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Abstract: Heat shock proteins (HSPs) encompass both extrinsic chaperones and stress proteins.
These proteins, with molecular weights ranging from 14 to 120 kDa, are conserved across all living
organisms and are expressed in response to stress. The upregulation of specific genes triggers the
synthesis of HSPs, facilitated by the interaction between heat shock factors and gene promoter
regions. Notably, HSPs function as chaperones or helper molecules in various cellular processes
involving lipids and proteins, and their upregulation is not limited to heat-induced stress but also
occurs in response to anoxia, acidosis, hypoxia, toxins, ischemia, protein breakdown, and microbial
infection. HSPs play a vital role in regulating protein synthesis in cells. They assist in the folding
and assembly of other cellular proteins, primarily through HSP families such as HSP70 and HSP90.
Additionally, the process of the folding, translocation, and aggregation of proteins is governed by the
dynamic partitioning facilitated by HSPs throughout the cell. Beyond their involvement in protein
metabolism, HSPs also exert a significant influence on apoptosis, the immune system, and various
characteristics of inflammation. The immunity of aquatic organisms, including shrimp, fish, and
shellfish, relies heavily on the development of inflammation, as well as non-specific and specific
immune responses to viral and bacterial infections. Recent advancements in aquatic research have
demonstrated that the HSP levels in populations of fish, shrimp, and shellfish can be increased
through non-traumatic means such as water or oral administration of HSP stimulants, exogenous
HSPs, and heat induction. These methods have proven useful in reducing physical stress and trauma,
while also facilitating sustainable husbandry practices such as vaccination and transportation, thereby
offering health benefits. Hence, the present review discusses the importance of HSPs in different
tissues in aquatic organisms (fish, shrimp), and their expression levels during pathogen invasion; this
gives new insights into the significance of HSPs in invertebrates.

Keywords: HSPs; oxidative stress; ischemia; crustaceans; fish

1. Introduction

Due to the poikilothermic nature of aquatic animals, minor changes in the environment
might lead to stress in fish. Fish are often exposed to various environmental stressors, such
as pathogens, toxic gases, trauma, temperature fluctuations, and hypoxia. These factors,
often referred to as stressors or stress factors, hold significant importance in determining
the sequence of events that unfolds after encountering adverse consequences such as mi-
crobial infections, toxic exposure, traumatic injury, radiation, or nutritional deficiencies [1].
According to Selye’s [2] original definition from 1950, a normal metabolism is the objective
that an animal strives to maintain or restore in the presence of chemical or physical stimuli.
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Easton [3] further proposed that stress occurs when an environmental or associated factor
pushes an animal’s adaptive responses beyond its standard parameters or severely disrupts
the animal’s proper functioning, ultimately reducing the probability of survival. This defi-
nition closely aligns with the circumstances observed in aquatic species. The term “general
adaptation syndrome” (GAS) is used to describe the changes that occur in response to
stress. It encompasses a sequence of biochemical and physiological changes that unfold in
three stages: the alarm reaction (stage of resistance), during which adaptations are made to
achieve homeostasis under the new conditions; the stage of exhaustion, where adaptations
fail to restore homeostasis; and, if homeostasis is not achieved, it leads to a further decline
in the probability of survival. The components of GAS are not specific to particular species
or stressors, but the overall response to each stressor may vary significantly [4].

Research on the general adaptation syndrome in fish has primarily focused on hor-
monal and nervous responses. The role of the hypothalamic–pituitary internal axis in
the GAS in fish has been extensively reviewed by Sumpter (1997) [5]. The impact of
stress-mediated hormonal changes on the immune responsiveness of the animal, leading
to increased susceptibility to infection, has been extensively discussed by Wedemeyer
(1997) [6]. For further information on this aspect of GAS, readers are referred to these
authors. Although the cellular stress response has received less attention in higher an-
imals, fish, and shellfish, it is an important feature of the GAS (Locke, 1997) [7]. Cells
typically respond to stress by altering gene expression, resulting in the upregulation of
highly conserved proteins, collectively known as heat shock proteins (HSPs). These HSP
molecules, produced in response to stressful conditions, not only play a crucial role in
the early response to stressors but also contribute to host defenses against neoplasia and
chronic pathogens. They may even hold potential as a primary avenue for the development
of new vaccines, while being fundamental to evolution and all forms of life. Considering
the growing interest in harnessing the induction of HSPs for clinical purposes in human
medicine [8], methods for their induction are also emerging for veterinary purposes [9,10].
This review aims to explore the nature of the HSP response, its relevance to aquatic ani-
mals and their welfare, and recent research on methods of inducing HSPs in aquaculture,
particularly concerning health and welfare issues.

2. Different Types of Stress Factors Involved in the Expression of HSPs
2.1. Desiccation, Temperature, and Hypoxia/Anoxia Stress

The impact of temperature on organisms is well recognized, as it can influence their
physiology [11–13], behavior [14], and interactions with other species [15,16]. Thermal
fluctuations are considered crucial factors that can disrupt physiological systems at the
cellular and molecular levels [17]. Temperature affects molecular and physiological pro-
cesses, influencing an organism’s activity patterns [18,19]. Aquatic organisms can exhibit
physiological responses to acute temperature fluctuations before exhibiting behavioral
responses [20]. Studies on marine species have shown that their thermal tolerance limits are
determined by the onset of hypoxemia, which triggers the activation of anaerobic metabolic
pathways [21]. In rocky shores, temperature and desiccation are recognized as key factors
that set the upper limits of species distribution, with extreme desiccation stress leading
to the diapause of crustacean eggs. However, organisms have developed adaptive mech-
anisms, including thermal tolerance, heat shock protein expression, and protein thermal
stability, to counteract environmental extremes and minimize cell damage. The cellular
stress response is activated to maintain cellular function and enhance the organism’s ability
to cope with challenging situations [22]. This response involves the activation of cellular
pathways such as proteolysis through the ubiquitin–proteasome pathway and the increased
production of heat shock proteins [23].

2.2. Osmotic Stress

Osmotic stress is a prevalent environmental factor that affects aquatic organisms.
Osmoregulation, which is vital in maintaining osmotic homeostasis, plays a crucial role in
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response to this type of stress. The influence of stressors such as temperature or salinity on
organisms has been studied extensively [24,25]. These stressors can impact the osmoreg-
ulation capability of organisms by affecting Na+-K+ ATPase activity or inducing heat
shock protein production [26], both of which contribute to maintaining relative osmotic
hemolymph homeostasis [27]. Numerous studies have investigated the expression patterns
of heat shock proteins (HSPs) under salinity stress. For example, the expression of HSP90
was induced in Crassostrea hongkongensis [28] and Eriocheir sinensis [26,29] under osmotic
stress. High salinity stress led to the significant upregulation of HSP70 expression in the
hemocytes of Scylla paramamosain [30]. In the hepatopancreas of Portunus trituberculatus,
HSP60, HSP70, and HSP90 showed either downregulated or upregulated expression pro-
files when exposed to low salinity (4 ppt) [31]. These findings suggest that HSPs play a role
in mediating the effects of salinity stress in aquatic crustaceans.

2.3. Ultraviolet Radiation Stress

Ultraviolet (UV) radiation, an abiotic factor, can have detrimental effects on organisms,
both directly and indirectly. Direct exposure to UV radiation can lead to changes in protein
synthesis and DNA due to the absorption of high-energy photons. Indirectly, UV radiation
can generate reactive oxygen species that cause damage to proteins, nucleic acids, and
lipids [32–34]. The impact of UV radiation on aquatic organisms has become a significant
concern in recent years. Research conducted on calanoid copepods has shown that UV-
induced stress can impair feeding mechanisms and digestion and disrupt the entire food
chain [35]. UV radiation directly and indirectly influences the survival, growth, and
reproduction of organisms, and it led to the increased expression of antioxidant enzymes
and heat shock protein (HSP) genes in the copepod Paracyclopina nana [34].

2.4. Heavy Metal Stress

Heavy metals pose a significant problem as a cause of pollution in water, soil, and plants.
They enter water sources through seepage from household or industrial waste, resulting in
serious risks to aquatic ecosystems and aquaculture animals. In laboratory studies focusing
on crustaceans, the impact of heavy metals on gene expression changes has been extensively
examined. Commonly tested heavy metals include copper (Cu), silver (Ag), zinc (Zn), lead
(Pb), manganese (Mn), arsenic (As), and cadmium (Cd) [36–38]. Heavy metal stress is closely
linked to the induction of oxidative stress. In seawater, heavy metals can trigger oxidative
stress in various organisms, including the marine crab Portunus trituberculatus [39]. This type
of oxidative stress disrupts the cellular redox balance, prompting a protective stress response.
Numerous studies on aquatic organisms, particularly crustaceans, have demonstrated that
heavy metal stress significantly stimulates the synthesis of antioxidant enzymes [40] and heat
shock proteins [26,38]. Heat shock proteins (HSP) appear to play a crucial role in the innate
immune systems and stress responses of crustaceans [36–38].

2.5. Effect of Endocrine Disruptor Chemicals in Heat Shock Proteins

Endocrine disruptor chemicals (EDCs) are compounds that imitate natural hormones,
inhibiting their activity or altering their normal regulatory function within the immune,
nervous, and endocrine systems [41]. These chemicals are ecotoxicologically significant
as they have a tendency to be absorbed onto humic material or accumulate in aquatic
organisms, persisting in water or the food web for extended periods. Consequently, their
effects can induce prolonged stress in aquatic organisms. Various EDCs, including pesti-
cides, bisphenol A, phthalates, dioxins, and phytoestrogens, have been shown to interact
with the female reproductive system and cause endocrine disruption [42]. Endosulfan and
deltamethrin, commonly used pesticides in shrimp farms [43], are particularly noteworthy.
Endosulfan is widely employed as a broad-spectrum insecticide, primarily in agriculture,
and is highly toxic to aquatic organisms [44–46]. Studies investigating the stress response
induced by EDCs have indicated the significant induction of heat shock protein (HSP)
family proteins [47–49], detoxification enzymes such as glutathione S-transferases [50],
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and superoxide dismutase. These proteins are considered to potentially contribute to the
protection of aquatic organisms against stress.

2.6. Other Toxicants

Apart from the previously mentioned primary chemicals, there exist a significant
number of other toxic substances in the habitats of aquatic organisms. These toxicants
include hydrocarbons, diatom toxins, emamectin benzoate, nitrite, and prooxidant chemical
hydrogen peroxide (H2O2), among others. They accumulate in aquatic and/or terrestrial
environments through the release of household and/or industrial waste. Research studies
have demonstrated that these toxicants can have harmful effects on crustaceans [51,52].
In a study conducted by Lauritano et al. [41], it was observed that feeding on a diatom
species (Skeletonema marinoi) that produced strong oxylipins for only two days led to the
significant downregulation of heat shock proteins (HSP40 and HSP70) in the copepod
Calanus helgolandicus. Diatom oxylipins are known to induce the generation of free radicals,
including reactive oxygen species, which can cause oxidative stress and cellular damage.
Furthermore, nitrite is considered one of the most prevalent pollutants in aquaculture
due to its numerous integrated effects. A study on shrimp demonstrated that oxidative
stress was one of the mechanisms of nitrite toxicity [53]. Guo et al. [53] confirmed that
exposure to nitrite induced the expression of apoptosis-related genes in hemocytes, while
also upregulating the expression levels of HSP70 and antioxidant enzymes to protect
against nitrite-induced stress.

3. The Role of Heat Shock Proteins in Aquaculture Disease Management
3.1. Immunology and Stress Response

The identification of heat shock proteins (HSP) initially occurred in Drosophila busckii
as a response to stress [54]. Since then, their roles as chaperones in protecting cellular pro-
teins from denaturation have garnered significant interest [55,56]. In aquaculture animals,
HSPs have been the focus of numerous studies due to their crucial function in mitigating
the stress-induced denaturation of client proteins, as well as their involvement in protein
folding, assembly, degradation, and gene expression regulation [57,58]. Physiological and
environmental stressors, including high thermal shock, heavy metals, free radicals, desicca-
tion, and microbial infection, can induce the synthesis of HSPs. This induction is considered
a vital protective response that is conserved across organisms, enabling them to adapt to
environmental challenges. Recent research has revealed the involvement of heat shock
chaperonins in autoimmune and innate immune responses in various species, including
crustaceans. HSPs play a crucial role in mounting protective immune responses against
bacterial and viral diseases [59,60]. In the crustacean aquaculture industry, which faces
substantial economic losses due to environmental stressors, investigations into heat shock
proteins have gained popularity. These proteins play vital roles in conferring resistance
to diverse stressors. Extensive research has been conducted to understand the structures,
functions, cross-talk, immune response mechanisms, and innate immune pathways of
HSPs in crustaceans when exposed to various environmental stressors or xenobiotics. Ex-
ploiting HSPs as a means of preventing and treating aquaculture diseases in commercially
cultured aquatic organisms is crucial as it provides an alternative to the use of antibiotics
and therapeutic drugs [61]. Furthermore, previous studies have aimed to identify effective
strategies for the management of environmental stressors in aquaculture settings for aquatic
organisms [62].

3.2. Crustaceans: Exploring the Link between Environmental Stresses and Disease

Crustacean aquaculture plays a significant role in the economies of several countries
worldwide. However, the expansion and intensification of aquaculture farms have led to
the emergence of various new diseases in commercially cultivated species. Disease out-
breaks caused by viruses, bacteria, and environmental stressors pose a serious threat to the
global crustacean aquaculture industry, resulting in substantial economic losses. Unlike ver-
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tebrates, invertebrates lack true adaptive immunity and have developed defense systems
that respond to physiological and environmental stresses [16,63]. During crustacean aqua-
culture, organisms are constantly exposed to environmental stimuli and a range of natural
and anthropogenic stressors (Table 1). Numerous studies have demonstrated that physical
stressors such as temperature, salinity, and UV radiation, as well as chemical stressors such
as endocrine disruptor chemicals, heavy metals, hydrocarbons, and other toxicants, can be
detrimental to crustacean cells. Moreover, in natural ecosystems, multiple environmental
forces interact, resulting in situations of combined stress [64,65]. Crustaceans possess an
innate immune system, which serves as their first line of defense and responds to natural
and anthropogenic stimuli, pollutants, and toxins [41,66]. Studies have indicated that
certain metabolic enzymes (such as cytochrome P450, glutathione S-transferase, superoxide
dismutase, etc.), heat shock proteins, and immune-related proteins in crustaceans play a
role in enhancing disease tolerance and aiding the elimination of harmful compounds from
their bodies [41,67].

Table 1. Expression of HSPs in crustaceans under varying stress conditions and their responses.

Species Stress Factor Type of HSP Protein Response References

Tigriopus japonicus

Environmental toxicants (heat, heavy
metals, and endocrine disrupting

chemicals (EDCs)
Hsp70 Upregulation

[37,47,68]
Heavy metal stress Hsp105/Hsp90/Hsp70 Upregulation

Endocrine disruptors Hsp20 Upregulation

Penaeus monodon

Heat treatment Hsp90 Upregulation

[48,69]

pH challenge, osmotic stress, and heavy
metal exposure Hsp60 and Hsp10 Upregulation

Salinity stress Hsp21 Upregulation

Oxidative stress: endosulfan
and deltamethrin Hsp90 -

Litopenaeus vannamei

Thermal Hsp70 Upregulation

[53,70,71]
Nitrite-N stress Hsp70 Upregulation

Cold shock at 13 ◦C Hsp70 Upregulation

WSSV infection LvHSP70 Tenfold upregulation

Daphnia magna

Environmental stresses
(cyanobacteria, predation from fish,

toxic compounds, temperature)
Hsp60s Upregulation

[72,73]Cadmium and heat stress Hsp70 Upregulation

Environmental Hsp70 Upregulation

Portunus trituberculatus
Salinity stress Hsp90, Hsp60 Upregulation

[31]
Salinity stress Hsp70 Upregulation

Macrobrachium malcolmsonii Hg and Cu Hsp70 Upregulation [36]

Macrobrachium rosenbergii Hsp70/Hsc70 Upregulation [74]

Amphipods Cadmium chloride and
temperature stresses

Induced by both
temperature and toxic

stresses
Upregulation [75]

Palaemon elegans
Thermal stress No significant result [23]Palaemon serratus

Paracyclopina nana UV radiation Hsp60 Upregulation [34]

Porcellio scaber Metals Lower hsp70 levels Downregulation [76]

Homarus americanus Acute thermal stress, osmotic stress,
molting stress

Significant induction of heat
shock, hypo-, and

hyper-osmotic responses
Upregulation [77]

Nephrops norvegicus

Homarus americanus
Equivalent temperature shift Hsp70 Upregulation

[77,78]
Thermal shifts Hsp90/Hsp70/Hsc70 Upregulation

Procambarus clarkii
Extreme light Hsp70 Upregulation [79]

Help medial giant axons to maintain
essential structures and functions Hsp70 Upregulation [80]
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Table 1. Cont.

Species Stress Factor Type of HSP Protein Response References

Artemia franciscana

Long-term anoxia
Substantial amounts of p26
translocated into nuclei of

anoxic brine shrimp embryos
Upregulation [81]

Cd and Zn acute exposure and non-lethal
heat shock Hsp production Upregulation [38]

Artemia sinica CO2-driven seawater acidification Upregulated in all treatments Upregulation [82]

Gammarus pulex

Thermal stress Hsc70 Upregulation [83]

Dissolved humic substances (HSs) Significantly increased
expression of Hsp70 Upregulation [84]

Gammarus lacustris
Eulimnogammarus cyaneus

E. verrucosus
Involved in stress defense system Hsp70/sHsp Upregulation [75]

Calanus finmarchicus Diapause Hsp70 Upregulation [85]

Neohelicegranulatus Food Hsp70 Upregulation [86]

Portunus trituberculatus Salinity Hsp70 Upregulation [31]

Pachygrapsus marmoratus Temperature, salinity, and pH Hsp70 Upregulation [23]

Antarctic krills
(Euphausia superba and

E. crystallorophias)
Thermal shock Hsp70 Upregulation [87]

E. verrucosus and E. cyaneus Acute thermal stress Hsp70 Upregulation [20]

Scylla serrata Temperature,
pathogen, salinity, nitrite stress Hsp70 Upregulation [30]

Niphargus virei and
N. rhenorhodanensis Thermal stress Hsp70 Upregulation [88]

Eriocheir sinensis Both low and high salinity Hsp70 Upregulation [26]

Oniscus asellus Organic chemicals, metals Hsp70 Upregulation [76]

Metapenaeus ensis Exogenous estradiol-17β Hsp90 Upregulation [89]

Marsupenaeus japonicus Mjhsp60, Mjhsp70, Mjhsp90 Upregulation [90]

Exopalaemon carinicauda pH and ammonia-N stresses Hsp90 Upregulation [91]

Eriocheir sinensis
Glyphosate Hsp20, Hsp60, Hsp70, HSP90 Upregulation

[92]
Deltamethrin Hsp60, Hsp70, Hsp90 Upregulation

Shellfish Diseases and the Role of Pathogens

Shellfish diseases are prevalent and frequently observed in various commercially
exploited crustacean species. Currently, a range of pathogens, including Vibrio, chitinoclas-
tic bacteria, Aeromonas, Spiroplasma, Rickettsia-like organisms, Chlamydia-like organisms,
Rhodobacteriales-like organisms, white spot syndrome virus (WSSV), yellow head virus
(YHV), infectious myonecrosis virus (IMNV), Enterocytozoon hepatopenaei (EHP) microsporid-
ian parasites, and covert mortality nodavirus (CMNV), have been identified as causes of
disease in crustaceans [93]. Vibrio species, found in various marine and freshwater crus-
taceans, are widespread worldwide. Vibrio infections commonly result in bacteremia and
shell diseases [94]. For instance, Vibrio parahaemolyticus infection caused acute hepatopan-
creatic necrosis disease (AHPND) and led to significant mortality in a penaeid shrimp
aquaculture [95]. Chitinolytic or chitinoclastic bacteria are often associated with shellfish
diseases, leading to unsuccessful molting in crustaceans [96] or septicemic infections caused
by opportunistic pathogenic bacteria [97]. Infections by other pathogens, such as Rickettsia-
like organisms, Chlamydia-like organisms, spiroplasma, and Rhodobacteriales-like organisms,
have caused severe stress or fatal diseases in crustaceans. Efforts have been made by
numerous researchers to find effective methods to control bacterial diseases. Recent studies
have shown that synbiotics can induce penaeid shrimp immunity and promote the growth
of aquatic animals [98]. Oxytetracycline has been found to be highly effective in treating
spiroplasma disease [99]. Several immune-related genes and proteins, including tachylectin-
like genes and proteins and heat shock proteins [67], have been identified as being involved
in shrimp tolerance to AHPND-causing strains. Crustacean fibrinogen-related proteins
have also been found to participate in the innate immune response during AHPND or other
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pathogen infections [100]. Additionally, viruses continue to pose a significant challenge to
crustacean aquaculture. Recent research has highlighted several new and emerging diseases
in shrimp, including hepatopancreatic microsporidiosis, hepatopancreatic haplosporidiosis,
aggregated transformed microvilli, covert mortality disease, white spot disease, yellow
head disease, infectious myonecrosis, and white tail disease, which represent major viral
threats to commercially cultivated shrimp [93].

3.3. Expression of Heat Shock Proteins in Fish

The presence of heat shock proteins (HSPs) in fish has been extensively documented,
emphasizing their importance in responding to stress and safeguarding cellular integrity.
HSPs are a group of highly conserved proteins that serve as molecular chaperones, aiding
in the folding, assembly, and breakdown of other proteins. Fish exhibit increased HSP
production when exposed to various stressors, such as elevated temperatures, exposure
to heavy metals, oxidative stress, and infection by pathogens. Numerous studies have
observed the heightened expression of HSPs in different fish species, including zebrafish
(Danio rerio), rainbow trout (Oncorhynchus mykiss), and gilthead seabream (Sparus aurata),
in response to stressors [101,102] (Table 2). These HSPs play a vital role in maintaining
cellular balance, facilitating fish survival, and enabling adaptation to adverse environmental
conditions. Furthermore, HSPs have been implicated in fish immune responses, enhancing
their ability to defend against bacterial and viral infections [103]. The monitoring of HSP
expression in fish serves as a valuable method to assess environmental stress levels and
evaluate the overall health of fish populations in aquatic ecosystems (Figure 1).

Table 2. Expression of HSPs in various parts of fish under stress conditions.

Species Tissue Stressor HSPs References

Catla catla
Larvae

UV-B radiation
Hsp70

[104,105]
Muscle Hsp27, Hsp47, Hsp60, Hsp70,

Hsp90, Hsp110

Channa striata Gill, muscle Heat stress Hsp27, Hsp47, Hsp60, Hsp70, Hsp78,
Hsp90, Hsp110 [106]

Cirrhinus mrigala Liver, gill, brain, kidney Heat stress Hsp70 [107,108]

Danio rerio Embryo

Hspb1, Hspb2, Hspb3, Hspb4,
Hspb5a, Hspb5b, Hspb6, Hspb7,

Hspb8, Hspb9, Hspb11,
Hspb12, Hspb15

[109]

Labeo rohita

Liver Arsenic hsp47, hsp60, hsp70, hsc71,
hsp78, hsp90

[107,108,110,111]Liver Starvation/fasting Hsp70

Liver, anterior kidney, spleen Aeromonas hydrophila infection Hsp30, Hsp70, Hsp90

Pethia sophore Liver, gill, muscle Heat stress Hsp27, Hsp47, Hsp60, Hsp70, Hsp78,
Hsp90, Hsp110 [112]

Rita rita Liver, gill Pollution Hsp27, Hsp47, Hsp60, Hsp70, Hsp90,
Hsp110 [113]

Salmo salar Skeletal muscle Starvation/fasting Hsp90α1a, Hsp90α1b, Hsp90α2a,
Hsp90α2b, Hsp90ß1a [114]

Garra rufa Muscle Naturally living in a hot spring
temp. (34.4 ◦C) Hsp70, Hsp60, Hsp90, Hsc70, Grp75 [115]

Squalius torgalensis and
Squalius carolitertii

Pectoral, pelvic, upper caudal
fins, muscle 20, 25, 30, and 35 ◦C for 1 ◦C per day Hsp70, Hsc70 [116]

Larimichthys crocea Muscle, brain, liver, spleen,
kidney, gill, and blood

Low temp. (19 ◦C) and high temp.
(27 and 31 ◦C) Hsp27 [117]

Gadus morhua Plasma Increased temp., 2 ◦C (2 ◦C/h) and
control 10 ◦C Hsp70 [118]

Fundulus heteroclitus Whole organism Thermal stress from 2 to 34 ◦C Hsp70 and Hsp90 [119]

Carassius auratus
Cells derived from caudal fin 4 h heat shock form 20 to 40 ◦C Hsp30, Hsp70 mRNA

[120,121]
Brain 2 h heat shock from 22 to 32 ◦C Hsp72, hsp90
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Table 2. Cont.

Species Tissue Stressor HSPs References

Oncorhynchus mykiss

Red blood cell 8 h heat shock from 10 to 30 ◦C Hsp70 mRNA

[122–124]
Gill, liver, spleen, heart, and

head kidney
18 ◦C were exposed to an elevated temp.

(25 ◦C) Hsp60 mRNA

Liver and heart tissues 8 h heat shock from 13 to 25 ◦C with
18–24 h recovery Hsp70, Hsp90

Acipense medtrostrs Whole larvae 3 day heat shock from 17 to 26 ◦C at
1.5 ◦C/h Hsp72, Hsp78, Hsp89 [125]

Labeo rohita Kidney, gill, liver, and brain 30 day heat shock at 31, 33, and 36 ◦C Hsp70 [107]

Penaeus monodon Tail muscle 24 h heat shock from 29 to 35 ◦C Hsp70 [126]

Ictalurus punctuatus
Muscle Exposure to low temp. from 25 to 10.5 ◦C

for 14 and 28 days Hsp70 mRNA
[127,128]

Tissue Bacterial infections Hsp90, hsp60, and shsp families

Macrobrachium
malcolmsonni Gill and heart 3 h heat shock from 25 to 32–34 ◦C and

30 to 36–38 ◦C with 1 h recovery Hsp70 [129]

Macrobrachium
rosenbergii

Hepatopancreas and
thoracic glands 2 h heat shock form 25 to 30 and 35 ◦C Hsp70 mRNA [74]

Ostrea conchaphila Gill 1 h heat shock from 12–15 to 33–38 ◦C Hsp70 [130]

Ostrea edulis Gill 1 h heat shock from 18 to 34 ◦C with 24 h
recovery at 18 ◦C Hsp70 [57]

Channa striata Gill Heat shock treatment at 36 ◦C for
4/15/30 days Hsp60, Hsp70, Hsp78 [106]

Clarias gariepinus Embryos Heavy metals HSP70 [131]

Rainbow trout Cultured trout cell line Heat shock and sodium arsenite Rapid synthesis of trout
Hsp70 mRNA [132]

Danio rerio Brain 37 ◦C heat stress Hsp47 [133]

Embryos Environmental stress Hsp70

[134–136]
Early-stage embryos

Heat shock
Hsp90α and Hsp90β genes

Embryonic development Hsp47, Hsp70, and Hsp90

Embryonic development Hsp90 alpha and Hsp90 beta genes

Oreochromis niloticus

Liver, head kidney, spleen,
and gill Streptococcus agalactiae Hs70 family, Hsc70-1, Hsc70-2,

and Hsc70-3

[137–139]Liver, brain, and gill Cortisol Hsp70

Muscle, gill, and liver Different degrees of heat
(10, 15, 35, 39 ◦C) Hsp70

Oreochromis niloticus
fingerlings All organs Hyperthermal-induced stress HSP70 [140]

Garra rufa Liver Elevated water temperature Hsp70, Hsp60, Hsp90, Hsc70,
and Grp75 [115]

Oreochromis niloticus Anoxia stress Hsp70 [141]

Sarotherodon
melanotheron Gills Environmental salinity Hsp70 [142]

Anguilla marmorata Liver, intestine, muscle, and
heart

Aeromonas hydrophila
challenge Amhsp90, Amhsp70 [143]

Oncorhynchus mykiss Gill, liver, spleen, heart, and
head kidney Elevated temperature Hsp60 [123]

Oreochromis niloticus Gonad, liver, and muscle Elevated water temperature Hsp90 [144]

Miichthys miiuy Liver, spleen, and
kidney tissue Bacterial infection Heat shock protein 90b isoform [145]

Boleophthalmus
pectinirostris Gill, liver tissues Heat stress conditions Hsp90AB [146]

Dreissena polymorpha
and midge larvae

Chironomus tentans
Hsp70 [147]

Fenneropenaeus
chinensis

Microbial pathogens Hsp70
[148]

Heat shock and hypoxia Hsp70

Portunus trituberculatus Different environmental conditions Hsp90 genes [39]

Chinook salmon Heat shock Hsp90 genes [149]

Cyprinus carpio Gill Ammonia stress Hsp70 [60]
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Table 2. Cont.

Species Tissue Stressor HSPs References

Trematomus bernacchii Cold shock [150]

Pimephales promelas Gill, muscle, and brain 28, 31, and 33 ◦C [151]

Palaemonetes pugio Muscle Heat, cadmium, atrazine, and bunker fuel [152]

Salmo salar L. Anesthesia, formalin exposure, hypoxia,
handling, crowding, and cold shock Hsp70 [153]

Oncorhynchus kisutch Kidney and liver Renibacterium salmoninarum Hsp70 [154]

Rainbow trout Anterior kidney Vibrio anguillarum Hsp70 [155]

Sparus sarba Forsskål Kidney and liver tissue Vibrio anguillarum Hsp90 and Hsp60 [156]

Brine shrimp/
Vibrio model

Heat shock at 37 ◦C Vibrio campbelli or
Vibrio proteolyticus

Hsp70
upregulation

[157]
Hypothermic shock or acute osmotic Hsp70

No change

Penaeus monodon WSSV Hsp21 [158]

Vide supra Hsp gene downregulation [156]

Salmonids Piscirickettsia salmonis Hsp60 and HSP70 [159]

Oncorhychus mykiss
(Walbaum)

Fish pathogen Flavobacterium
psychrophilum Hsp60 and Hsp70 [160]

Brine shrimp Vibrio infection Hsp70 [157]

Xiphophorus maculates
Escherichia coli Hsps [157]

Heat-shock-stimulated bacteria Hsps [161]
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3.4. Expression of Heat Shock Proteins in Mollusk

The expression of heat shock proteins (HSPs) is associated with important devel-
opmental processes in various species, including gametogenesis, embryogenesis, and
metamorphosis. In marine invertebrates with a biphasic life cycle, where pelagic larvae
undergo settlement and metamorphosis, research has revealed interesting findings. For in-
stance, studies on Eastern oyster C. virginica larvae and early spat have shown the presence
of three HSP70 isoforms: HSC77, HSC72, and HSP69. The expression of constitutive and
inducible forms of HSP70 differs among the larval and early juvenile stages and in response
to thermal stress. Interestingly, the low expression of HSP69 during early larval and spat
development may contribute to their vulnerability to environmental stress. In another
investigation, Gunter and Degnan examined how the marine gastropod Haliotis asinine
expresses HSP90, HSP70, and the heat shock transcription factor (me) during development
(Table 3). HSP70, HSP90, and HSF are first expressed in this species by maternal contribu-
tion, before being gradually confined to the micromere lineage after cleavage (Figure 2).
These proteins are expressed in distinct ways in the prototroch, foot, and mantle during
larval morphogenesis. When cells are differentiating and undergoing morphogenesis, their
expression is at its highest; however, after morphogenesis is complete, it starts to decline.

Table 3. Mollusk expression of heat shock proteins in different organs with varying stress conditions.

Species Tissue Stressor HSPs Expression References

Corbicula fluminea - High thermal
HSP70,

HSP90, and
HSP60

Upregulation [162]

Mya truncata - Chronic heat
shock Upregulation [163]

Codringtonia

Foot,
digestive

gland, and
genitalia

Short-term
heat HSP70 Upregulation [164]

Crassostrea
virginica and
Mercenaria
mercenaria

- -
HSP60,

HSP90, and
HSP70

Upregulation [165]

Cyclina sinensis
Hemocytes,
hepatopan-

creas

Cd Vibrio
anguillarum HSP70 Upregulation [166]

Crassostrea gigas
Long-term

thermal
waste

HSP70 and
HSP90 Upregulation [167]

Mid-intertidal
limpet Cellana

toreuma

Thermal
conditions

HSP70 and
HSP90 Upregulation [158]

B. koreanus

Environmental
stressors

were
reported in
copper and
UV-exposed

HSP Upregulation [168]

Haliotis
tuberculata

Thermal
stress HSP70 Upregulation [169]
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3.5. Heat Shock Protein Expression in Insects

A group of conserved polypeptides collectively known as heat shock proteins (HSPs)
are rapidly increased in synthesis by insects in response to high temperatures and a variety
of chemical and physical stimuli. Hspshave molecular-weight-based names, such as Hsp10,
Hsp40, Hsp60, Hsp70, Hsp90, and Hsp100. Small Hsps (sHsp) are a subclass of Hsps
that play a role in the folding and unfolding of other proteins (Table 4). In the fruit
fly Drosophila busckii, Ritossa was the first to note that heat and the metabolic uncoupler
dinitrophenol caused a distinctive pattern of puffing in the salivary gland chromosomes [54].
This discovery ultimately helped to identify the Hsps that these puffs were representing.
The first observation of the increased production of certain proteins in Drosophila cells in
response to stressors such as heat shock was made in 1974 [170]. There is currently a vast
body of research that describes the extensive spectrum of action taken by cells in response
to a wide range of biotic and abiotic stressors in a variety of insects [171,172].

Table 4. Roles of different stressors in the responses and expression of heat shock proteins in insects.

Species Stress Factor Type of HSP Protein Response References

Tetraselmis suecica Redox- and
non-redox-active metals

Small TsHSP20 and large
TsHSP70 and 100 Fluctuations [173]

Chironomus riparius

Cadmium
Seven sHSP genes (HSP17,

HSP21, HSP22, HSP23,
HSP24, HSP27, HSP34)

Downregulation

[174,175]
Temperature variations HSP27 Upregulation

Cadmium HSP27 Upregulation
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Table 4. Cont.

Species Stress Factor Type of HSP Protein Response References

Musca domestica

Thermal and heavy metal
MdomHSP10, MdomHSP27,

MdomHSP27.1,
MdomHSP27

Downregulation

[176–180]

Starvation, unsuitable
temperatures, bacterial and

hazard metal challenge
upregulation

Insecticide dimethoate and
alkylbenzene sulfonate heat

shock, Cd stress, and
bacterial challenge

HSP70 and HSP60 Upregulation

Development and maturation
of eggs HSP60 upregulation

Stress conditions Small HSPs Upregulation

Drosophila melanogaster Expressed highly in gonads and
nervous system HSP23, HSP26, and HSP27 Upregulation [181]

Sarcophaga crassipalpis Cold-induced diapause HSP23 Upregulation [182]

Plutella xylostella Heavy metals sHSPs Upregulation [183]

Galleria mellonella Conidiobolus coronatus-induced
infection

HSP90, HSP70,
HSP60, HSP27 Upregulation [184]

3.6. Heat Shock Proteins in Myxozoan Parasites (Cnidaria)

Heat shock proteins (HSPs) are expressed by parasites as a response to various stimuli,
such as heat and oxidative stress. These HSPs provide parasites with resistance to these
harsh conditions, which is crucial for their survival. The genes associated with protein
refolding, including HSP60, HSP70, and HSP80 family members, express these heat shock
proteins. Apart from their role in protein refolding, HSPs also show significant involvement
in other processes, such as maintaining protein balance and stability. They have the
ability to bind to abnormal forms of proteins and facilitate their folding into their natural
conformations. T. bryosalmonae, a parasite, faces the challenge of overcoming the robust
immune responses mounted by both brown trout and rainbow trout [185]. This challenge
potentially affects various physiological processes of T. bryosalmonae, including protein
structure and function. Moreover, HSPs found in several parasites, such as T. cruzi [186] and
Schistosomes [187], have been discovered to elicit an immune response in their respective
hosts and are immunogenic in nature. In a recent study, it was found that myxozoan
parasites such as Ceratonova shasta, Myxobolus cerebralis, and Sphaerospora molnari from the
intestine and abdominal cavity (ascitic fluid) of rainbow trout expressed HSP70 when
exposed to oxidative stress [188].

4. Defense Mechanisms of Heat Shock Proteins

The heat shock protein family, such as HSP70, are primarily studied for disease control
purposes, but other members, such as small heat shock proteins (sHSPs), including HSP60
and HSP90, alongside HSP40/co-chaperone, have shown potential in treating pathogen
infections. sHSPs act as oligomeric platforms, binding structurally perturbed proteins
without requiring ATP, thereby preventing their irreversible denaturation under cellular
stress. HSP90, HSP70, and HSP60 are stress-induced and provide protection against
irreversible protein denaturation. However, their primary function involves binding and
folding newly synthesized proteins through allosteric rearrangement, which is driven by
ATP, although the mechanisms of action and the molecular structure differ among the
chaperone families. In cooperation, these HSPs form intracellular networks with accessory
proteins and other co-chaperones. sHSP monomers are a group of conserved α-crystallin
domains flanked by carboxyl- and amino-terminal sequences and assemble into oligomers.
The α-crystallin domain facilitates monomer dimerization and substrate binding, with the
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efficiency depending on the terminal region. During stress, sHSP oligomers may undergo
structural rearrangement or disassemble, which promotes substrate protein interactions
and increases surface hydrophobicity. Upon stress resolution, proteins released from sHSPs
have the ability to spontaneously refold with the assistance of HSP70, which is an ATP-
dependent HSP [189]. The key role of sHSPs is to prevent protein denaturation, which is
irreversible during infection and stress.

In aquatic organisms, such as the white shrimp (L. vannamei) and Scrippsiella trochoidea,
various HSP genes (e.g., LvHSP40, LvHSP60, LvHSP70, LvHSC70, and LvHSP90) are sig-
nificantly induced under acute thermal stress, highlighting their sensitivity to temperature
fluctuations. Shrimp HSPs are also highly expressed in response to pathogen infections,
as demonstrated by the upregulation of LvHsp60 in the gills, hemocytes, and hepatopan-
creas after challenge with Gram-negative or Gram-positive bacteria. Furthermore, the use
of plant-based polyphenolic compounds such as phloroglucinol and carvacrol has been
shown to result in the induction of HSP70 and protection against bacterial infection in brine
shrimp and freshwater prawns [190]. These findings suggest that HSPs may play a role in
crustaceans’ immune system regulation, which triggers immune defense against diseases,
as evidenced by the modulation of immune-related genes. Overall, the investigation of
HSPs in aquatic organisms provides insights into their involvement in combating stress
and infection, offering potential avenues for disease control and enhancing the immune
responses in these organisms.

Biotic stress factor bacteria induce HSP20 expression in fish [191,192]. Similarly, some
sHsp cDNA have been isolated and characterized in an expression analysis performed in
fish [117,128,193–195]. Following this, the HSP expression level was detected in Ictalurus
punctatus [196], Paralichthys olivaceus [197], and Epinephelus coioides [198]. However, the
expression patterns of fish sHsp under environmental stress are still limited with regard to
biotic stress factors. Another type of HSP21 transcript was induced after 24 h exposure to
Vibrio harveyi in shrimp P. monodon [158]; this was found to be entirely different in WSSV
infection with P. monodon [199]. M. rosenbergii showed upregulated expression of HSP37
mRNA in the hepatopancreas under an infectious hypodermal and hematopoietic necrosis
virus challenge [200]. In disk abalone Haliotis discus, HSP20 expression reached its highest
peak in V. parahemolyticus with the VHSV virus [201]. Although some sHsp cDNA have
been isolated and characterized in fish, there is little research on their roles in the immune
response [117,128,193–195]. Recently, it was validated that, when infected with Singapore
grouper iridovirus (SGIV) and V. alginolyticus, Epinephelus coioides hsp22 mRNA expression
was significantly increased, and HSP22 could significantly inhibit the SGIV-induced cell
apoptosis [202].

Importantly, abiotic factors also interact with the expression levels of HSPs in aquatic
organisms, among which temperature can influence the growth, reproduction, and sur-
vival of aquatic organisms (fish and shellfish) and result in serious losses in aquaculture
(Figure 3) [203,204]. In a study, the existing HSP20 gene expression was regulated by heat
stress [191,192,200,205]. However, few reports provide information about the temperature
regulation of HSP20 in fish, and the HSP expression levels in fish under stress factors
are poorly understood. Therefore, it is necessary to discuss the findings regarding HSP
expression in a range of aquatic organisms with regard to biotic and abiotic stress factors, as
the gene expression profile can reveal the importance of their enhancement against foreign
stimuli/invaders.
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5. Conclusions

Our understanding of the chaperone system of HSPs and its significance in farmed
aquatic organisms is still limited, but progress is being made in medical and veterinary
research. There have been rapid advances in comprehending the fundamental aspects of
HSP genes and the effects of their products and their regulation on cell maintenance, as
well as cell signaling, inflammation, and the immune response. This knowledge has been
applied to various veterinary and human clinical situations, and promising results have
been obtained during the initial development of HSP vaccines derived from pathogens.
These advancements indicate the potential value of HSPs in numerous areas of aquatic
science. Further exploration of the HSP chaperone system and its applications could have
significant implications for the health and wellbeing of farmed aquatic animals, providing
opportunities for advancements in aquaculture practices, disease prevention, and overall
aquatic ecosystem management.
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