Skip to main content
. 2023 Jul 24;10(7):880. doi: 10.3390/bioengineering10070880
Algorithm 1: Proposed
Input: Dataset, Number of features fj=f1,f2,,fm, Number of data Di=d1,d2,,dn
Output: prediction accuracy increases
  1. Input the number of features fj

  2. For every feature fi Di

  3.    Measure of the Bregman divergence and between fi and  φB

  4.    if ( φB>δ) then

  5.     Project the features as similar

  6.    else

  7.     Project the features as dissimilar

  8. End if

  9.    Select the similar feature subset

  10.    Remove the dissimilar feature subset

  11. End for

  12.    For each information in ‘d1’ with fi

  13.     Perform the regression analysis ‘R

  14.      If (R<0.5then

  15.        Patient data is classified as ‘low risk’

  16.        Else If (R=0.5then

  17.           Patient data is classified as ‘medium risk’

  18.          Else If (R>0.5then

  19.           Patient data is classified as ‘high risk’

  20.    End if

  21.   Obtain the classification.

  22. End for

  23. End