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Abstract: Cardiovascular diseases are the leading cause of morbidity and mortality in the United
States. Cardiac tissue engineering is a direction in regenerative medicine that aims to repair various
heart defects with the long-term goal of artificially rebuilding a full-scale organ that matches its native
structure and function. Three-dimensional (3D) bioprinting offers promising applications through
its layer-by-layer biomaterial deposition using different techniques and bio-inks. In this review, we
will introduce cardiac tissue engineering, 3D bioprinting processes, bioprinting techniques, bio-ink
materials, areas of limitation, and the latest applications of this technology, alongside its future
directions for further innovation.
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1. Introduction

Cardiovascular diseases (CVDs) are pathologies affecting the myocardium, heart
valves, or vasculature [1]. CVD is the leading cause of morbidity and mortality in the United
States and is currently on the rise [1–3]. This is attributed to the heart being one of the least
regenerative organs in the body due to cardiomyocytes’ limited renewal potential and a lack
of endogenous cardiac stem cells [4–6]. Treatments for CVD include lifestyle modifications,
therapeutic methods, or surgical interventions such as heart transplantation [2,6].

Tissue engineering has the potential to develop practical replacements for damaged
tissue through material engineering, life sciences, and computer modeling [5,7]. Specifically,
the field of cardiac tissue engineering aims to repair damaged or diseased blood vessels,
heart valves, cardiac muscle, and other defects, with a long-term goal of artificially rebuild-
ing a full-scale organ that matches native structure and function [1,6,8]. In the past several
years, three-dimensional (3D) bioprinting has been progressive in its technical advance-
ments and promising applications. 3D bioprinting involves the layer-by-layer deposition
of biomaterials to fabricate architectures, including structural scaffolds, functional tissues,
organ models, and more [5,7]. The four main bioprinting techniques are droplet-based,
laser-assisted, stereolithography, and extrusion-based, and are used with a range of natural,
synthetic, and hybrid bio-inks.

This review will first introduce cardiac tissue engineering, then highlight various
aspects of 3D bioprinting, specifically the engineering process, bioprinting techniques, and
bio-ink materials. Finally, we will summarize recent cardiac applications of 3D bioprinting,
its limitations, and future directions for its advancement and integration in biomedical
applications and regenerative medicine.

2. Cardiac Tissue Engineering
2.1. Cardiovascular Diseases

The heart has limited regeneration potential and cardiomyocytes are threatened by
factors such as ischemia, necrosis, and apoptosis which lead to heart disease or failure [9].
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Additionally, cardiomyocytes exhibit low cell turnover rates of 0.3–1% per year [10]. Fol-
lowing myocardial infarction, up to one billion cardiomyocytes are lost, forming scar tissue
unable to transmit electrical signals and contractile activity [11]. Prolonged cardiac damage
increases the risk of CVD, as well as irreversible acute and chronic heart failure [5].

Many therapies for CVD are restricted to symptomatic treatment, which lacks the
ability of in situ cardiac resurrection [6]. Heart transplantation for end-stage heart failure
is limited by a lack of organ donors, immune rejection [12], surgical complications, anti-
coagulant therapy [13], and restricted durability. Prosthetic valve devices pose a risk of
thromboembolic complications and lifetime bleeding [14,15]. Specifically, xenografts of
bovine or porcine heart valves are commonly associated with structural valve failure [16].
Autografts used in coronary artery bypass graft surgeries are limited by the availability of
suitable conduits for patients, as well as additional risks associated with surgeries [17,18].
Limitations of current CVD therapies lead to a recent direction seeking regenerative cell
sources as a bioengineering solution. Clinical studies have shown promising results of
stem cell transplants, from the cellular level to engineered heart tissues [19–21]. However,
direct injection of stem cells often results in low cell viability [5]. Using induced pluripotent
stem cells (iPSCs) for in vitro and in vivo cardiac reprogramming is also restricted by a
lack of mechanical support and directional guidance from the nearby extracellular matrix
(ECM), resulting in cell lines that are not morphologically sufficient for higher-dimension
organization necessary for anatomical shaping and organic integration [6].

2.2. Tissue Engineering

A regenerative engineering solution addressing the limitations of CVD therapies is
the field of tissue engineering, a multidisciplinary approach that offers strategies to replace
damaged tissue. Cardiac tissue engineering is motivated by the need for functional tissue
equivalents in repairing heart defects and studying cardiac tissue. Approaches in tissue
engineering are determined by cell source, biomaterials, oxygenation, media perfusion,
and exposure to physiologically relevant stimuli [22–24]. One important aspect of tissue
engineering is scaffold design. Scaffolds act as a supportive framework promoting cellular
interactions, adhesion, proliferation, and differentiation, as well as providing support to
the developing tissue [8]. Scaffolds can also function as a vehicle for delivering and incor-
porating growth factors for controlled and enhanced tissue growth [7]. Scaffold fabrication
techniques include but are not limited to micropatterning [25], electrospinning [26], ther-
mally induced phase separation [27], and hydrogel matrix systems [28]. An ideal scaffold
mimics the natural ECM of the tissue’s implantation site for suitable cell development and
regeneration [29].

2.3. 3D bioprinting

Three-dimensional (3D) bioprinting enables the fabrication of 3D architecture of com-
plex spatial patterns through the layer-by-layer deposition of a range of biomaterials [5].
3D bioprinting allows for control over construct fabrication and cell distribution, with a
printing resolution close to the finest features of tissue microarchitecture from ten to a
few hundred micrometers (µm) [30–32]. With substantial repeatability, reproducibility,
controllability, and printing throughput, 3D bioprinting can produce customized devices
with continuous and stable biological patterns. This technology offers potential for tissues,
organs, prosthetics, drug delivery systems, and, ultimately, high-resolution simulations of
the heart for innovative explorations of myocardial tissue repair and regeneration [5,6,33].

The bioprinter is encapsulated by a set of consecutive manufacturing operations
guided by integrated computer numerical control machinery. Basic industry references
are indicated by fundamental operating parameters, crosslinking, and print rheology
measurements [34–36]. During the printing process, the platform’s movement is governed
by coordinates saved in file format, such as a g-code, that can be easily followed by the
printer [7].
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Print conditions, such as printing nozzle aperture, printing speed, printing temper-
ature, number of printed layers, and layer thickness, can vary widely. Each variable
can greatly impact cell survival and construct fidelity [6,7,37,38]. Printability should be
optimized to improve the fabrication process and construct properties [7].

Following construct completion, biological and mechanical assessments are performed
for the physiological stability and functionality of the printed structures. Factors for consid-
eration include structural fidelity, mechanical stability and elasticity, structure swelling and
degradation, cell viability, and cell-material interactions [39]. For cardiac tissue bioprinting,
construct evaluations include observing cardiac biomarkers, effective contractile forces,
spontaneous action potential, overall calcium regulation, and more [6]. Post-fabrication
steps, which are required to accustom the biomaterial to new functions, are selected depend-
ing on different properties of cardiac tissues, such as contraction [40], blood and nutrient
perfusion [41–43], and electrical signaling [1,44].

3. Bioprinting Techniques

3D bioprinting can be classified into four main techniques, namely droplet-based, laser-
assisted, stereolithography and digital light processing, and extrusion-based bioprinting. A
summarization of these four main bioprinting techniques is presented in Table 1.

Table 1. A summarization of four main bioprinting techniques.

Droplet-Based Laser-Assisted
Stereolithography &

Digital Light
Processing

Extrusion-Based

Advantages

Precise deposition, high
cell viability, biomaterial

compatibility, variable
biomaterial concentrations,
controllable growth factors

Non-contact printing,
biomaterial

compatibility, high cell
viability, high cell

densities

Non-contact printing,
high resolution, high
printing speed, cell
viability, high cell

densities

Biodegradability
properties, simultaneous

usage of multiple
biomaterials, multiple

nozzles, high cell densities,
high viscosity bio-ink

Limitations

Inability to extrude
continuous flow of bio-ink,

low cell densities, low
viscosity bio-ink

Time-consuming, high
cost, limited construct

size

Damage from UV
exposure, cytotoxic

effects, limited range of
bio-inks

Low resolution, low
precision

3.1. Droplet-Based Bioprinting

Droplet-based bioprinting involves replacing the printer’s ink cartridge with biological
material for continuous droplets printed through an ejector [8,45], illustrated in Figure 1.
Droplet-based bioprinting offers advantages such as its compatibility with a range of
biomaterials with remarkable cell viability greater than 90% [8]. Micro-scale droplets that
are 1–100 picolitres with densities of up to 10,000–30,000 cells per drop can be printed at a
deposition rate of 1–1000 drops per second [46,47], which results in high construct resolution
(<100 µm). Droplet-based bioprinting also allows for variable biomaterial concentration
gradients with controllable cell growth factors by altering drop density and/or size [5].

Droplet-based bioprinting can be classified into electrohydrodynamic jet, acoustic,
microvalve-based, and, most commonly, inkjet bioprinting [1]. Drop-on-demand inkjet
bioprinting is based on an automated delivery of a controlled volume of bio-inks, usually
containing cells, in a droplet fashion to predefined locations [5]. Materials’ deposition relies
on persistent external mechanical force and gravity, which creates a 3D structure directed
by an established route, as the base elevator [6] is electronically controlled for z-axis move-
ment [8]. Drop-on-demand inkjet bioprinting can be further classified into continuous-inkjet
bioprinting, electrohydrodynamic jet bioprinting, and drop-on-demand inkjet bioprinting
based on varied droplet motivation mechanisms [7,48]. Though inkjet-based bioprinting
of cardiac tissues is still in its infancy stage, many developments have been studied with
this technique [49–51]. Biomaterials compatible with inkjet bioprinting usage include hy-
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drogels, fibrin, agar, alginate, and collagen [52]. Specific mechanisms of drop-on-demand
inkjet bioprinting, which offer negligible impact on cell viability, include thermo-based,
piezoelectric-based, and electrostatic inkjet bioprinting [8,53]. Thermal-based bioprinting
uses an ink chamber extruded through several small nozzles [1]. Localized heating pro-
duces short currents and pressure pulses to the heating element, raising the temperature of
the ink’s surrounding element, which results in bubble formations that eject ink droplets [8].
However, thermal-based bioprinting is not commonly used in tissue engineering due to
the loss of cell activity or hydrogel denaturation caused by high temperatures, which may
be upwards of 200 ◦C [48,54]. Piezoelectric-based bioprinting uses piezoelectric crystals
at the rear end of the bio-ink chamber that vibrate in response to electrical charges. These
inward vibrations force small amounts of bio-ink through the nozzle [55]. Yet, the gen-
erated acoustic waves work in a frequency range of 15 to 25 kHz, which may cause cell
damage [5,8]. Electrostatic inkjet bioprinting utilizes instantaneous increases in volume
to achieve ejection. Applying impulse voltage to a platen and motor bends the platen for
bio-ink extrusion [56].
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(A) Thermal-based bioprinting uses localized heating to eject ink droplets along with vapor bubble
formation. (B) Piezoelectric-based bioprinting involves an electric current that passes through a
piezoelectric actuator to generate droplets.

There are several drawbacks of droplet-based bioprinting, such as the inability of the
printer to extrude a continuous flow of bio-ink, which limits the mechanical and structural
integrity of printed constructs [53,57]. To counteract shear stresses from crosslinking
processes, bio-inks for droplet-based bioprinting must exhibit low cell densities compared
with other printing techniques [58]. The dispensing mechanism and non-contact nature
of the printer require bio-inks with lower viscosity (3.5–20 millipascal seconds, <10 cP),
resulting in constructs lacking structural integrity and mechanical strength [59–61], as well
as non-uniform droplet size, low droplet directionality, mechanical and shear stress to cells,
and frequent nozzle clogging [5].

3.2. Laser-Assisted Bioprinting

Laser-assisted bioprinting relies on sensitive optical guidance, where a high-intensity
laser propels bio-ink droplets in a non-contact mode [5,6], as shown in Figure 2. Laser-
assisted bioprinting uses a pulsing laser beam and two parallel slides—a donor and
collector—to produce the desired construct. A laser-absorbing metal beneath the donor
slide is covered by the biomaterial to be transferred. As the laser pulses—with energies
ranging from 65 nJ to 190 uJ—are absorbed by this metal, biomaterials from the donor
slide fall through the evaporated metal onto the collector slide [62–64]. This technology
allows for high-resolution deposition of biomaterials in the solid or liquid phase [7], cre-
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ating 2D or 3D models through stacking of droplets [65]. Advantages of laser-assisted
bioprinting include eliminated orifice nozzle clogging or contamination factors [1], high
cell viability attributed to the low mechanical stress on cells during printing [5,65], a wide
range of biomaterials usable [5], ability to deposit cells with high resolution, and high
printing speeds [18,66]. With regard to cell deposition, laser-assisted bioprinting allows
for control over the number of cells per droplet and high cell densities, where the printing
resolution is dependent on parameters such as biomaterial viscosity, layer thickness, and
laser influence [16,18]. On the other hand, laser-assisted bioprinting is time-consuming,
costly, not commercially available, and only capable of producing small-sized structures,
resulting in limited clinical applications [1,5].
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Figure 2. Mechanism of the laser-assisted bioprinting technique. This approach consists of a laser
beam, a focusing lens, and two slides. The donor slide is composed of a laser-absorbing metal layer
and a bio-ink layer. Laser pulses vaporize the metal layer and form droplets, which are ejected onto
the collector slide below.

3.3. Stereolithography and Digital Light Processing Bioprinting

Both stereolithography and digital light processing bioprinting are based on the
polymerization of photo-cross-linkable materials (light-sensitive polymers) using a precisely
controlled light source [5,7]. The respective schematics of stereolithography and digital
light processing are illustrated in Figure 3.

Stereolithography involves a laser-assisted bioprinting system to produce structures by
photocuring photopolymerizable liquid polymers, creating more realistic microstructures
compared to other techniques [67]. Photocuring and photopolymerization occur as liquid
polymers are crosslinked by exposing predesigned patterns using ultra-violet (UV), infrared,
or visible light laser beams. Stereolithography operates using a UV light source, a liquid
photopolymer resin tank, and a three-axis motion platform [68]. A platform is lowered
into the resin tank, creating a thin layer of liquid between the platform and the bottom
of the tank. The laser is guided through a window at the bottom of the tank and draws
cross sections of the 3D construct while selectively polymerizing the biomaterial. Once one
layer is finished, it is removed from the bottom of the tank, allowing fresh resin to flow
beneath it. The platform is then lowered and the process is repeated [5]. Stereolithography
offers high printing resolution of 200 nanometers [69], fast printing speed [67,70,71], high
cell viability due to the nozzle-free mechanism [72], and construct accuracy [1]. A major
drawback of stereolithography is that its UV light sources are expensive and affect cell
viability [67,73]; this challenge is overcome with the usage of visible light stereolithography
bioprinting [69,74].
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(A) Stereolithography uses a light source, a photopolymer resin tank, and a motion platform. The
laser draws cross sections of the construct, and then the platform is lowered following the completion
of each layer to let fresh resin flow beneath. This process is repeated layer by layer. (B) Digital light
processing uses a light projector and mirror device that reflects the incoming light. Entire layers of
the bio-ink are selectively solidified simultaneously while the platform moves vertically.

While stereolithography uses a UV laser beam to solidify materials, digital light
processing employs a digital light projector as a light source. A micromirror device with
user-defined patterns consecutively loaded to turn on/off mirrors to reflect incoming UV
light [75–77]. This process selectively solidifies photocurable bio-inks in a layer-by-layer
process controlled by a moveable stage along the z-axis. As such, entire layers may be
fabricated simultaneously in a single exposure phase for a reduced printing time, and the
nozzle-free technology avoids clogging and excessive shear stress to cells [8].

Both stereolithography and digital light processing are limited by cytotoxic effects that
may result from photo initiations and UV light exposure [78,79]. Additionally, the range
of bio-inks used in stereolithography and digital light processing bioprinting is limited
by their need to be readily crosslinked through light irradiation in order for the uncured
bio-ink to interface with the cured layers [80].

3.4. Extrusion-Based Bioprinting

Extrusion-based bioprinting utilizes a computer-controlled system to continuously
extrude bio-inks, specifically viscoelastic biomaterials in filaments [81], using layer-by-layer
extrusion with the nozzle free to move in the x-y-z directions and an adjustable printer stage
to fabricate a 3D construct [1,5]. Among extrusion-based bioprinting approaches, presented
in Figure 4, the pneumatic-based technique uses pressured air at a controlled volume
flow rate to drive fluid dispensing systems’ constant extrusion of bio-ink, whereas the
piston/screw-based technique mechanically forces biomaterials out of the nozzle [1,8,82].
Regarding printability, bio-inks with viscosities in the range of 30 to 6 × 107 mPas have been
reported to be printable [83]. Factors impacting printability include viscosity adjustability,
bio-ink phase (e.g., liquid phase) prior to extrusion, and biomaterial-specific parameter
ranges [84]. Advantages of extrusion-based bioprinting include the scaffold’s tunable
biodegradability properties, which can match ECM regenerate rate [85], simultaneous
usage of multiple biomaterials and/or varying cell types with multi-nozzle bioprinters,
deposited cell densities close to physiological (cardiomyocyte) densities, and convenience
and affordability [8]. Limitations include its low printing resolutions and difficulty in
obtaining precise cell patterning and organization [5].
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Figure 4. Diagram of the extrusion-based bioprinting approach. This method involves a computer-
controlled system to direct the nozzle in the x-y-z directions. The pneumatic-, piston-, and screw-based
techniques drive bio-ink, in filaments, out of the nozzle to form the construct.

The two main extrusion methods of extrusion-based bioprinting are direct and indirect
methods. Direct extrusion-based bioprinting is based on the extrusion of bio-inks into a
cell-friendly environment. Post-extrusion, hydrogels solidify to form the 3D construct, and
cells proliferate to undergo tissue remodeling [5]. Indirect extrusion-based bioprinting
uses fugitive ink that is removed by a thermally induced de-crosslinking process, leaving
only the hollow structure’s vascular network [25]. A recent extrusion-based method
employs a core–shell nozzle and crosslinking agent printed simultaneously with the bio-ink
extrusion [86,87].

Extrusion-based bioprinting has been employed in many applications [88–96]. For
example, in coaxial nozzle-assisted bioprinting, encapsulated cells are extruded through a
central needle while the crosslinking solution remains in the needle’s outer portion during
the printing process [93,97–104]. Fused deposition modeling involves the layer-by-layer
extrusion and fabrication of polymeric thermoplastic materials through a heated nozzle, al-
lowing for highly customizable morphologies and tunable mechanical properties [105,106].
Scaffold-free applications [107–110], arising from scaffolds’ high probabilities of rapid
degeneration [92,111,112], enable the direct printing of living cells into a predefined pattern,
where an inflammatory response due to scaffolding is avoided, and cells can immediately
differentiate in the 3D environment [86].

Freeform Reversible Embedding of Suspended Hydrogels (FRESH) is another rising
technique where hydrogel bio-inks are extruded into another hydrogel support medium
(FRESH) [113–116]. This method offers potential for fabricating complex structures, high
construct fidelity, tunable mechanical properties to create a suture-able tissue, reinforcing
cell survival through indirect extrusion-based bioprinting, reduced influence bio-inks’
rheological properties attributed to FRESH’s compatibility with lower viscosity bio-inks,
and low costs [5]. However, drawbacks include print repeatability and precision [5],
structure integrity and cell viability jeopardized by mechanical forces required for FRESH
removal [8], and the impacts of FRESH support bath conditions, which have been previously
studied in our work [117].

4. Bio-Inks and Biomaterials

Bio-inks used in 3D bioprinting are biomaterial solutions in hydrogel form, often
containing or encapsulating target cell types and growth factors, extruded for construct
fabrication [118]. Ideal bio-inks are non-toxic, non-immunogenic, and offer mechanical
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stability and integrity. Demonstrating appropriate biodegradability rates and promoting
cell adhesion may also be beneficial depending on the specific project needs. Other factors
for consideration include cytological elements [6], gelatin properties and crosslinking
ability, cost, print time, industry scalability, and permeability [119]. Specifically, crosslinked
hydrogels are highly porous, supporting tissue reconstruction and regeneration by allowing
cell–cell adhesion, proliferation, differentiation, and migration to populate scaffolds and
nutrient delivery for cells’ metabolic needs [1,9]. Additionally, bio-inks may also contain
additives to improve conductive properties, which is necessary for recreating the native
cell environment [5]. Bio-inks for bioprinting in cardiac tissue engineering should be
selected depending on the specific application. Of many features, bio-inks used in cardiac
tissue engineering should shield cardiac cells against varying pressure levels and shear
stresses [8], as well as assisting in the formation of vascular supportive substructures for
blood vessels on the micro-level. These factors are important for biomaterials to support
tissue reconstruction and regeneration, as well as to culture healthy tissues [9]. Maintaining
appropriate rheological abilities is also necessary for balancing the internal and external
shear forces on the construct during bioprinting [120].

Controlling cell microenvironments for tissue-engineered scaffolds is important in
directing cell behavior within scaffolds both spatially and temporally. This can be achieved
by inducing and maintaining cell alignment, which plays a role in cell behavior and tissue
functionality. Specific to cardiac tissue engineering, cardiac scaffolding tissues should
have microenvironment and contraction properties of cardiomyocytes. Biomaterials used
as scaffolds must form a biomimetic ECM to promote cell adhesion and differentiation
and 3D organotypic cultures. A review of some of the common biomaterials used in
cardiovascular bioprinting is shown in Table 2. Tissues composed of ideal biomaterial
elastomers for cardiac tissue engineering, such as exhibiting a low Young’s modulus, having
high elongation, tensile strength, elasticity, and tunability, as well as demonstrating stable
degradation characteristics, are integral for functionality [9,121].

Table 2. A brief review of common biomaterials used in cardiac tissue engineering.

Natural Synthetic Hybrid

Origin

dECM,
polysaccharides,

proteins, gly-
cosaminoglycans,
keratin, Matrigel

Polyacrylic derivatives,
polycaprolactone,

polyethylene glycol
copolymers, polyglycolic

acid, polylactic acids,
poly(DL) glycolate,

polyphosphazene, and
synthetic peptides,

polyvinyl alcohol and
derivatives, Pluronic

Blending natural and
synthetic polymers (e.g.,

alginate and gelatin
methacrylate, alginate
and polyvinyl alcohol

bio-inks, etc.)

Characteristics

High
biocompatibility,
bioactivity, low

mechanical
strength, properties,

tunability

Physical/chemical
modifications, high
mechanical strength,
control of printability,

low immunogenicity, low
biocompatibility, lack of
flexibility and elasticity

Improved structural
complexity, adjustable
growth factors, loading

different cell types in
different zones,

simultaneous deposition
of biomaterials with
varying properties

Natural biomaterials are derived from the organ of interest as decellularized extra-
cellular matrices (dECM), with high biocompatibility and intrinsic bioactivity mimicking
the native ECM [5,8]. These biomaterials may be derived from polysaccharides (e.g.,
agarose, alginate [122–126], chitosan), proteins (e.g., collagen [126–133], gelatin [134], fib-
rin [135]), glycosaminoglycans (e.g., hyaluronic acid [136,137], heparin), keratin, Matrigel
and dECM [138], silk fibers [139], and more. However, natural biomaterials have limita-
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tions as bio-inks due to low mechanical strength [6], insufficient mechanical properties,
variability, immunogenicity, and low tunability [5].

On the other hand, synthetic biomaterials span polyacrylic derivatives, polycapro-
lactone [5], polyethylene glycol copolymers, polyglycolic acid [131], polylactic acids [140],
poly(DL) glycolate, polyphosphazene, and synthetic peptides, polyvinyl alcohol and deriva-
tives, Pluronic [141], and more [142]. Synthetic biomaterials are compatible with a wide
range of physical and chemical modifications [5] and offer better physical integrity, higher
mechanical strength, enhanced control of printability, low immunogenicity, and no batch-
shift variability [6,8]. Their durable framework and biocompatibility also aid in the forma-
tion of grafts for cardiac implants and bypass surgeries [1]. Yet, drawbacks include inferior
biocompatibility compared to natural biomaterials [6], brittleness, lack of flexibility and
elasticity, and difficulty in mimicking tissue softness, stretchability, and electability, such as
in blood vessels and heart muscles [8].

Hybrid biomaterials demonstrate the cell-supportive properties of natural polymers in
conjunction with the mechanical properties and tunability of synthetic polymers. Examples
include blending alginate and gelatin methacrylate [143,144], as well as alginate and
polyvinyl alcohol bio-inks [145]. Multi-material constructs offer benefits such as improving
structural complexity, adjustable growth factors, loading different cell types in different
zones to mimic natural cellular diversity and activity, and the simultaneous deposition of
biomaterials with varying physical and chemical properties—useful in fabricating tissues
from varying regions with varying properties [7].

5. Bioprinting Applications in Cardiac Tissue Engineering
5.1. Cellular Sources

Cellular sources for cardiac tissue engineering bioprinted constructs should embody
fast cell proliferation, easy differentiation and maturation into the target cell type(s), easy
accessibility to cell sources of autologous origin, and non-antigenicity with immunity
to pathogens [146]. Ideal candidates for cardiac tissues include native cardiomyocytes,
progenitor cells, and stem cells, such as bone-marrow- or cord-derived mesenchymal stem
cells [147] and cardiac stem cells [148].

Stem cells offer flexible degrees of self-renewal, differentiation ability into cardiomy-
ocytes, and high proliferation [5], as well as the potential to reduce immune rejection of
grafts, decrease thrombogenic effects, and availability on-demand [149]. Disadvantages
include their ethical controversies, immature phenotypes, absence of transverse tubules,
reduced contractility, and altered metabolic and electrophysiological properties in compari-
son with adult cardiomyocytes [5]. Regarding stem cell usage in 3D bioprinting, one study
employing gelatin-fibrin bio-ink explored the ratio of co-culturing varying types of car-
diac cells such as cardiomyocytes, cardiac fibroblasts, endothelial cells, and demonstrated
hetero-cellular coupling of different cell types via bioprinting [112]. Relatedly, one study
showed hetero-cellular crosstalk between two dissimilar cell types (C2C12 myocytes and
STO fibroblasts) at the interface of printed cell sheets in the multi-layered tissue [94]. The
cellular crosstalk observed in these studies demonstrated applicability for future tissue
engineering of complex tissues.

5.2. Cardiac Tissue and Patches

Cardiac patches have properties desirable for clinically relevant cardiac repair [150].
They have been specifically used to repair or replace diseased cardiac tissues and restore
cardiac functionality to an extent [1]. Recent advances have been made to fabricate tissues
using 3D bioprinting technology. In 2009, Cui et al. studied the formation of microvascular-
ization through simultaneous printing with human vascular endothelial cells and fibrin
scaffolding [60]. The group found the 3D tubular structure in printed patterns, with cell
alignment present inside channels and proliferation forming confluent linings. This study
showed the implications of simultaneous cell and scaffold printing in cell proliferation
and microvasculature. Later in 2013, Shin et al. seeded neonatal rat cardiomyocytes onto
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carbon nanotubes that incorporated photo-cross-linkable gelatin methacrylate hydrogel to
create cardiac patches [151]. Excellent mechanical integrity and advanced electrophysio-
logical functions were observed in the constructs, demonstrating the potential of carbon
nanotube incorporation in fabricating multifunctional cardiac scaffolds. A more recent
study by Jang et al. in 2017 used stem cell-laden dECM bio-inks to print pre-vascularized
and functional multi-material 3D structures [89]. Once developed, the stem cell patch was
shown to promote strong vascularization and tissue matrix formation when implanted in
hearts in vivo. The patch showed reduced cardiac hypertrophy and fibrosis, increased cell
migration from the cardiac patch to the myocardial infarct site, formation of neo-muscle
and capillaries, and overall improved cardiac functions. Most recently, in 2019, an approach
by Noor et al. involved printing thick, vascularized, and perfuse-able cardiac patches
matching patients’ immunological, cellular, biochemical, and anatomical properties [152].
Patients’ omental tissue was reprogrammed into iPSCs and then differentiated into car-
diomyocytes and endothelial cells, where they were combined with hydrogels as bio-ink in
fabricating cardiac tissue and blood vessels. Noor et al. demonstrated the ability to print
vascularized patches according to patient anatomy and improved blood vessel architec-
ture. Cellularized human hearts with natural architecture were also printed in this study,
indicating a potential for engineering personalized tissues and organs.

The in vitro fabrication of cardiac tissue is more sophisticated than bioprinting car-
diac patches and requires ordered arrangement of multiple cell types for a multi-scale
vasculature network, lymphatic vessels, and neural and muscle tissues [1]. Tissues must
also possess electrical pacing for autonomous contractions. Many recent studies have
demonstrated promising results of bioprinting cardiac tissues.

For example, over a decade ago, Xu et al. reported fabricating bioengineered cardiac
pseudo tissues—specifically contractile cardiac hybrids and a “half-heart” structure—with
beating cell responses using an inkjet-based bio-prototyping method [153]. In another
study, Wang et al. used cardiomyocyte-laden hydrogel to bioprint cardiac tissue constructs
with spontaneous synchronized contractions in vitro [154]. Progressive tissue development
and maturation were shown, as well as physiologic responses to cardiac drugs, implying
cardiac tissue engineering and pharmaceutical applications. Later in 2018, Maiullari et al.
presented work with heterogeneous multi-cellular constructors of human umbilical vein en-
dothelial cells and iPSC-cardiomyocytes [100]. After encapsulating cells in hydrogel strands
containing alginate and polyethylene glycol-fibrinogen, extrusion through microfluidic
bioprinting technology fabricated a cardiac tissue consisting of iPSC-cardiomyocytes. The
human umbilical vein endothelial cells provided the printed tissue with different defined
and blood vessel-like geometries, which aided tissue integration with host vasculature. As
shown, 3D bioprinting technologies have offered relevant implications in the generation of
cardiac tissues with properties comparable to the native tissue environment. An overview
of recent bioprinted cardiac constructs is summarized in Table 3.

Overall, tissue-engineered cardiac muscles may facilitate research on the heart’s physi-
ology and grant high-throughput drug screening platforms in vivo [8]. Advancements in
cardiac tissue bioprinting can ultimately lead to enhanced performance and functionality
of cardiac tissue constructs [155]. However, much research around printing limitations is
needed before further clinical applications.

5.3. Full Heart Organoid and Organ

Engineering functional heart organs comparable to native anatomies is the long-term
goal of cardiac tissue engineering [8]. An illustration of bioprinting and translation is shown
in Figure 5. Significant progress has been made over the past few years in this field. In 2019,
Noor et al. demonstrated the first use of fully personalized, non-supplemented bio-ink
materials for printing hearts with mechanical properties closely resembling the properties
of decellularized rat hearts [152]. Later that year, Lee et al. successfully printed five
components of the human heart, including a tri-leaflet heart valve, neonatal-scale collagen
heart, and human cardiac ventricle model using the FRESH bioprinting technique [156]. The
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bioprinted hearts accurately reproduced patient-specific anatomical structures with high
resolution. With regard to bioprinted cardiac organoids, in 2020, Kupfer et al. generated
macroscale tissue with geometric structures relevant to the cardiac muscle’s pump function.
The human-chambered muscle pumps exhibited beating and continuous action potential
propagation in response to cardiac drugs and pacing. Kupfer’s work has implications for
the fabrication of organoids of this nature, with applications for cardiac medical devices
and tissue grafting [157].

Table 3. An overview of recent bioprinted constructs in cardiac tissue engineering.

Construct Morphogenesis Physiology

Xu et al., 2009 [155] Cardiac hybrid “pseudo”
tissue and “half heart”

Feline cardiomyocytes with
alginate hydrogel

Microscopic and macroscopic
contractile functions,

excitation-contraction coupling, beating
upon simulation, cardiomyocyte

alignment, and attachment to
alginate/laminin channels

Jang et al., 2017 [90] Cardiac patch
Human dECM, c-kit+cardiac

progenitor cells, mesenchymal
stem cells.

Enhanced cardiac functions, reduced
cardiac hypertrophy and fibrosis,

increased cell migration from patch to
infarct area, neo-muscle, and capillary

formation

Wang et al., 2018 [156] Cardiac tissue

Infant rat primary
cardiomyocytes with

fibrin-based composite
hydrogel

Spontaneous synchronous contraction
in culture, progressive cardiac tissue

development, physiologic responses to
cardiac drugs

Maiullari et al., 2018 [101] Cardiac tissue

human umbilical vein
endothelial cells and

iPSC-cardiomyocytes with
alginate and PEG-Fibrinogen

hydrogel

High orientation index (different
defined geometries, blood vessel-like

shapes), function infiltration and
integration of vasculature into

constructs, development of large
endothelial-like structures

Noor et al., 2019 [154] Cardiac patch and
cellularized hearts

Cells from human omental
tissues repro-

grammed/differentiated into
cardiomyocytes and

endothelial cells, ECM
processed into hydrogel

Patient-specific functional vascularized
patches, improved blood vessel

architecture, elongated cardiomyocytes
with massive actinin striation,

anatomical structure, patient-specific
biochemical microenvironment

Lee et al., 2019 [158]

Heart components
(microstructure, vessels,

ventricles, valves,
neonatal scale human

heart)

iPSC-cardiomyocytes and
collagen

20 µm filament resolution, rapid
cellular infiltration and

microvascularization (microstructure)
and mechanical strength (valve);

synchronized contractions, directional
action potential propagation, wall

thickening (ventricles); patient-specific
anatomical structure (heart).

Kupfer et al., 2020 [159] Chambered organoid
iPSCs and ECM-based bio-ink

subsequently differentiated
into cardiomyocytes

Human chambered muscle pumps beat
synchronously, built pressure, and

moved fluid similar to a native pump;
connected chambers enabled perfusion

and replication of heart
pressure/volume relationships
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Figure 5. Illustration of a standard 3D bioprinting approach for generating an anatomical structure.
(A) Immunofluorescence images of cardiomyocytes used in cardiac tissue engineering applications.
Pictures here demonstrated neonatal cardiomyocytes stained for F-actin filaments (green) and nuclei
(blue). Reprinted from Wikipedia Commons (2015). (B) Allevi 3 extrusion-based bioprinter setup
to bioprint constructs using freeform reversible embedding of suspended hydrogel as a thermo-
reversible support bath. (C) Trileaflet valve construct printed using 5% sodium alginate shown
post-crosslinking. Scale bar = 10 mm.

Despite these major advances, bioprinting a fully functional and comprehensively
structured human heart has yet to be accomplished. For one, the heart’s intricate structure
and anatomy require long print times and complex material selection, such as scaffold
material and cell source. For example, the FRESH approach by Lee et al. used collagen
for printing the heart model, but printing with cells requires further research for manu-
facturability and potential clinical translation [156]. Printing resolution is also a major
challenge to overcome, as the average resolution of 3D bioprinted constructs ranges from
tens to hundreds µm, but the native tissue anatomy requires a resolution of 5–10 µm at the
minimum [8,51]. Another challenge is the proper environment for cell culture, which is
necessary for cell differentiation, tissue maturation, functional vessel network integration,
and overall mechanical stability.

Further improvement in mimicking the native cell environment is also required for per-
sonalized applications in clinical research. Bioprinting a full heart requires the development
of innovative biomaterials with physiologic mechanical properties, high biocompatibility,
and dynamic behaviors to sustain print architectures, cell viability, and promoted vascular
innervation [5]. Biomaterials used for bioprinting must also match the physical, chemical,
and biological properties of patient tissue for clinical translation [158]. To alleviate construct
immunogenicity, biomaterials, including gelatin and gelatin methacryloyl, dECM, and
polyethylene glycol, can be utilized to improve biocompatibility [159]. Additionally, the
inclusion of conductive polymers, sacrificial hydrogels, or adjunctive anti-inflammatory
compounds during printing may also be beneficial in integrating bioprinted tissues with the
host [160]. Further development is also needed of the heart’s complex components of mul-
tiple cell types, ECM, and multi-scale blood pumping structures [8]. More specifically, one
major challenge that needs to be addressed prior to clinical translation is the engineering of
vascular networks for functional tissue. Vascular networks enable nutrient delivery to the
tissue and proper tissue formation. However, bioprinting vasculature is currently limited
by printing resolution and speed, which are necessary for accurate construct structures
and cell viability [68]. To improve the regeneration of constructs for implantation, medical
imaging technologies can be employed to customize implants to match patients’ defect site
dimensions and shape [161].

Following successful printing, an appropriate ex vivo system may be needed to assess
the heart’s valvular tissues for functionality and to condition and train the entire organ
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to tolerate physiologic pressure and volume. Additionally, constructs’ structural and
mechanical integrity, as well as long-term functionality, are required for the application
of bioprinted tissues in clinical settings [162]. On this note, as the cost of bioprinters
falls rapidly, 3D bioprinted patient-specific multi-cellular tissues present a cost-effective
therapeutic for long-term treatment [160].

Regulatory standards and approval are also required for bioprinted tissues for clinical
use. These approval pathways are determined by construct quality, safety, and efficacy
in both nonclinical and clinical studies [163]. Generally, tissue-engineered products used
for medicinal purposes demand unique approval processes for healthcare applications
and commercialization. In the United States, bioprinted medical devices are subject to
control requirements from the Food and Drug Administration, the Food, Drug, and Cos-
metic Act, and additional market approval from regulatory agencies. In the European
Union, tissue-engineered product-based therapies and treatments follow regulations by
the European Medicines Agency. This agency regulates manufactured products for clinical
trials and evaluates the quality, safety, and efficacy of new treatments prior to approval for
marketing. 3D-printed medical device products are in accordance with legislation such as
the Active Implantable Medical Device Directive, Medical Device Directive, and In Vitro
Diagnostic Medical Device Directive. In China, tissue-engineered medical products are
regulated according to the Medical Devices Classification Rule by the China Food and
Drug Administration, with a focus on final product utility. In Japan, tissue-engineered
products for clinical practice are regulated by the Pharmaceuticals and Medical Devices
Agency. In Korea, 3D bioprinted scaffold implants must comply with the Korean Good
Manufacturing Practice standards. Additionally, in India, the Central Drug Standards
Control Organization regulates tissue-engineered products as therapeutic drugs, as well as
assisting in manufacture, import, and marketing. On an international scale, guidelines and
standards for tissue-engineered medical products are presented by the International Orga-
nization of Standards and the American Society for Testing and Materials [164]. The clinical
translation of bioprinted tissues concerns various ethical scrutiny, including cell source,
processing procedures, cost, variability post-implantation, and construct ownership [163].
To overcome regulatory requirements, multidisciplinary research should be conducted by
experts in biology and medicine alongside experts in additive manufacturing and material
science to achieve optimization and scalability of bioprinted products [165].

6. Conclusions

Overall, 3D bioprinting employs various bioprinting techniques using different bio-ink
compositions to create functional models and tissue constructs. The droplet-based, laser-
assisted, stereolithography and digital light processing, and extrusion-based bioprinting
methods all demonstrate various advantages and drawbacks ranging from nozzle extrusion
to print speed and construct resolution. Natural, synthetic, and hybrid biomaterials have
been employed and researched for cell-supportive properties and mechanical tunability.
Recent applications in cardiac tissue engineering ranging from tissue models to whole
organs are relevant to understanding regenerative medicine and clinical studies. 3D bio-
printing offers important implications in cardiac tissue engineering, with the technology’s
limitations requiring much further work to address. Overall, cardiac tissue engineering has
significant implications in the field of clinical medicine for the repairment, regeneration,
and replacement of injured heart tissue and the organ as a whole. Further innovation
to address current limitations offers potential for promising applications in regenerative
medicine and clinical translation.
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