen oxides (NxOy) and complexes of metals
with NO, SNO, NO2

−, and ONOO− [114,120]. The work of Smith and Marletta [121]
systematized the knowledge about the formation of SNOs through various mechanisms.
The first of the paths of SNOs generation is the interaction of thiolates (R-SH) with NO
autooxidation products. For example, the interaction of reactive N2O3 with R-SH led to
SNOs via R-SNO [121,122]. N2O3 is confirmed as an effective nitrosating agent only in the
presence of a nucleophilic agent other than water. The reaction of water with N2O3 results
in hydrolysis (in the presence of phosphate) to nitrite (Figure 3A).
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Figure 3. S-nitrosothiol generation pathways. (A) An interaction of thiolates (R-SH) with NO
autooxidation products. Dinitrogen trioxide (N2O3) in the presence of a nucleophilic agent (other
than water) and R-SH interaction leads to S-nitrosylation (R-SNO). (B) A radical pathway of R-SNO.
An interaction between peroxinitrite (ONOO−) with R-SH or NO radicals with thiyl radicals (RS•)
induces R-SNO. (C) R-SNO via ferric transnitrosation in haem proteins. The reduction of Fe3+ to
Fe2+ during NO binding to heme group. (D) The generation of SNOs via ferric transnitrosation in
cytochrome c. At low NO concentration, cytochrome c can bind reduced glutathione (GSH). This
reaction is accompanied by a reversible ferric reduction and S-nitrosoglutathione (GSNO) synthesis.
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A second method of SNOs formation is through a radical pathway in which thiyl
radicals are engaged. SNOs are generated through a NO-dependent mechanism, for exam-
ple through the interaction of ONOO− with cysteine residues, or through the interaction
between NO radicals and Cys thiyl radicals [56] (Figure 3B).

A third possible mechanism for SNOs generation is called metal transnitrosation (via
one-electron oxidation). This pathway leads to the generation of the thionitroxide radical
by combining NO with thiol. It has been shown that iron (Fe3+) in the protein heme group
can bind via NO. This interaction triggers the formation of SNOs via the reduction of Fe3+

to Fe2+ [56,121] (Figure 3C).
The formation of SNO via the ferric cytochrome c-dependent way is based on the

binding of GSH to the active cytochrome c [122,123]. This interaction leads to the slow
reduction of iron and the release of GSNO (Figure 3D). In addition, it is believed that the
most effective reduction of cytochrome c by GSH occurs at low NO concentration. Thus,
the concentration of NO can control the cytochrome c reduction as well as the generation
of GSNO. Continuous oxidation of cytochrome c (e.g., via mitochondrial complex IV) is
probably required to maintain the ability to reduce iron [122]. An understanding of the
pathways of GSNO formation is important due to the fact that this SNO is the main cellular
reservoir of NO in plants, and it is involved in NO signaling [124].

In addition, R-SNO can mediate reversible transnitrosation between SNO and thiols
(e.g., cysteine) [121,125]. In the case of Cys-Cys transnitrosation, a nucleophilic thiol attack
of the NO residue in the SNO is observed. Consequently, this reaction leads to the formation
of nitroxyl disulfide, which is an intermediate transnitrosation product. Data obtained with
nuclear magnetic resonance spectroscopy [126] and mass spectrometry [127] revealed that
the transformation does not lead to the formation of free NO or its protonated form.

4.2. Protein Nitration

Another example of NO-dependent PTM is nitration. The effect of this modification
is the addition of a nitro group (−NO2) to tyrosine (Tyr), tryptophan (Trp), methionine
(Met), or cysteine residues. In animal and plant cells, this modification affects not only
proteins, but also nucleic acids, fatty acids, and oligonucleotides. Previous data focused
primarily on the understanding of the formation of nitro-tyrosine [128–130]. Tyrosine nitra-
tion is a non-enzymatic, two-step process (Figure 4), based on the covalent modification of
ortho-carbon in Tyr’s aromatic ring. In the first step, the tyrosyl radical (Tyr•) is formed
through the oxidation of the aromatic ring of Tyr, due to the influence of oxidants (hydroxyl
(OH•) and carbonate (CO3

•−) radicals) formed as a result of the decomposition of ONOO−.
Next, Tyr• interacts with •NO2 (formed through the decomposition of ONOO− in the
presence of CO2), which results in the formation of 3-nitrotyrosine [128,130,131]. Due to
the fact that this mechanism affects the sites of free radical formation, nitrated proteins are
usually located close to the compartments of their formation due to the short biological
half-life of nitrogen radicals, e.g., ONOO− [132–134]. In addition, only susceptible Tyr
surrounded by amino acid residues with the appropriate redox potential can be nitrated
in proteins [135]. The research of Bayden et al. [136] focused on the three-dimensional
structure of nitro-tyrosine-containing proteins under oxidative stress. The results indicated
the significant role of the acidic and basic residues adjacent to Tyr. The distance to the
nearest heteroatom in the charged side chain of the adjacent amino acid is believed to corre-
spond to the distance needed to form a hydrogen bond between Tyr and that amino acid.
Furthermore, nitration is probably hindered in the absence of a site for attachment of the
nitro group [136]. The addition of NO2 to Tyr leads to a decrease in the isoelectric point of
the protein. It may affect the availability of Tyr to participate in the electron transfer reaction
and lead to protein conformation changes [137–139]. In most cases, nitration is an irre-
versible reaction that can usually cause a loss or inhibition of protein function [137,140,141].
Increasing the hydrophobicity of the Tyr residue after nitration also promotes conforma-
tional changes [131]. Nitration may affect cell signaling through regulating the level of
Tyr phosphorylation. It is hypothesized that increasing Tyr phosphorylation may regulate



Biology 2023, 12, 927 10 of 27

the ONOO−-mediated nitration of peptides [142,143]. In addition, studies by Galetskiy
et al. [143] showed the simultaneous effect of phosphorylation and nitration on the stability
of photosystems I and II in Arabidopsis plants under high light stress. Previous studies
have focused particularly on understanding the basis of the contribution of Tyr nitration to
the development and response to abiotic/biotic stress in plants [125,144–146]. An impor-
tant widely discussed problem is the link between nitration and other redox PTMs (e.g.,
R-SNO) in the signaling network and redox status under stress conditions [144,147,148].
The research of Chaki et al. [149] showed that mechanical wounding induces accumulation
of GSNO and simultaneously an inhibition of NOS-like and GSNOR activities. Researchers
indicated that ONOO− formation promoted R-SNOs via Tyr nitration. It was possible
through the conversion of GSNO in the presence of O2

− to radical glutathione and ONOO−.
The described pathway of nitration is a component of signaling under biotic stresses.
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•−, and •NO2. In the first step, the interaction of OH•/CO3
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tyrosine takes place, resulting in the formation of a tyrosyl radical (Tyr•). In the second reaction, Tyr•

and •NO2 form 3-nitrotyrosine.

4.3. Phosphorylation

Increased NO content in tissues may trigger NO-signaling cascades dependent on
phosphorylation [150] through the activation of specific protein kinases (PKs), which leads
to the final phosphorylation of target factors. Phosphorylation may trigger activation of
the appropriate signaling pathways, which causes the expression of genes involved in
physiological responses to stimuli. The NO-dependent PKs most frequently discussed in
the literature are sucrose non-fermenting 1-related protein kinase 2 (SnRK2) [151], mitogen-
activated protein kinases (MAPKs) [152], and calcium-dependent kinases (CDPKs) [153].
So far, the mechanisms through which NO affects individual PKs are not fully understood.

SnRK2 is a positive regulator of ABA signal transduction [154]. SnRK2 requires
prior autophosphorylation to fulfill its catalytic function. Then, its activity leads to the
phosphorylation of transcription factors—the binding factor for ABA-responsive elements
(ABF), which in turn contributes to the induction of ABA-induced genes [155,156]. Studies
by Wang et al. [157] showed a putative NO influence on SnRK2s. NO can inhibit the
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activation of mentioned kinases via their S-nitrosylation by GSNO, for example inactivation
of OST1/SnRK2.6 kinases under the drought was shown. This protein is involved in
ABA-dependent stomatal closure [157]. S-nitrosylation of the Cys-127 residue at the SnRK2
catalytic site led to inhibition of kinase activity, and GSNOR knockout mutants showed
impaired stomatal closure. It indicates that NO accumulation in guard cells could cause
S-nitrosylation of SnRK2.6. Moreover, another report [158] confirmed the negative role of
NO in the regulation of ABA signaling during Arabidopsis seed germination and growth
of seedlings via S-nitrosylation of SnRK2.3 and SnRK2.3 caused by the NO donor—sodium
nitroprusside (SNP).

In addition, Cucumis sativus research showed the involvement of CDPKs in auxin
signaling. Studies have shown that CDPK engaged in the formation of adventitious roots
of C. sativus induced by indole-3-acetic acid (IAA) and NO. These results suggested that in
the presence of SNP and IAA, auxin signal transduction was triggered by the activation of
phosphorylated CDPK [159].

5. Crosstalk between NO, ROS, and Phytohormones

Maintaining redox balance is a key factor in the functioning of plant cells under opti-
mal and stress (abiotic/biotic) conditions. Table 1 summarizes the interactions between
NO, ROS, and phytohormones in plants. ROS are a heterogeneous group of chemicals;
therefore, different molecules can affect cellular processes in different ways depending on
their redox potential, concentration in cellular compartments, and individual chemical char-
acteristics [20,160]. For example, the low endogenous content of superoxide anions H2O2,
and OH• may have a positive effect on physiological processes in plants [161]. On the
other hand, overproduction of ROS may lead to secondary oxidative stress [162]. Therefore,
the presence of non-enzymatic antioxidants (e.g., ascorbic acid (AsA), GSH, phenolic com-
pounds) as well as increased activity of antioxidant enzymes (e.g., superoxide dismutase
(SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reduc-
tase (GR), and glutathione S-transferase (GST)) allows to control the oxidative state and
maintain redox homeostasis through converting ROS to non-toxic molecules [161,163–171].

Table 1. Crosstalk between nitric oxide (NO), reactive oxygen species (ROS), and phytohormones:
abscisic acid (ABA), indole-3-acetic acid (IAA), salicylic acid (SA), and jasmonic acid (JA). Abbrevi-
ations: mitogen-activated protein kinases (MAPK); programmed cell death (PCD); S-nitrosylation
(R-SNO); non-expresser of pathogenesis-related gene 1 (NPR1); systemic acquired resistance (SAR);
S-nitrosoglutathione reductase (GSNOR); S-nitrosoglutathione (GSNO); hypersensitive response
(HR); pyrabactin resistance/pyrabactin resistance-like/regulatory component of ABA receptors
(PYR/PYL/RCAR); ubiquitin-proteasome system (UPS); non-fermenting 1-related protein kinase
2 (SnRK2); ABA-insensitive 5 (ABI5); calcium-dependent kinases (CDPKs); sodium nitroprusside
(SNP); nitric oxide synthase (NOS); nonexpresser of PR genes (NPR); pathogenesis-related (PR); SA-
induced protein kinase (SIPK); TGACG-binding (TGA) transcription factor; lipoxygenase 2 (LOX2);
12-oxophytodienoate reductase (OPR); allene oxide cyclase (AOC).

NO Crosstalk Influence Effect References

ROS

NO-H2O2 modulation of
transcription factors

putative R-SNO and cysteine
residue oxidation [172]

NO-H2O2—MAPK phosphorylation PCD activation [172]

R-SNO of NPR1 protein SAR activation [172–174]

GSNO production by GSNOR presence of NO reservoir under
pathogen attack [172,175,176]

HR gene expression regulation HR and PCD [177–179]
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Table 1. Cont.

NO Crosstalk Influence Effect References

ABA

induction of (+)-ABA
8′-hydroxylase expression

ABA signaling inhibition
(breaking seed dormancy) [180]

Tyr nitration of PYR/PYL/RCAR PYR/PYL/RCAR degradation by UPS [181]

R-SNO of Cys residue of SnRK2 inhibition of SnRK2 [157,158]

R-SNO of Cys residue of ABI5 degradation of ABI5 by UPS [182]

IAA

phosphorylation of CDPK lateral/primary root growth [183,184]

IAA-overproduction by Sinorhizobium
meliloti (in presence of NO) nodulation in Medicago species [185]

production of ROS oxidized IAA [186]

SA

induction of defense genes expression regulation of SA level during
biotic stress [34]

induction of NOS-like activity NO synthesis [187]

molecular regulation of NPR
gene expression induction of SAR via NO-SA crosstalk [188,189]

accumulation of NPR1 activation of PR genes [190,191]

modulation of SIPK development of resistance to pathogen [192,193]

JA

NPR1 and TGA modifications suppression of JA-dependent genes [194]

interaction of NPR1 and
basic-helix-loop-helix transcription

factors MYC2-mediator complex
subunit 25

suppression of JA-dependent genes [195]

induction gene expression of LOX2
and OPR JA synthesis [196,197]

R-SNO of AOC decreased JA synthesis [196,198]

activation of
ascorbate-glutathione cycle

plant growth improvement
under drought [49,199]

Compounds formed as a result of ROS enzymatic transformations may participate in
NO metabolism. This ROS/RNS crosstalk may lead to signal transduction through redox-
based modifications [61]. The synthesis and conversion of H2O2 affect NO metabolism.
The reaction catalyzed by SOD leads to the formation of H2O2. Next, H2O2 is converted by
CAT or glutathione peroxidase (GPX) to water and oxygen. GPX catalyzes the reduction of
different hydroperoxides via oxidation of GSH into GSSG [164,200]. GSSG conversion by
GR cause an increase in GSH content [201]. Consequently, in the presence of oxygen, NO
can interact with GSH to form GSNO. [86,88]. Crosstalk between these signaling molecules
has been shown to play an essential role in the development of responses to abiotic factors
through the regulation of gene expression [161,202,203]. In addition, the role of NO and
ROS as mediators of plant acclimatization to diseases and herbivores has been widely
discussed [172]. NO and ROS were shown to affect the non-expressing pathogenesis-
related gene 1 (NPR1) through regulating the S-nitrosylation of this protein. NPR1 activity
was associated with systemic acquired resistance (SAR) [172–174].

Moreover, the increased concentration of ROS and NO is an early modulator of the
development of hypersensitivity response (HR) and PCD in infected tissues [177–179].
Increased content of NO and ROS is also observed during the attacks of herbivores. Studies
revealed that high GSNOR activity during pathogenesis leads to GSNO formation, creating
a reservoir of NO, which makes GSNOR a key enzyme in pathogen resistance [172,175,176].
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Further data suggest that GSNOR activity affects the metabolism of jasmonic acid (JA) and
ethylene (ET) during insect feeding [204].

NO can interact with ABA-related signal transduction. The pyrabactin resistance/
pyrabactin resistance-like/regulatory component of ABA receptors (PYR/PYL/RCAR) play
a vital role in the ABA-dependent responses of plants to external or internal stimuli [205]
and can be inactivated via the nitration of Tyr residue triggered by NO/ONOO–. Receptor
nitration leads to its polyubiquitylation and degradation by the proteasome [181]. This
mechanism of inhibition of ABA signaling by NO occurs with high concentrations of NO
and ROS in tissues. In addition, ABA signal transduction is limited by the S-nitrosylation
of Cys153 in the ABA-insensitive 5 (ABI5) transcription factor [182]. The results showed
that S-nitrosylated ABI5 interacted with the ubiquitin-proteasome system (UPS) through
E3 ligases based on CULLIN4 and KEEP ON GOING. Studies on the Arabidopsis nia1nia2
mutant (lack of NO production by NR) showed an upregulation of RCAR1, RCAR11, and
RCAR12 only in the presence of NO [63].

The positive effect of CDPK phosphorylation on lateral/primary root formation is an
example of the involvement of NO in auxin signaling [183,184]. There is also evidence of
NO and IAA crosstalk with a positive effect on nodule formation [206]. Overproduction of
IAA by Sinorhizobium meliloti (in the presence of NO) has been shown to promote nodulation
in Medicago species and enhance lateral root formation. On the other hand, studies using
O. sativa seedlings under cadmium and arsenic stresses showed the interaction of NO and
IAA (and its precursor—indole-3-butyric acid) in preventing the negative impact of heavy
metals [185]. It was found that the decreasing content of IAA in the roots of O. sativa was
accompanied by the protective role of NO against the negative effects of the presence of Cd
and As. It was shown that the presence of an NO donor (SNP) led to increased production
of ROS, which consequently oxidized IAA. A similar result was obtained in experiments on
Medicago trancatula under Cd stress. It was found that Cd treatment reduced root growth
and NO accumulation. However, an increased level of ROS in the roots of M. trancatula
was observed [186].

The use of the NO scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-
3-oxide (cPTIO) inhibited NR and NOS-like activities. With external NO application, root
growth was improved through preventing auxin degradation, inhibiting IAA oxidase, and
accumulating antioxidants (proline and GSH). Terrile et al. [207] pointed out a significant
problem regarding the lack of molecular knowledge on the interaction of NO and IAA
in root growth modulation. Research focused on auxin receptors—transport inhibitor
response 1/auxin signaling f-box (TIR1/AFB), which cooperate in the degradation of the
auxin repressor auxin/IAA. The obtained results suggested that the S-nitrosylation of
Cys140 in Tir1 improved the interaction of TIR1 with IAA, auxin/IAA degradation, and
the expression of IAA-dependent genes.

Salicylic acid (SA) participates in a number of physiological processes such as seed ger-
mination, growth, and flowering. It increases the activity of photosynthesis [208,209].
Nevertheless, the main function of SA is participation in response to environmental
stresses [10,210–212]. In response to a microbial pathogen, the systemic acquired resistance
(SAR) mechanism is activated. It is strictly regulated by Ca2+ and nucleotide-gated cyclic
ion channels [2,213,214], and hence, increasing Ca2+ content during plant defense has been
observed [215]. Moreover, SA can be reversibly converted to the methylated form—methyl
salicylate (Me-SA). It is considered that Me-SA in contrast to SA is involved in response to
biotic stresses. Further transformations of Me-SA, e.g., glycosylation, enable maintenance
of the function of methylated salicylic acid and proper development of the SAR [216,217].
In addition, it is indicated that exogenous NO treatment may lead to the changes in SA
concentration during the induction of defense genes expression in tobacco [34]. Studies on
the A. thaliana nia1nia2 mutant have shown that SA may favor NO generation through NOS-
like activity [187]. This observation was also confirmed by the identification of the signaling
component of SA-mediated pathway—calcium and casein kinases, which are involved in
triggering NOS-like activity by SA. It is reported that NO and ROS may act in cooperation
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with SA to activate defensive redox signaling [218]. The molecular regulation of NO-SA
crosstalk is related to the expression of NPR genes during SAR [188,189]. Under stress
conditions, signal induction by NPR contributes to the stimulation of SA-NO response
development. Optimal environmental conditions inactivate NPR through induction of its
oligomerization. Oligomers are re-accumulated with increasing SA content [157,188,219].
The oligomerization status of NPR depends on S-nitrosylation via NO, which is regulated
by SA [190,220,221]. On the other hand, GSNO treatment of A. thaliana plants triggered
crosstalk of the NO- and SA-dependent response during Pseudomonas infection [190,191].
The presence of an NO donor mediated the accumulation of NPR1 in the nucleus and
ensured the activation of pathogenesis-related (PR) genes. An increase in SA content was
caused by a sudden change in GSH concentration, which involves SA synthesis. In addition,
MAPKs also participate in the development of plant resistance to pathogens. NO may
cooperate with SA in modulating the activity of SA-induced protein kinase (SIPK),which is
a member of MAPKs [192,193].

Jasmonic acid is classified as a lipid signaling molecule associated not only with plant
growth, but especially with plant resistance to biotic and abiotic stresses. Jasmonic acid
has several derivatives which are referred to as jasmonates (JAs) [222,223]. One of the
major forms is methyl jasmonate (Me-JA). Increasing JA conversion to volatile Me-JA en-
hances resistance against pathogens and abiotic factors through influencing the activity
of defense-related and antioxidant enzymes. Moreover, Me-JA takes part in the initia-
tion of pathogenesis-related gene expression [224,225]. The most commonly reported
JA interaction is JA-SA crosstalk in defense responses to pests and pathogens [226,227].
The above-mentioned NPR1 is also involved in JA-SA signaling. Modification of NPR1
and the TGACG-binding (TGA) transcription factor by SA has been found to mediate
the downregulation of JA-dependent genes [194]. It is still unclear how NPR1 inhibits
the expression of genes involved in the JA-SA-NO crosstalk. One possible mechanism is
NPR1 oligomerization via S-nitrosylation [196,228]. Recent data indicate the involvement
of the transcription complex (basic-helix-loop-helix MYC2 transcription factors and me-
diator complex subunit 25) in interaction with NPR1 (activated by SA and indirectly by
NO) in the suppression of transcription of JA-dependent genes [195]. The direct effect
of NO on JA biosynthesis was shown via transcriptome analysis, where NO mediated
the induction of the expression of JA synthesis enzymes (lipoxygenase 2 (LOX) and 12-
oxophytodienoate reductase (OPR)) [196,197]. In addition, experimental data indicated that
another enzyme involved in JA synthesis, allene oxide cyclase (AOC), was inhibited by NO
via S-nitrosylation [196,198]. NO-JA crosstalk plays a role in the response to abiotic stress.
In T. aestivum plants under drought, JA treatment caused the release of NO molecules which
led to the activation of the ascorbate-glutathione cycle and thus enabled plant growth in
unfavorable conditions [49,199].

6. In Search of NO-Dependent Defense Mechanisms during Infection with
Herbivorous Ecdysozoa Species

Ecdysozoa is a group of invertebrates characterized by molting [229,230]. The role of
NO in defense mechanisms during infestation with nematodes and arthropods (Arachnida,
Insecta) is discussed below.

6.1. Nematodes

NO plays a significant role in the response to biotic stresses, including the attack of
nematodes on plant roots. The results obtained on Solanum lycopersicon plants infected
with the root-knot nematode Meloidogyne incognita (RKN) (Nematoda: Heteroderidae)
indicated the role of the interaction of NO, JA, and protease inhibitors in plant defense
against RKN [231]. These findings were confirmed through analysis of the expression
of genes from NO and JA synthesis pathways. Researchers showed that due to RKN
infection, transcript levels of genes related to NO and JA were significantly increased.
In addition, the effect of exogenous applications of JA and SNP on the reproductive
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capacity of RKN was investigated [231]. The presence of JA and SNP led to a reduction
in the number of RKN eggs and partial inhibition of nematode growth. Moreover, an
improvement in photosynthesis in comparison to the infected plants was observed. RKN
infection affects not only the inhibition of root growth, but also net photosynthesis rate.
Therefore, it could indirectly limit roots formation through lowering the concentration of
photosynthesis products. RKN infection also resulted in increased electrolyte leakage and
lipid peroxidation in the roots. cPTIO treatment reduced the JA-related defense response
to the RKN. On the other hand, the exogenous application of SNP and JA during RKN
infection was accompanied by the induction of protease inhibitor 2 gene expression, which
may be of paramount importance because the silencing of the protease inhibitor 2 gene
contributed to greater susceptibility to RKN infection [231].

Melillo et al. [232] showed the generation of NO and ROS in a S. lycopersicon variety
resistant to RKN. These data suggested that rapid NO accumulation in tomato tissues after
RKN invasion is a result of NOS-like activity. In infected roots, the H2O2 content increased
rapidly in the first 24 h post-inoculation (hpi). The simultaneous presence of H2O2 and NO
caused PCD in infected tomato roots, thus contributing to developing a defense response
against RKN [232,233]. In turn, another study showed the highest production of NO via
NOS-like activity at 12 hpi in response to RKN [234].

In addition, studies of Pinus thunbergii response to the pine wood nematode Bursaphe-
lenchus xylophilus (Nematoda: Aphelenchoididae) infection also showed the cooperation of
NO and H2O2 [235]. Changes in the concentration of NO occurred at an earlier stage (8 hpi)
than H2O2 (12 hpi). The SNP treatment triggered NO synthesis via NOS-like activity (not
via NR) in infected P. thunbergii plants. Therefore, the crosstalk between NO and H2O2 may
be considered as part of the defense mechanism in the initial response of P. thunbergii to the
invasion of nematodes [235].

Our previous experiments showed that a beet cyst nematode Heterodera schachtii
(Nematoda: Heteroderidae) infestation led to the production of NO and ONOO− in infected
A. thaliana roots. These observations were accompanied by an increase in abundance of
S-nitrosylated and nitrated proteins. The activity of GSNOR was reduced at 3 and 15 days
post-inoculation (dpi) and enhanced at 7 dpi in infected roots, whereas the GSNOR1
transcript level was increased over the entire examination period. The GSNOR level
was enhanced in infected roots at 3 dpi and 7 dpi, but at 15 dpi, did not differ between
uninfected and infected roots. The GSNOR was observed in plastids, mitochondria, the
cytoplasm, as well as in the endoplasmic reticulum and cytoplasmic membranes [236].

6.2. Insects

Insect infection leads to the development of defense mechanisms involving NO. Cyto-
chemical localization of NO performed in Pisum sativum plants infested with the pea aphid
Acyrthosiphon pisum (Hemiptera: Aphididae) revealed the highest NO fluorescence signal
at 48 hpi. Aphid invasion triggered the synthesis of other molecules related to the response
to biotic stress (JA, ET, SA, H2O2). At 48 hpi, an increase in the content of ET and NO in
the leaves was observed. On the other hand, intense SA synthesis occurred only at 74 and
96 hpi [237].

The work of Woźniak et al. [238] showed that the use of exogenous NO donors
contributed to the defensive responses of P. sativum against A. pisum. The treatment of
infected P. sativum plants with SNP and GSNO led to a reduction in superoxide anion level
at 48 and 72 hpi and an induction of phenylalanine ammonialyase gene expression [238].

Research by Xu et al. [239] showed that NO mediated the suppression of the JA defense
during a silverleaf whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) invasion. Infested
tobacco plants were characterized by a high accumulation of NO. Compared with water-
treated plants, which were considered 100%, 71% of B. tabaci adults settled on the plants
treated with SNP, whereas only 29% of adults settled on the plants treated with cPTIO.
In addition, the use of SNP favored the acceleration of nymph maturation. On the other
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hand, after the use of cPTIO, a disturbance in the development cycle of nymphs was
observed [239].

The cotton bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) is a pest that
feeds on the chickpea Cicer arietinum. A study comparing the defense mechanisms of
sensitive and resistant C. arietinum varieties showed differences in chickpea responses
against H. armigera invasion [240]. The sensitive variety was characterized by a decrease in
the activity of antioxidant enzymes and reduced phenols, NO, H2O2, and trypsin inhibitor
levels. In the resistant variety, all above parameters were constitutively increased [240].

The results obtained from the study of susceptible and resistant varieties of T. aestivum
to the Russian wheat aphid Diuraphis noxia (Hemiptera: Aphididae) showed that, in
the resistant variety, infection led to earlier accumulation of NO [241]. In addition, an
engagement of NR I NiR in the production of NO during infestation was observed. It was
shown that NO regulated the response to D. noxia through induction of β-1,3-glucanase
and POX [241].

GSNOR gene silencing in Nicotiana attenuate led to greater susceptibility to invasion
by the Carolina sphinx Manduca sexta (Lepidoptera: Sphingidae) [204], which was accom-
panied by reduced JA and ET contents. However, no inhibition of MAPK activity was
observed, and the content of trypsin inhibitors decreased in the infected plants. Researchers
have speculated that GSNOR may be involved in JA-dependent defense [204].

An analysis of the effect of the exogenous application of an NO donor in species of
forage grasses (Brachiaria ruziziensis, Pennisetum purpureum, and Digitaria sp.) attacked
by Mahanarva spectabilis (Hemiptera: Cercopidae) showed an increased concentration of
phenols in the infested plants. However, increased phenol content did not contribute to the
inhibition of the development cycle of M. spectabilis nor resistance to this pest [242].

A study of two O. sativa cultivars differing in their resistance to the brown plan-
thopper (BPH) Nilaparvata lugens (Hemiptera: Delphacidae) showed elevated levels of
NO in the leaves of both cultivars after infection and in the roots of the resistant cultivar.
Scientists hypothesized that NO synthesis in response to N. lugens depends on NOS-like
activity. In addition, treatment with an exogenous NO donor reduced plant mortality
due to BHP infestation and caused the expression of drought-related genes (OsLea3-1 and
OsP5CS1) [243].

6.3. Arachnids

The literature on NO-dependent responses of plants infested with arachnids is ex-
tremely limited [175,244]. In plants infested with arachnids, the involvement of ROS
metabolism [245–247], antioxidant enzymes [246,248], phytohormone interactions [249,250],
and transcriptomic [251,252] and proteomic changes [253] have been studied. Nevertheless,
despite the proven strong links between NO and the response to biotic stresses, there is no
direct evidence in the literature.

6.4. Are There Common Patterns of NO-Dependent Defensive Responses against Ecdysozoa
Species Infestation?

Table 2 shows the contribution of NO to plant responses to nematode and insect
infestations. These examples show that nematode attack responses are related to changes in
NO and GSNO contents. Furthermore, NO production in response to infections is usually
due to NOS-like activity rather than NR activity. Moreover, infections with nematodes lead
to interactions between NO and JA.

In turn, NO-dependent responses to insects involve an interaction between NO and
JA, ET, SA, and H2O2. Our review strongly points to the need for further research on NO
interactions between host plants and Ecdysozoa parasites, especially arachnids.
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Table 2. Nitric oxide (NO)-dependent responses against infestation with nematodes and insects.
Abbreviations: jasmonic acid (JA); programmed cell death (PCD); reactive oxygen species (ROS); nitric
oxide synthase (NOS); reactive nitrogen species (RNS); S-nitrosylation (R-SNO); S-nitrosoglutathione
reductase (GSNOR); salicylic acid (SA); ethylene (ET); nitrate reductase (NR); nitrite reductase (NiR).

Parasite Plant Response References

Nematodes

Meloidogyne incognita Solanum lycopersicon increased expression of NO- and
JA-induced genes [231]

Meloidogyne incognita Solanum lycopersicon NO-H2O2 crosstalk, PCD activation [232]

Meloidogyne incognita Solanum lycopersicon NO-ROS crosstalk, increased
NOS-like activity [234]

Bursaphelenchus xylophilus Pinus thunbergii increased NOS-like activity [235]

Heterodera schachtii Arabidopsis thaliana alteration in the level of RNS, protein R-SNO
and nitration, and GSNOR [236]

Insects

Acyrthosiphon pisum Pisum sativum interconnection of NO production with JA,
ET, SA, H2O2 synthesis [237]

Acyrthosiphon pisum Pisum sativum restriction of aphids’ reproduction [238]

Bemisia tabaci Nicotiana tabacum suppression of JA-defense responses and
favoring B. tabaci reproduction [239]

Helicoverpa armigera Cicer arietinum changes in antioxidants enzymes, NO, H2O2,
phenols and trypsin inhibitor [240]

Diuraphis noxia Triticum aestivum
changes in NR and NiR activities,

NO-dependent induction of β-1,3-glucanase
and peroxidase

[241]

Manduca sexta Nicotiana attenuata GSNOR interconnection with NO- and
JA-dependent responses [204]

Mahanarva spectabilis
Brachiaria ruziziensis,

Pennisetum purpureum and
Digitaria sp.

increased content of phenols,
lack of inhibition of pest development cycle [242]

Nilaparvata lugens Oryza sativa
increased NO content in resistant cultivar,
increased expression of genes related to

drought response
[243]

7. Conclusions

Recent studies have shown the multifunctional role of NO in plants; however, there
are still many questions regarding the involvement of NO in a number of biochemi-
cal/physiological processes and the regulation of NO-dependent gene expression. Consid-
ering crosstalk between NO and ROS, ABA, IAA, SA, and JA, multiple response pathways
are involved in plant defense responses to biotic stressors. This review clearly shows that
despite the many available data points in the literature, it is still difficult to determine
the mechanisms of NO action in response to, e.g., the attack of herbivorous Ecdysozoa.
Moreover, there is a need for holistic research showing the contribution of NO in response
to a combination of stress factors. Although the various aspects of NO multifunctionality
are relatively well known, most studies focus on isolated stresses and key developmental
moments, which do not reflect the role of NO in plants under field conditions. Further
studies of NO need to be conducted to develop new cultivars that are resistant/tolerant to
biotic and abiotic stresses.
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24. Gietler, M.; Nykiel, M.; Orzechowski, S.; Fettke, J.; Zagdańska, B. Protein Carbonylation Linked to Wheat Seedling Tolerance to
Water Deficiency. Environ. Exp. Bot. 2017, 137, 84–95. [CrossRef]

25. Kudoyarova, G. Phytohormones 2020. Biomolecules 2022, 12, 1305. [CrossRef]
26. Chamizo-Ampudia, A.; Sanz-Luque, E.; Llamas, A.; Galvan, A.; Fernandez, E. Nitrate Reductase Regulates Plant Nitric Oxide

Homeostasis. Trends Plant Sci. 2017, 22, 163–174. [CrossRef]
27. Gupta, K.J.; Fernie, A.R.; Kaiser, W.M.; van Dongen, J.T. On the Origins of Nitric Oxide. Trends Plant Sci. 2011, 16, 160–168.

[CrossRef]
28. Gupta, K.J.; Kaladhar, V.C.; Fitzpatrick, T.B.; Fernie, A.R.; Møller, I.M.; Loake, G.J. Nitric Oxide Regulation of Plant Metabolism.

Mol. Plant 2022, 15, 228–242. [CrossRef]
29. Bredt, D.S.; Snyder, S.H. Isolation of Nitric Oxide Synthetase, a Calmodulin-Requiring Enzyme. Proc. Natl. Acad. Sci. USA 1990,

87, 682–685. [CrossRef]
30. Stuehr, D.J.; Santolini, J.; Wang, Z.-Q.; Wei, C.-C.; Adak, S. Update on Mechanism and Catalytic Regulation in the NO Synthases.

J. Biol. Chem. 2004, 279, 36167–36170. [CrossRef]
31. Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric Oxide Synthases: Structure, Function and Inhibition. Biochem. J. 2001, 357,

593–615. [CrossRef]
32. Salgado, I.; Oliveira, H.C.; Gaspar, M. Plant Nitric Oxide Signaling Under Environmental Stresses. In Mechanism of Plant Hormone

Signaling under Stress; Pandey, G.K., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 345–370. ISBN 978-1-118-88902-2.
33. Förstermann, U.; Sessa, W.C. Nitric Oxide Synthases: Regulation and Function. Eur. Heart J. 2012, 33, 829–837. [CrossRef]
34. Durner, J.; Wendehenne, D.; Klessig, D.F. Defense Gene Induction in Tobacco by Nitric Oxide, Cyclic GMP, and Cyclic ADP-Ribose.

Proc. Natl. Acad. Sci. USA 1998, 95, 10328–10333. [CrossRef]
35. Delledonne, M.; Xia, Y.; Dixon, R.A.; Lamb, C. Nitric Oxide Functions as a Signal in Plant Disease Resistance. Nature 1998, 394,

585–588. [CrossRef]
36. Guo, F.; Okamoto, M.; Crawford, N. Identification of a Plant Nitric Oxide Synthase Gene Involved in Hormonal Signaling. Science

2003, 302, 103. [CrossRef]
37. Zemojtel, T.; Fröhlich, A.; Palmieri, M.C.; Kolanczyk, M.; Mikula, I.; Wyrwicz, L.S.; Wanker, E.E.; Mundlos, S.; Vingron, M.;

Martasek, P.; et al. Plant Nitric Oxide Synthase: A Never-Ending Story? Trends Plant Sci. 2006, 11, 524–525; author reply 526–528.
[CrossRef]

38. Moreau, M.; Lee, G.I.; Wang, Y.; Crane, B.R.; Klessig, D.F. AtNOS/AtNOA1 Is a Functional Arabidopsis Thaliana CGTPase and
Not a Nitric-Oxide Synthase. J. Biol. Chem. 2008, 283, 32957–32967. [CrossRef]

39. Liu, H.; Lau, E.; Lam, M.P.Y.; Chu, H.; Li, S.; Huang, G.; Guo, P.; Wang, J.; Jiang, L.; Chu, I.K.; et al. OsNOA1/RIF1 Is a Functional
Homolog of AtNOA1/RIF1: Implication for a Highly Conserved Plant CGTPase Essential for Chloroplast Function. New Phytol.
2010, 187, 83–105. [CrossRef]

40. Jeandroz, S.; Wipf, D.; Stuehr, D.J.; Lamattina, L.; Melkonian, M.; Tian, Z.; Zhu, Y.; Carpenter, E.J.; Wong, G.K.-S.; Wendehenne,
D. Occurrence, Structure, and Evolution of Nitric Oxide Synthase-like Proteins in the Plant Kingdom. Sci. Signal 2016, 9, re2.
[CrossRef]

41. Choudhary, S.; Wani, K.I.; Naeem, M.; Khan, M.M.A.; Aftab, T. Cellular Responses, Osmotic Adjustments, and Role of Osmolytes
in Providing Salt Stress Resilience in Higher Plants: Polyamines and Nitric Oxide Crosstalk. J. Plant Growth Regul. 2022. [CrossRef]

42. Kumar, N.; Gautam, A.; Dubey, A.K. 15–Polyamines Metabolism and NO Signaling in Plants. In Nitric Oxide in Plant Biology;
Pratap Singh, V., Singh, S., Tripathi, D.K., Romero-Puertas, M.C., Sandalio, L.M., Eds.; Academic Press: Cambridge, MS, USA,
2022; pp. 345–372. ISBN 978-0-12-818797-5.

43. Krasuska, U.; Ciacka, K.; Gniazdowska, A. Nitric Oxide-Polyamines Cross-Talk during Dormancy Release and Germination of
Apple Embryos. Nitric Oxide 2017, 68, 38–50. [CrossRef] [PubMed]

44. Recalde, L.; Gómez Mansur, N.M.; Cabrera, A.V.; Matayoshi, C.L.; Gallego, S.M.; Groppa, M.D.; Benavides, M.P. Unravelling Ties
in the Nitrogen Network: Polyamines and Nitric Oxide Emerging as Essential Players in Signalling Roadway. Ann. Appl. Biol.
2021, 178, 192–208. [CrossRef]

45. Tun, N.N.; Santa-Catarina, C.; Begum, T.; Silveira, V.; Handro, W.; Floh, E.I.S.; Scherer, G.F.E. Polyamines Induce Rapid
Biosynthesis of Nitric Oxide (NO) in Arabidopsis Thaliana Seedlings. Plant Cell Physiol. 2006, 47, 346–354. [CrossRef] [PubMed]

46. Zhou, C.; Liu, Z.; Zhu, L.; Ma, Z.; Wang, J.; Zhu, J. Exogenous Melatonin Improves Plant Iron Deficiency Tolerance via Increased
Accumulation of Polyamine-Mediated Nitric Oxide. Int. J. Mol. Sci. 2016, 17, 1777. [CrossRef]

47. Siddiqui, M.H.; Alamri, S.A.; Al-Khaishany, M.Y.; Al-Qutami, M.A.; Ali, H.M.; AL-Rabiah, H.; Kalaji, H.M. Exogenous Application
of Nitric Oxide and Spermidine Reduces the Negative Effects of Salt Stress on Tomato. Hortic. Environ. Biotechnol. 2017, 58,
537–547. [CrossRef]

https://doi.org/10.3390/ijms23031657
https://www.ncbi.nlm.nih.gov/pubmed/35163578
https://doi.org/10.1016/j.plaphy.2016.08.017
https://www.ncbi.nlm.nih.gov/pubmed/27596017
https://doi.org/10.1016/j.envexpbot.2017.02.004
https://doi.org/10.3390/biom12091305
https://doi.org/10.1016/j.tplants.2016.12.001
https://doi.org/10.1016/j.tplants.2010.11.007
https://doi.org/10.1016/j.molp.2021.12.012
https://doi.org/10.1073/pnas.87.2.682
https://doi.org/10.1074/jbc.R400017200
https://doi.org/10.1042/bj3570593
https://doi.org/10.1093/eurheartj/ehr304
https://doi.org/10.1073/pnas.95.17.10328
https://doi.org/10.1038/29087
https://doi.org/10.1126/science.1086770
https://doi.org/10.1016/j.tplants.2006.09.008
https://doi.org/10.1074/jbc.M804838200
https://doi.org/10.1111/j.1469-8137.2010.03264.x
https://doi.org/10.1126/scisignal.aad4403
https://doi.org/10.1007/s00344-022-10584-7
https://doi.org/10.1016/j.niox.2016.11.003
https://www.ncbi.nlm.nih.gov/pubmed/27890695
https://doi.org/10.1111/aab.12642
https://doi.org/10.1093/pcp/pci252
https://www.ncbi.nlm.nih.gov/pubmed/16415068
https://doi.org/10.3390/ijms17111777
https://doi.org/10.1007/s13580-017-0353-4


Biology 2023, 12, 927 20 of 27

48. Cai, W.; Liu, W.; Wang, W.-S.; Fu, Z.-W.; Han, T.-T.; Lu, Y.-T. Overexpression of Rat Neurons Nitric Oxide Synthase in Rice
Enhances Drought and Salt Tolerance. PLoS ONE 2015, 10, e0131599. [CrossRef]

49. Rai, K.K.; Pandey, N.; Rai, N.; Rai, S.K.; Pandey-Rai, S. Salicylic Acid and Nitric Oxide: Insight Into the Transcriptional Regulation
of Their Metabolism and Regulatory Functions in Plants. Front. Agron. 2021, 3, 781027. [CrossRef]

50. Tiwari, R.K.; Kumar, R.; Lal, M.K.; Kumar, A.; Altaf, M.A.; Devi, R.; Mangal, V.; Naz, S.; Altaf, M.M.; Dey, A.; et al. Melatonin-
Polyamine Interplay in the Regulation of Stress Responses in Plants. J. Plant Growth Regul. 2022. [CrossRef]

51. Nandy, S.; Mandal, S.; Gupta, S.K.; Anand, U.; Ghorai, M.; Mundhra, A.; Rahman, M.H.; Ray, P.; Mitra, S.; Ray, D.; et al. Role of
Polyamines in Molecular Regulation and Cross-Talks Against Drought Tolerance in Plants. J. Plant Growth Regul. 2022. [CrossRef]

52. Wimalasekera, R.; Villar, C.; Begum, T.; Scherer, G.F.E. COPPER AMINE OXIDASE1 (CuAO1) of Arabidopsis Thaliana Contributes
to Abscisic Acid- and Polyamine-Induced Nitric Oxide Biosynthesis and Abscisic Acid Signal Transduction. Mol. Plant 2011, 4,
663–678. [CrossRef]

53. Groß, F.; Rudolf, E.-E.; Thiele, B.; Durner, J.; Astier, J. Copper Amine Oxidase 8 Regulates Arginine-Dependent Nitric Oxide
Production in Arabidopsis Thaliana. J. Exp. Bot. 2017, 68, 2149–2162. [CrossRef]

54. Rümer, S.; Gupta, K.; Kaiser, W. Plant Cells Oxidize Hydroxylamines to NO. J. Exp. Bot. 2009, 60, 2065–2072. [CrossRef]
55. Bethke, P.C.; Badger, M.R.; Jones, R.L. Apoplastic Synthesis of Nitric Oxide by Plant Tissues. Plant Cell 2004, 16, 332–341.

[CrossRef]
56. Treffon, P.; Vierling, E. Focus on Nitric Oxide Homeostasis: Direct and Indirect Enzymatic Regulation of Protein Denitrosation

Reactions in Plants. Antioxidants 2022, 11, 1411. [CrossRef]
57. Cooney, R.V.; Harwood, P.J.; Custer, L.J.; Franke, A.A. Light-Mediated Conversion of Nitrogen Dioxide to Nitric Oxide by

Carotenoids. Env. Health Perspect. 1994, 102, 460–462. [CrossRef]
58. Yamasaki, H.; Sakihama, Y. Simultaneous Production of Nitric Oxide and Peroxynitrite by Plant Nitrate Reductase: In Vitro

Evidence for the NR-Dependent Formation of Active Nitrogen Species. FEBS Lett. 2000, 468, 89–92. [CrossRef]
59. Campbell, W.H. Structure and Function of Eukaryotic NAD(P)H:Nitrate Reductase. Cell Mol. Life Sci. 2001, 58, 194–204. [CrossRef]
60. Allagulova, C.R.; Avalbaev, A.M.; Lubyanova, A.R.; Lastochkina, O.V.; Shakirova, F.M. Current Concepts of the Mechanisms of

Nitric Oxide Formation in Plants. Russ. J. Plant Physiol. 2022, 69, 61. [CrossRef]
61. Rai, K.K. Revisiting the Critical Role of ROS and RNS in Plant Defense. J. Plant Growth Regul. 2022. [CrossRef]
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