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Simple Summary: A major challenge for livestock producers in a cool-season grass system is the
seasonality of forage production, and in particular, the quantity and quality gap that usually occurs
during the summer. Crabgrass is a warm-season annual crop with better forage quality than most
other common summer annual grasses and can potentially be mixed with summer annual legumes. In
this study, we evaluated on field plots the effect of intercropping two summer legumes (cowpea and
lablab) with crabgrass on forage yield, nutritional composition, and fiber digestibility. We determined
the degradability of the neutral detergent fiber under in vitro conditions using rumen fluid from
lactating dairy cows. The results of this study showed that mixing crabgrass with cowpea and lablab
partially mitigated the biomass yield drag from the legume monocultures while increasing crude
protein concentration and fiber digestibility compared to the monoculture of crabgrass. Under the
conditions of this study, the biggest impact of intercropping legumes was observed on the first of
three harvests, which suggests that the evaluated legumes might not be an ideal complement for a
multi-cut grass like crabgrass.

Abstract: The objective of this study was to evaluate the effects of interseeding crabgrass (CG)
with two annual summer legumes on forage nutritional composition, dry matter (DM) yield, and
in vitro fiber digestibility. The study was conducted as a randomized complete block design with
four replicates per treatment. Plots were randomly assigned to one of six forage mix treatments.
Crabgrass, cowpea (CWP), and lablab (LL) were planted in monoculture or in mixtures, resulting in six
treatments. Throughout the growing season (three cuts), CG had the highest biomass yield, followed
by the CG grown in mixtures with CWP and LL, whereas the two annual legume monocultures had
the lowest yield. Cowpea and LL planted in monocultures had the highest concentration of CP and
fiber digestibility, while the CG monoculture had the lowest. Furthermore, growing CG in a mixture
with CWP and LL boosted the CP concentration and fiber digestibility to intermediate levels to those
observed between both legume monocultures and CG. Regardless of treatment, the highest forage
quality and yield was observed in the first harvest, with a drastic decline in the following harvests. In
conclusion, the benefits of mixing crabgrass with legumes might be less than expected and should
be carefully evaluated by livestock producers, especially when considering the effects of DM yield,
forage quality, and pasture seeding costs.

Keywords: digestibility; summer annuals; legumes; grasses

1. Introduction

The competitiveness of livestock producers depends in part on their ability to man-
age herds to reduce production costs while maintaining high levels of production and
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minimizing adverse environmental impact. Tall fescue [Schedonorus arundinaceus (Schreb.)
Dumort] is the backbone of many cow–calf operations in the southeastern region of the
US. One of the major challenges for producers in a cool-season grass system like tall fescue
is the seasonality of forage production. Warm-season grasses and legumes (aka summer
annuals) can complement perennial cool-season systems and extend grazing days and hay
production during the summer when perennial grass production declines [1,2]. However,
the high production costs of annual forages might impact profitability, therefore limiting
their adoption in forage production systems [3]. Maximizing the forage yield and quality of
summer annuals is a potential strategy that can increase farm returns by partially diluting
the cost of establishment.

Over the past few years, the interest in growing grasses in mixtures with legumes
increased due to the potential benefits on soil fertility and forage quality. Legume species
can fix N from the atmosphere [4] and can increase the crude protein (CP) concentration
and the fiber digestibility of the forage when mixed with grasses [5], which may reduce the
need for protein and energy supplements [6]. However, research on the potential trade-off
between biomass yield and forage quality when different summer annual grasses and
legumes are grown in monoculture or in mixes is scarce [7,8].

Crabgrass [Digitaria sanguinalis (L.) Scop.] is a drought-tolerant and warm-season
annual crop with better forage quality than most other common summer annual grasses
(e.g., pearl millet or sorghum–sudangrass hybrids) that can be planted in soils with a
wide pH range [9] and support good animal performance for stocker calves and dairy
cattle [10–12]. Furthermore, if properly managed, crabgrass can reseed itself from one year
to another. In addition, growing crabgrass in mixtures with legumes could potentially
increase residual soil N, improve forage yields of successive winter crops, and reduce
fertilizer costs [13]. There are several summer annual legumes that could be beneficial to
forage production systems in the southern part of the US. For example, cowpea [Vigna
unguiculata (L.) Walp.] and lablab [Lablab purpureus (L.) Sweet] are vine-climbing legumes
that are adapted to a wide range of soil pH, can tolerate some shade, and can produce
high-quality forage [14–16].

We hypothesized that crabgrass mixed with summer annual legumes will increase
forage quality, especially crude protein concentration and fiber digestibility, relative to
crabgrass monoculture without affecting forage yield. Thus, the objective of this study was
to evaluate the effect of intercropping cowpea and lablab with crabgrass on forage yield,
nutritional composition, and fiber digestibility.

2. Materials and Methods
2.1. Experimental Sites and Climate Data

This study was conducted from April to September 2019 at the Simpson Research
Farm, Clemson University, Pendleton, South Carolina (34◦62′10.8′′ N 82◦73′31.5′′ W). Soil
is described as applying sandy loam with 2 to 6% slopes (ApB) and a land capability
classification of IIe (web soil survey; www.nrcs.usda.gov, accessed on 18 August 2022).
Weather and historic weather data (1981 to 2010) were collected from a weather station
located in Sandy Springs, SC, using the National Centers for Environmental Information
of the National Oceanic and Atmospheric Administration (NOAA, US Department of
Commerce, www.noaa.gov, accessed on 18 August 2022).

Rainfall amounts during the 2019 growing season were below the 30-year average
during most of the growing season, with distinctly dry conditions experienced during May,
July, August, and September (Table 1). Similarly, the recorded temperatures during the trial
were, on average, higher than the 30-year mean.

www.nrcs.usda.gov
www.noaa.gov
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Table 1. Total monthly precipitation (mm), mean monthly temperature (◦C), and 30-year historical
average for Sandy Springs, SC, during the 2019 growing season a.

Month Precipitation 30-Year Avg. Temperature 30-Year Avg.

April 73.9 91.7 19.3 15.1
May 34.8 96.5 25.8 19.3
June 103.6 122.7 26.9 24.1
July 8.5 115.8 29.9 25.8

August 59.9 114.8 29.1 25.3
September 9.9 106.7 28.2 21.7

a Data obtained from NOAA, US Department of Commerce (https://www.nrcs.usda.gov, accessed on 18 August 2022).

2.2. Experimental Design

The trial was designed as a randomized complete block design with forage cut as
a repeated measure. During the spring of 2019, the field was divided into four blocks,
and within each of the blocks, one plot (1.5 m wide and 6.1 m long) was randomly as-
signed to one of six forage mix treatments. Crabgrass (CG; “Red river”), cowpea (CWP;
“Iron and Clay”), and lablab (LL; “Ronagi”) were planted in monocultures (5.6, 56.1, and
33.6 kg/ha, respectively) or in mixtures of CG+CWP (2.8 + 28.0 kg/ha, respectively),
CG+LL (2.8 + 16.8 kg/ha, respectively), or CG+CWP+LL (1.9 + 18.8 + 7.5 kg/ha, respec-
tively). Plots were planted using a seven-row plot drill equipped with an Almaco cone.
Fertilizer was applied to each plot before planting (22 kg N/ha, 56 kg P2O5/ha, and
45 kg K2O/ha) according to recommendations after soil analysis and after each harvest
(23 kg N/ha). Plots were harvested when the crabgrass reached the late heading to early
flowering stages of maturity (three harvests total).

2.3. Forage Processing and Analyses

The forage biomass of each plot was harvested three times (1 July, 31 July, and
13 September) using a Carter plot forage harvester (Carter Manufacturing Co., Brook-
ston, IN, USA). After weighing the harvested biomass, samples from each plot were
collected in plastic bags, immediately placed in a cooler with ice, and transferred to the
laboratory for storage at −20 ◦C. Samples were thawed and dried at 55 ◦C in a forced-air
oven for 48 h. The resulting dry matter (DM) concentration was used to determine DM
yield (kg/ha). Dried samples were ground to pass through a 1 mm screen of a Wiley mill
(Arthur H. Thomas, Philadelphia, PA, USA). Ground samples were dried at 105 ◦C for 24 h
to determine analytical DM. Ash concentration was determined after combusting samples
in a furnace for 3 h at 600 ◦C (Method 942.05, AOAC) [17]. For each sample, a subsample
was separated and submitted to Cumberland Valley Analytical Services (Waynesboro, PA,
USA) to determine the concentrations of N (Method 990.03, AOAC) [18] and water-soluble
carbohydrates as described by Hall et al. [19]. Crude protein concentration was calculated
as a percentage N × 6.25 after combustion analysis. Neutral detergent fiber (aNDFom) and
acid detergent fiber (ADFom) concentrations were determined using an Ankom200 Fiber
Analyzer (Ankom Technology, Fairport, NY, USA) and corrected for ash concentration.
Sodium sulfite and α-amylase (Sigma no. A3306: Sigma Chemical Co., St. Louis, MO, USA)
were included in the NDF analysis [20]. After determining the ADF, the fiber residue was
incubated for 3 h in 72% sulfuric acid within 4 L jars that were placed in a Daisy II Incubator
(Ankom Technology) for ADL determination.

Care and handling of animals used for collecting rumen contents and in situ incuba-
tions were conducted as outlined in the guidelines of the Clemson University Committee
on Animal Use (AUP2022-0464). In vitro DM digestibility (IVDMD), in vitro true DM
digestibility (IVTDMD), and in vitro NDF digestibility (IVNDFD) were determined using
a Daisy II rotating jar in vitro incubator (Ankom Technology). Samples were incubated
for 30 h following the procedures described by Ferreira and Mertens [21]. A composite
inoculum was prepared with rumen fluid and solids collected before the morning feeding
from two rumen-fistulated lactating dairy cows that were fed a diet containing 35.2% corn

https://www.nrcs.usda.gov
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silage, 7.9% barley silage, 0.9% bermudagrass hay, and 56.0% concentrate mix (DM basis).
To determine undegraded NDF (uNDF), a 0.25 g sample was weighed into F57 Ankom
bags (Ankom Technologies) and incubated in the rumen of two rumen-fistulated and
multiparous cows (one Jersey and one Holstein) for 240 h. The cows were fed the same diet
described above. After the 240 h incubation, bags were weighed and subjected to aNDFom
analysis as described previously. Harvested yield of potentially degradable NDF (pdNDF,
kg/ha) was calculated by multiplying the concentration of the pdNDF by the DM yield of
the corresponding plot.

2.4. Statistical Analysis

Data were analyzed with the MIXED procedure of SAS (SAS version 9.4, SAS Institute
Inc., Cary, NC, USA). The statistical model included the random effect of the block (df = 3),
the fixed effect of treatment (df = 5), the interaction of block and treatment (df = 15), the
fixed effect of harvest as a repeated measure (df = 2), the interaction between treatment and
harvest (df = 10), and the random residual error (df = 36). The first-order autoregressive
covariance structure was used to fit a time series-type covariance structure in which the
correlation declines as a function of time. Significant differences and tendencies to differ
were declared at p < 0.05 and p ≤ 0.10, respectively.

3. Results
Forage Yield, Chemical Composition, and In Vitro Digestibility

Throughout the growing season, CG had the highest biomass yield, followed by the
CG grown in mixtures with CWP and LL (mean = 4023 kg/ha), whereas the two annual
legume monocultures had the lowest yield (3122 kg/ha, Figure 1). We observed a significant
effect (p < 0.01) of harvest time on DM yield. Most of the harvested biomass was obtained
in the first harvest (1908 kg/ha), followed by the second harvest (1605 kg/ha), and the
lowest yield was observed in the last harvest of the growing season (893 kg/ha).
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Figure 1. Biomass yield (kg DM per ha) of the different forage treatments. CG = crabgrass; CWP = cowpea;
LL = lablab; CG+CWP = crabgrass + cowpea; CG+LL = crabgrass + lablab; CG+CWP+LL = crabgrass
+ cowpea + lablab. a–d Means with different letters differ (p ≤ 0.05). Vertical bars indicate standard
errors of the mean.

The CWP had the lowest concentration of DM relative to all other treatments, which
had similar DM concentrations (Table 2). Cowpea and LL planted in monocultures had the
highest concentration of CP (20.1 and 18.7%, respectively), while the CG monoculture had
the lowest (15.7%). Furthermore, growing CG in a mixture with CWP and LL increased the
CP concentration of the forage to levels similar to those observed for the LL monoculture.
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However, we observed an interaction (p < 0.01) and a trend towards interaction (p = 0.08)
between forage treatments and harvest time for DM and CP concentration, respectively.
The forage treatment by harvest interaction reflected a larger increase in DM concentration
between the first and third harvests for CG and all the mixes compared to monocultures of
CWP and LL (Figure S1). On the contrary, CG had a lower CP concentration than the three
forage mixes in the first harvest (16.9 vs. 20.7%) and second harvest (15.5% vs. 17.3%), but
not in the last one (14.6 vs. 14.5%, Figure 2a). We also observed an interaction (p < 0.01)
between forage treatment and harvests for aNDFom (Figure 2b). In the first harvest, the
lowest aNFDom concentration was observed in both legume monocultures, while mixing
grasses with the legumes resulted in intermediate levels of fiber concentration. In the
second harvest, the CG still had the highest concentration of aNDFom, but the legumes
in monoculture and the forage mixtures had similar aNDFom contents and were higher
than the values observed in the first harvest. In the last harvest of the growing season, all
treatments had similar aNDFom contents. The ADFom concentration followed a similar
pattern to the aNDFom observed in the first harvest, and the treatment difference remained
constant through the other two harvests. The concentrations of ADL (both on a DM and
NDF basis) and WSC did not differ between forage treatments.

Table 2. Nutritional quality of CG, CWP, and LL grown in monocultures or in mixtures 1.

Item CG CWP LL CG+CWP CG+LL CG+CP+LL SEM p-Value

DM, % 31.8 ab 26.5 c 31.3 ab 28.8 bc 32.7 ab 30.3 ab 1.36 0.03
Ash, % DM 13.6 c 16.6 a 15.4 ab 14.6 bc 16.0 a 14.0 bc 0.70 0.01
CP, % DM 15.7 d 20.1 a 18.7 ab 18.4 b 16.6 cd 17.4 bc 0.49 <0.01
aNDFom, % DM 55.2 a 36.2 d 40.0 cd 45.0 bc 47.4 b 46.1 b 1.92 <0.01
ADFom, % DM 32.0 a 24.0 c 25.7 c 28.4 bc 29.6 ab 28.7 b 1.07 <0.01
ADL, % DM 5.00 5.41 5.35 5.99 5.61 5.15 0.59 0.73
ADL, % aNDFom 9.3 14.8 13.6 13.5 11.6 10.9 1.56 0.21
WSC, % DM 7.4 8.6 7.9 7.2 7.2 7.6 0.38 0.11

1 CG = crabgrass; CWP = cowpea; LL = lablab; CG+CWP = crabgrass + cowpea; CG+LL = crabgrass + lablab;
CG+CWP+LL = crabgrass + cowpea + lablab. Means with different superscripts in the same row differ (p < 0.05).
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The concentration of uNDF on a DM basis differed among treatments but not on an
aNDFom basis (Table 3). On a DM basis, CWP and LL had the lowest concentration of
uNDF (9.3%); the three treatments with the grasses legumes mixtures were intermediate
(10.8%), and the highest uNDF concentration was measured on the CG monoculture (12.5%).
A similar pattern was observed for IVDMD and IVDMTD (Table 3). There was a treatment
by harvest interaction for uNDF on an aNDFom basis (Figure S2). In the first harvest, CG
and CG+LL had the lowest (15.3%); the CG+CWP+LL, CG+CWP, and LL treatments had
an intermediate (17.2%); and CPW had the highest concentrations (25.6%) of uNDF (% of
aNDFom). However, treatments did not differ on the second and third harvests.

Table 3. Effect of forage treatments on undigestible NDF concentration and in vitro DM digestibility 1.

Item CG CWP LL CG+CWP CG+LL CG+CP+LL SEM p-Value

uNDF240, % DM 2 12.5 a 9.3 bc 9.0 c 10.4 b 11.5 ab 10.6 b 0.56 <0.01
uNDF240, % aNDFom 2 23.1 25.5 22.3 22.8 24.1 22.6 1.26 0.40
pdNDF, % aNDFom 3 76.9 74.5 77.7 77.2 75.9 77.4 1.26 0.40
IVDMD, % DM 4 65.8 d 74.3 a 73.1 ab 71.3 b 68.1 cd 69.9 bc 1.29 <0.01
IVTDMD, %DM 5 75.5 c 82.5 a 81.2 a 79.9 ab 77.4 bc 78.7 ab 1.41 0.01
pdNDF, kg DM/ha 2183 a 804 c 804 c 1300 b 1585 b 1342 b 212 <0.01

1 CG = crabgrass; CWP = cowpea; LL = lablab; CG+CWP = crabgrass + cowpea; CG+LL = crabgrass + lablab;
CG+CWP+LL = crabgrass + cowpea + lablab. 2 uNDF240 = undegraded neutral detergent fiber (after 240 h of
fermentation). 3 pdNDF = potentially degradable neutral detergent fiber. 4 IVDMD = in vitro 30 h dry matter
digestibility. 5 IVTDMD = in vitro 30 h true dry matter digestibility. Means with different superscripts in the same
row differ (p < 0.05).

Legume monocultures and CG+CWP had the highest IVNDFD, followed by CG+LL
and CG+CWP+LL, while the lowest IVNDFD was observed in the CG treatment (Figure 3).
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The yield of pdNDF was highest for CG, but when CWP and LL were added to the
grass, pdNDF yield was reduced by 36%. Furthermore, as a result of the higher DM yield
and similar pdNDF concentrations (aNDFom-basis), CG pdNDF yield (kg/ha) was 63%
higher compared to both legumes monocultures.

Other chemical components and the in vitro DM and fiber digestibility were signif-
icantly affected by harvest time. For example, CP concentration consistently decreased
between the first and last harvests, while ADL (% aNDFom) and uNDF (%aNDFom) fol-
lowed the opposite pattern (Figure 4a). Additionally, the first harvest had the highest
(86.6 and 78.0%), the second harvest had an intermediate (80.6 and 70.1%), and the last
harvest had the lowest (70.1 and 58.3%) IVTDMD and IVNDFD, respectively (Figure 4b).
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4. Discussion
Forage Yield, Chemical Composition, and In Vitro Digestibility

Under the conditions of this study, the forage DM yield was reduced by 21.2, 14.3,
and 25.5% when CG was grown in combination with CWP, LL, or CWP + LL, respectively.
Bryan and Materu did not observe an impact on the forage DM yield when interseeded
cowpea and corn were compared with a corn monoculture [8]. Similarly, Armstrong et al.
reported no differences in DM yields when corn was grown alone or mixed with lablab
or velvet bean [6]. On the contrary, and in agreement with our observations, Oskey et al.
observed that mixing pearl millet with CWP reduced the DM yield by 8.3% [7]. Both
legumes evaluated in this study had a lower DM content compared to CG (Table 2), and
with a lower plant population of the grass in the forage mix compared to the monoculture
treatment, the overall DM yield per ha was likely penalized. Furthermore, CWP and
LL have a slow regrowth after grazing or harvest, which could further impact the yield
potential of the forage mixes after the first harvest [22]. In addition, the poor regrowth of
the legumes can also result in empty spaces in the field that would not produce forage
or could be filled by undesired weeds. Therefore, the results of the current and previous
studies [7,22] provide further evidence that annual summer legumes such as cowpea and
lablab may be a better option for single-cut forage mixes such as sorghum or corn. Finally,
drought conditions during the growing season might have further penalized cowpea and
lablab regrowth potential.

Chemical compositions of CG, CWP, and LL observed in this trial were within the
reported ranges for these annual forages [11,23,24]. The results of this study demonstrate
that adding CWP alone or combined with LL to CG can increase the CP content of the
forage mix compared to the CG monoculture (Table 2). The 17.4 and 11.4% increase in
CP concentration observed between CG and CG+CWP and CG+CWP+LL, respectively, is
similar to the 13 to 23% increase in CP reported in several studies when intercropping corn
with several annual legumes [6,25,26]. Furthermore, Brown et al. and Lauriault and Kirksey
reported a 16 to 38% increase in CP in winter annual grasses and legumes [5,27]. Oskey
et al. observed a significant but lower (7.4%) increase in CP concentration when pearl millet
was intercropped with cowpea [7]. In addition, Angadi et al. [28] observed a numerical
increase (6.4%) in CP concentration when cowpea and lablab were intercropped with forage
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sorghum. While the increase in CP content observed in this study may have a minor impact
on animal performance, it may help reduce the cost of protein supplementation in the
diet. However, producers would probably need to increase the amount of land area to
compensate for the decrease in DM yields (Figure 1), with a concomitant increase in the
production cost.

In line with the observations of Contreras-Govea et al. [29], fiber concentration was
higher in the grass monoculture than in the legumes or the forage mixes. Grasses usually
contain higher fiber concentrations than legumes [30]. Therefore, growing grasses in
mixtures with legumes containing lower fiber concentrations likely reduces the NDF
concentrations in the harvested forage [5]. However, Oskey et al. [7] reported no difference
when pearl millet was intercropped with cowpea. It is possible that the proportion of the
annual legume in the mixture was not large enough to have a significant impact on the
fiber content of the forage mix [29]. The lower contribution of cowpea to the mix might also
explain the smaller impact on CP concentration reported by Oskey et al. [7] and Angadi
et al. [28] compared to the current study. Similarly, Contreras-Govea et al. [29] reported
the greatest impact on forage nutrient composition when the contribution of lablab to the
mixture increased as corn planting density decreased. The interactions observed between
treatments and harvest for CP (tendency to difference) and aNDFom suggest that the plant
composition of legume-containing plots might have changed during the growing season.
For example, the difference in CP concentration between CG and the three forage mix
CWP declined from 3.8% units in the first harvest to no difference in the third harvest.
Moreover, the difference in aNDFom concentration follows a similar pattern, and there
was no difference in fiber content between CG and the forage mixes in the third harvest
(51.0 vs. 51.7%). These results, in addition to the visual assessment of the plots, suggest
that after the first harvest, legumes grew back at slower rates than the CG and were likely
outcompeted by CG grass (established in the mixes or volunteer) or weeds. Furthermore,
the drought experienced during the last two harvests might have exacerbated the regrowth
disadvantage of the legumes compared with the CG.

We observed a 12 and 16% increase in IVTDMD and IVNDFD, respectively, between
CG and the two legume monocultures. Similarly, as reported in the current study, La
Guardia Nave and Corbin [29] reported a 23% increase in IVTDMD between CG and CWP
in a two-year study. In addition, growing CG in mixtures with one or both legumes resulted
in an overall improvement in fiber digestibility compared to the grass monoculture, in
particular, the CG+CWP mix (Figure 3). In cool-season legumes, fiber digestibility is usually
lower, and ADL is higher than in grasses [5,31], which is not consistent with the results
observed in this current study. Although not significant, the legume monocultures and the
forage mixes had a higher ADL concentration on an aNDFom-basis than the CG mono-
culture, which was not reflected on the IVNDFD. Further studies are warranted to further
evaluate ruminal fiber degradation kinetics within and among summer annual legumes.

Under the conditions of this study, the consistent decrease in forage yield and quality
observed between the first, second, and third harvests suggests that, regardless of forage
treatment, maximum animal production potential will likely be achieved only in the earlier
harvest. Furthermore, the combined low yield and forage quality observed in the third
harvest suggest this last harvest might be avoided.

5. Conclusions

As hypothesized, seeding legumes with crabgrass improved the quality of the forage
relative to that of crabgrass alone, although this improvement occurred at the early cuts
and not so much at the late cuts. Additionally, cowpea seemed to have a more consistent
effect than lablab on forage quality. In regard to yield, seeding legumes with crabgrass did
not increase DM yield. Even more, DM yields decreased when crabgrass was mixed with
some legumes. In conclusion, the benefits of mixing crabgrass with legumes might be less
than expected and should be carefully evaluated by livestock producers, especially when
considering the effects of DM yield, forage quality, and pasture seeding costs.
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