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Simple Summary: Diarrhea in newborn piglets is one of the important problems for the agricultural
industry. It is believed that this disease is associated with changes in the intestinal microbiome.
The present work is aimed at studying the composition of the microbiome of newborn piglets with
diarrhea in order to identify relevant markers of the disease. Our comprehensive microbiome study
did not reveal bacterial and eukaryotic aberrations in the fecal microbiome of diarrheal piglets;
at the same time, we observed higher levels of bacterial diversity, which may be associated with
dysbacteriosis and inflammation. In the observation group, an increase in the abundance of Bacteroides
B40-8 phage was also recorded, and in the healthy group, an increase in the abundance of Escherichia
virus BP4. Thus, the results of our study show the ambiguity of the previously proposed relationship
between the bacterial community of the fecal microbiome of suckling piglets and the development of
diarrhea, and also indicate the need for further research in this area.

Abstract: Diarrhea in piglets is one of the most common diseases leading to high mortality and, as a
result, to economic losses. Shotgun metagenomic sequencing was performed on the DNBSEQ-G50,
MGI system to study the role of the fecal microbiome in the development of diarrhea in newborn
piglets. Analysis of the study data showed that the composition of the fecal microbiome at the level of
bacteria and fungi did not differ in piglets with diarrhea from the healthy group. Bacteria belonging
to the phyla Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria were the most
abundant. However, a higher level of bacterial alpha diversity was observed in the group of piglets
with diarrhea, which may be due to dysbacteriosis and inflammation. The study of the virome
showed the difference between the two types of phages: Bacteroides B40-8 prevailed in diseased
piglets, while Escherichia virus BP4 was found in greater numbers in healthy piglets. The results of
our study suggest that the association between the fecal microbiome and susceptibility to diarrhea in
suckling piglets may have been previously overestimated.

Keywords: fecal microbiome; shotgun metagenomics sequencing; diarrhea; piglets

1. Introduction

In recent years, there has been an increase in the production of animal products for
human consumption around the world. Like most farm animals raised for food, pigs and
piglets suffer from various diseases [1,2], one of which is diarrhea in piglets. Economic
losses associated with increased morbidity and mortality affect the livestock industry [3,4].

Like all animals, pigs have a complex intestinal community that includes bacteria,
viruses, archaea, and fungi. The development of the microbiome of the mammalian
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intestinal tract begins at birth and continues to dynamically develop as the animal matures
under the influence of a large number of factors [5,6].

Importantly, the fungal composition of the fecal microbiome in newborn piglets is less
understood than bacteria, and more research is needed to fully understand the diversity
and function of fungi in the piglet fecal microbiome. However, some fungi present in the
fecal microbiome of healthy newborn piglets can influence immune responses as well as
alter the severity of certain diseases [7–10]. In addition, species have been found to have
probiotic properties as well as produce beneficial metabolites and enzymes that play a role
in gut health [10–12].

The study of viruses and bacteriophages in the fecal microbiome of newborn piglets
is an emerging area of research, and our understanding of their presence and role is still
evolving. It should be noted that some viruses and bacteriophages found in the intestinal
microbiome of newborn piglets infect the gastrointestinal tract and may play a role in the
dynamics of the intestinal microbiome [13,14].

The totality and interaction of these biomes make a fundamental contribution to the
metabolism, physiological processes, immunity, and health of the animal [15–17]. Based on
these data, the study aimed to determine the complete composition of the fecal microbiome
and identify species associated with the development of diarrhea in newborn piglets. To
achieve this goal, whole genome sequencing was performed on the DNB-SEQ-G50 system
(MGI, Shenzhen, China). This platform has several advantages over other sequencing
methods, such as high performance; DNBSEQ-G50 can generate up to 1.2 terabases of data
per cycle, making it suitable for large-scale genomic research. In addition, this system is
highly accurate, using combinatorial probe–anchor synthesis (CPAS) technology, which
provides an accurate basic call with a low error rate [18]. The DNBSEQ-G50 can be used
for a wide range of sequencing applications, from targeted resequencing to whole genome
sequencing and transcriptomics. It is also easy to use with its user-friendly interface, sample
preparation that requires small amounts of starting DNA or RNA, and the sequencing
process itself. In addition, DNBSEQ-G50 can generate high-quality sequencing data in a
relatively short time, allowing researchers to obtain results faster than with some other
platforms [19,20].

2. Materials and Methods
2.1. Experimental Design and Collection of Faecal Samples

A total of 16 piglets of 1–5 days of age (F1 hybrids) were obtained by crossing animals
of the Large White and Landrace breeds. Animals were divided into two equal groups.
The control group included 8 healthy piglets, and the observation group included 8 piglets
with severe diarrhea observed from the 2nd day of life. The animals were kept indoors
at a temperature of 30 ± 2 ◦C and a humidity of 55 ± 7%. The diagnosis of diarrhea was
made based on the following clinical picture: shaky, unsteady gait because of general
dehydration, loose stools, a fetid odor of feces, and general contamination of piglets with
feces. Microscopy of feces did not reveal any pathogens of parasitic diseases. Piglets
received mother’s milk from sows. The average weight of piglets in the healthy group
was 1.5 ± 0.45 kg, and in the sick group was 1.1 ± 0.38 kg. For the study, stool samples
were taken in the amount of 10 ± 3 g, placed in microcentrifuge tubes, and delivered to the
laboratory on ice.

2.2. Microbial DNA Extraction and Shotgun Metagenomics Sequencing

The commercial HiPure DNA Micro Kit (Magen, Guangzhou, China) was used for
DNA extraction from the obtained samples. Isolation was carried out according to the
manufacturer’s protocol. Libraries were prepared according to the following protocol:
DNA was fragmented using the MGIEasy Fast FS Library Prep Module kit (MGI, Shenzhen,
China), followed by purification with MGIEasy DNA Clean Beads (MGI, Shenzhen, China)
magnetic particles, ligation of the adapters with the MGIEasy UDB Primers Adapter Kit
A (MGI, Shenzhen, China), and PCR amplification. The quality of the DNA library was
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assessed using the Qubit bioanalyzer and the Qubit dsDNA HS Assay Kit (Invitrogen,
Waltham, MA, USA).

Further circularization of one strand was performed using the MGIEasy Dual Barcode
Circularization Module (MGI, Shenzhen, China). The final libraries were pooled and se-
quenced using the MGI DNBSEQ-G50 sequencing platform with DNBSEQ-G50RS Sequenc-
ing Flow Cell Model: FCL (MGI, Shenzhen, China). DNBSEQ-G50RS High-throughput
Sequencing Kit Model: FCL PE100 (MGI, Shenzhen, China) was used to create DNB.

2.3. Bioinformatics and Statistical Analysis

Raw metagenomic data were quality assessed using FastQC [21]. Technical sequences
and low-quality bases (Q < 30) were trimmed with the fastp [22]. The human and host
sequences from samples were removed by mapping metagenomic reads to hg38 human and
domestic pig (GCA_017957985.1) reference genomes using the Bowtie2 tool [23]. Taxonomic
profiling of samples was performed using Kraken2 with standard bacterial, viral, and
eukaryotic databases [24]. The Pavian tool was used for the interactive visualization of the
Kraken2 output [25]. Resistance antibiotics gene profiles were obtained using GROOT with
ARG-ANNOT precomputed index [26,27].

Alpha-diversity calculation was performed using the MicrobiotaProcess package [28].
The difference in alpha diversity was estimated using the Wilcoxon rank sum test [29].
Bidimensional visualization was performed using non-metric multidimensional scaling
and the Bray–Curtis dissimilarity metric implemented in MicrobiotaProcess packages for
GNU/R [28]. The ADONIS function was used for obtaining differences in the taxonomic
compositions of the observation group. An analysis of species differential abundance
was performed using the metagenomeSeq package [30]. An adjusted p-value ≤ 0.05 was
considered statistically significant.

3. Results

In this study, we analyzed the microbiota as well as viral and eukaryotic profiles in the
feces of 8 healthy piglets and 8 piglets with diarrhea using shotgun metagenomic sequenc-
ing in the DNBSEQ-G50 system (MGI, Shenzhen, China). As a result of sequencing, we
received about 109.5 million pairs of reads. After fine pruning and deletion of host and hu-
man sequences, approximately 28.6 million reads remained (an average of 1.8 million read
pairs per sample). Read-based shotgun sequence classification produced using the standard
Kraken2 database identified 7718 bacterial species. Among the identified genomes, bacteria
of 41 phyla were found, among which representatives of the phyla Firmicutes predominated
in both studied groups (36.52% in the control group and 34.15% in the observation group),
Bacteroidetes (29.62% in the control group and 27.95% in the observation group), Proteobacte-
ria (29.01% in the control group and 27.68% in the observation group), Actinobacteria (2.98%
in the control group and 3.52% in the observation group), and Fusobacteria (0.46% in the
control group and 5.73% in the observation group); the phyla with an average abundance
of less than 1.0% for one of the studied groups were combined into “Other” (Figure 1).

Species with an average abundance for one of the studied groups of less than 1.0%
were combined into “Other”; thus, Figure 2 shows the top bacterial species for each sample.
See Table S1 for the complete bacterial composition of test samples.

Upon closer examination, it was found that the Bacteroides fragilis species prevailed in
the healthy group of piglets and the group of piglets with diarrhea, and its abundance was
16.43% and 8.84%, respectively. The next largest for both groups was the genus Escherichia
coli (14.03% in the healthy group and 8.68% in the observation group). In the healthy
group, the next largest were Clostridium perfringens (13.07%), Enterococcus faecium (6.71%),
Phocaeicola vulgatus (4.70%), Streptococcus suis (2.23%), Bacteroides thetaiotaomicron (2.13%),
Actinobacillus porcitonsillarum (1.78%), Clostridium baratii (1.33%), and Rothia nasimurium
(1.02%). In the group of piglets with diarrhea, after Bacteroides fragilis and Escherichia coli, we
observed the following population distribution: Fusobacterium mortiferum (5.19%), Phocae-
icola vulgatus (3.61%), Streptococcus suis (3.43%), Flavonifractor plautii (2.72%), Flintibacter sp.
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KGMB00164 (2.29%), Enterocloster bolteae (2.09%), Desulfovibrio piger (2.02%), Parabacteroides
distasonis (2.01%), Prevotella copri (1.80%), Phascolarctobacterium succinatutens (1.68%), Bu-
tyricimonas virosa (1.63%), Actinobacillus porcitonsillarum (1.42%), Glaesserella parasuis (1.41%),
Bacteroides heparinolyticus (1.38%), Lachnoclostridium sp. YL32 (1.36%), Clostridium perfrin-
gens (1.33%), Enterocloster clostridioformis (1.33%), Vescimonas fastidiosa (1.13%), Megasphaera
elsdenii (1.11%), Ruminococcus gnavus (1.11%), and Ruthenibacterium lactatiformans (1.01%).
The abundance of other genera was less than 1%.
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Despite these contrasts in microbiome composition, differential abundance analysis
did not reveal statistically significant differences between the studied groups.

We also evaluated alpha and beta diversity in the fecal microbiota of piglets. Estimating
the microbial diversity of feces using our shotgun dataset, we obtained lower alpha diversity
in the healthy group compared to the observation group (Figure 3).

Distance analysis of beta diversity did not reveal group-specific clustering (Figure 4).
In addition to the bacterial composition, the eukaryotic and viral composition of the

samples were also studied during the investigation.
In the test samples, 80 species of fungi were identified (see Table S2), among which

the Schizosaccharomyces pombe species prevailed in both groups (8.59% in the healthy group
and 10.81% in the observation group). An analysis of alpha and beta diversity and a differ-
ential analysis of the abundance of the eukaryotic composition did not show statistically
significant differences.

Classification of viruses, as well as bacteria and fungi, was performed using Kraken2,
which identified 4040 virus species that are part of 144 families (see Table S3 for a complete
list). Figure 5 shows viruses greater than 1.0%, species below this threshold are grouped
under “Other”.
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In the healthy group, we observed the following virus distribution: Escherichia virus
500465-2 (3.53%) was characterized by the highest relative abundance, then Escherichia virus
500465-1 (3.28%), Piscine myocarditis-like virus (3.17%), Escherichia virus WGPS2 (2.37%),
Pandoravirus macleodensis (2.17%), Pandoravirus salinus (2.12%), Escherichia virus RCS47
(2.04%), Escherichia virus Goslar (1.90%), Escherichia virus P1 (1.79%), Shigella virus Sb1
(1.65%), Escherichia virus EC1UPM (1.44%), Shigella phage SfIV (1.32%), Escherichia virus
G7C (1.28%), Salmonella virus SPN3US (1.22%), Escherichia virus IME11 (1.21%), Enterobac-
teria phage mEp460 (1.21%), Cotesia congregata bracovirus (1.20%), Escherichia virus Bp4
(1.19%), Salmonella virus SJ46 (1.18%), Salmonella phage SSU5 (1.13%), Erwinia virus Asesino
(1.11%), Pandoravirus dulcis (1.09%), Ictalurid herpesvirus 1 (1.06%), Escherichia virus APEC7
(1.03%), and Escherichia virus 2H10 (1.00%). The abundance of other viral species was less
than 1.00%.

In the group of piglets with diarrhea, Bacteroides phage B124-14 prevailed with the
highest relative abundance (9.78%); then, we observed the following distribution: Bac-
teroides phage B40-8 (6.58%), Escherichia virus 500465-2 (3.19%), Escherichia virus WGPS2
(3.07%), Escherichia virus 500465-1 (2.99%), Piscine myocarditis-like virus (2.45%), Escherichia
virus 2H10 (1.42%), Pandoravirus macleodensis (1.39%), Escherichia phage TL-2011b (1.33%),
Escherichia virus P1 (1.32%), Pandoravirus salinus (1.28%), Escherichia virus RCS47 (1.26%),
Shigella phage SfIV (1.18%), and Salmonella virus SJ46 (1.12%).

Despite the presence of differences in the distribution of viruses between the studied
groups, we did not find statistically significant differences in alpha and beta diversity (Figure 6).
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An analysis to examine differences in abundance at the species level revealed that
the prevalence of the two viruses had a statistically significant difference between groups.
Thus, the abundance of Bacteroides phage B40-8 was higher in the group of piglets with
diarrhea and amounted to 6.58%, compared with the healthy group (0.06%, p-value = 0.04).
The abundance of Escherichia virus Bp4 in the healthy group was 1.19%, and 0.002% in the
observation group (p-value = 0.04).

4. Discussion

Our study aimed to identify differences in the microbiome between suckling piglets
with diarrhea and a group of healthy ones. The study of the microbiome profile was carried
out using the DNBSEQ-G50 sequencing system. Jaehoon Jung and colleagues showed
how synbiotics affect the fecal microbiome of Korean black pigs. For the study, they used
shotgun metagenome sequencing in the MGISEQ system, as well as sequencing of the
target 16S rRNA gene. They found statistically significant effects of synbiotic treatment on
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the distribution of microbial functional gene groups using shotgun sequence data, but not
with 16S rRNA sequence data [31].

The types of bacteria actively colonizing the intestines of newborn piglets are gram-positive
Firmicutes and Actinobacteria, as well as gram-negative Fusobacteria and Bacteroidetes [32–34]. The
most common type in our study was Firmicutes. The maximum abundance of Proteobacteria
is characteristic of newborn piglets. Our study also showed a significant predominance of
Fusobacteria in the observation group compared to the control group, but this difference was
not statistically significant. Despite this, it should be noted that there are more Fusobacteria in
suckling piglets than in piglets at other growth stages. Fusobacteria and other pathogenic bacteria
commonly found in the gastrointestinal tract of suckling pigs are known to cause diseases
such as diarrhea and enteritis [35–37]. In addition, it has been observed that the number of
Fusobacteria in piglets with diarrhea can be four times higher than in healthy piglets. Such
disturbances not only increase the risk of diarrhea and mortality but can also affect nutrient
absorption and host anti-inflammatory regulation [38].

It has been noted that suckling pigs are characterized by the predominance of Bac-
teroidaceae over Prevotellaceae [12]. We observed this pattern in our study for both groups.
Healthy piglets had more Enterococcus faecium than piglets with diarrhea. It is known
that some strains of E. faecium are probiotics and can have a beneficial effect on the host
organism, reducing the likelihood of developing intestinal pathologies, and strengthening
the intestinal wall [39–41].

In our study, the number of Bacteroides fragilis in the healthy group was even twice
as high as in piglets with diarrhea. B. fragilis is known to be a symbiont that colonizes
the mucus or colonic epithelium. It is known that it can protect the host against multiple
preclinical colitis and other gastrointestinal diseases by inducing an anti-inflammatory
response [15,42].

We also observed a high abundance of Clostridium perfringens in healthy piglets com-
pared to piglets with diarrhea. However, C. perfringens is a common pathogen in animals
and humans, and some strains are capable of causing diarrhea in newborn piglets [43,44].

However, in all the differences in the bacterial composition noted by us, they were not
statistically significant, which may be due to the main limitation of this study—the small
sample size.

During the observation, we were interested not only in the bacterial composition of
the intestine but also in fungal and viral ones. We found that all fungal species identi-
fied belonged to three phyla, the most common of which was Ascomycota. Basidiomycota
was the next most common fungal phylum. Our results are consistent with the literature
data [11,45]. Microsporidia were another type discovered, with an average abundance for
both groups of less than 0.5%. Microsporidia species can cause diarrhea, malabsorption,
and possible lung pathology, and host health is a major factor influencing the likelihood of
developing these symptoms [46,47]. The most well-known pathogenic species is Entero-
cytozoon bieneusi, which was not found in this study; however, we found Encephalitozoon
romalae, Encephalitozoon enteralis, Encephalitozoon cuniculi, and Encephalitozoon hellem, which
can also adversely affect the host [48,49].

The most common fungal genus in the study population was Aspergillus oryzae.
A. oryzae is a fungus commonly used in the fermentation of feed ingredients in pig pro-
duction. When used in appropriate amounts, A. oryzae is generally considered safe and
may even provide some health benefits to pigs, such as improved digestibility of feed
ingredients and enhanced immune function [50,51]. The genus Pyricularia was the second
largest among the studied piglets. Representatives of this genus are known to be pathogens
for some plants, such as rice and other cereals, and cause blasts in them [52,53]. In our
samples, Pyricularia grisea accounted for the largest share.

Schizosaccharomyces pombe was also found in the studied samples. However, infor-
mation on the health effects of S. pombe in pigs is limited. In turn, supplementation with
S. pombe has been shown to improve nutrient uptake and growth performance in broiler
chickens [54].
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We also found that Fusarium abundance in diarrheic piglets was not significantly
higher than in healthy piglets. Fusarium species are known to frequently contaminate
grain and other feed ingredients and can produce a variety of mycotoxins including
deoxynivalenol, zearalenone, and fumonisins. These mycotoxins can cause negative health
effects in pigs [55,56].

Pichia and Penicillium abundances did not differ between study groups, indicating that
the two opportunistic pathogens were not the cause of diarrhea in weaned piglets. Overall,
mycobiota analysis did not reveal significant differences in fungal composition between
healthy piglets and piglets with diarrhea.

Moreover, part of our work was the study of the intestinal virome of piglets. According
to the results, Siphoviridae is one of the dominant families both in the observation group
and in the healthy group. According to previous studies, Siphoviridae accounted for the
largest proportion of the porcine intestinal virome and also represented the majority of
viruses in the human intestine [44,57]. The other dominant family was the Myoviridae,
whose abundance between healthy and diseased piglets was almost the same. These data
are consistent with previous studies, where this family was one of the most common in
pigs [58]. The number of Schitoviridae in the group of healthy piglets was significantly
higher than in sick ones; however, we were unable to find data on the association of this
virus family with the intestines of pigs. It is only known that Schitoviridae were previously
found in the intestines of horses and wild pandas, as well as in the oral cavity and saliva of
humans [59–61]. The number of Podoviridae was twice as high in piglets with diarrhea. The
Podoviridae are known to contain viruses that most commonly infect bacteria and dominate
all microbiomes. It was previously detected in pig feces [62]. Although these differences
are not statistically significant, these results, in combination with previous studies, may
indicate that these families may be involved in the pathogenesis of metabolic disorders in
the body.

When examining the virome of piglets, we found statistically significant differences
between the two bacteriophages. Thus, the number of Bacteroides phage B40-8 was higher
in the group of piglets with diarrhea compared to the healthy group. It is known that
this bacteriophage can infect several strains of Bacteroides fragilis, which, in turn, may be
involved in the development of diarrhea in pigs [63,64]. However, in our study, Bacteroides
fragilis was not involved in the development of diarrhea in piglets.

The amount of Escherichia virus BP4, on the contrary, prevailed in the group of healthy
piglets compared to diarrheal piglets. BP4 is considered a “lytic” phage, which means
that it can cause rapid destruction of E. coli cells upon infection by lysis or rupture of the
bacterial cell [65]. In our study, the group of healthy piglets was dominated by E. coli.

Thus, this and other studies indicate that the porcine fecal virome is a complex and
diverse ecosystem that plays an important role in pig health and disease. In turn, further
research is needed to fully understand the functions and interactions of the various viruses
present in the pig intestine. It is also necessary to evaluate the effect of feed on the com-
position of the fecal virome of piglets, because it is known that feed can have a significant
impact on the fecal microbiome of pigs [66].

5. Conclusions

This study aimed to comprehensively explore the microbiome of diarrheic piglets
using shotgun metagenomics sequencing on the DNBSEQ-G50 system. We conducted
a comparative analysis of the microbial, fungal, and viral composition between healthy
suckling piglets and piglets with diarrhea. Such patterns may be useful as early biomarkers
of diarrhea susceptibility, as well as lay the foundation for early preventive measures.
However, in our study, the fecal microbiota at the level of bacteria and fungi did not differ
from the healthy group in piglets with diarrhea. We only observed a higher rate of bacterial
alpha diversity in the group of diarrheic piglets, which may be due to dysbacteriosis and
inflammation. When studying the virome, we found a difference at the level of two phage
species: Bacteroides phage B40-8 and Escherichia virus BP4, the first of which prevailed in



Animals 2023, 13, 2303 10 of 13

sick piglets, and the second in healthy ones. Further research is needed to evaluate the
impact of these phages on gut health.

In addition, our work demonstrates the diversity and abundance of the mycobiome in
the feces of piglets. Although they are outnumbered by bacteria, the potential role of fungi
in piglet health remains unknown, and future studies are needed to evaluate the health
impact of fungal populations. It is also necessary to elucidate the mechanism of fungal
colonization of the intestines and feces of piglets.

The results of our study may indicate that the association between the fecal microbiome
and susceptibility to diarrhea in suckling piglets may have previously been overestimated.
However, this is one of the few studies that shed light not only on the bacterial com-
position but also studied in detail both the fungal and viral composition of the fecal of
suckling piglets.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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