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Abstract: Autism spectrum disorder (ASD) is a wide range of diseases characterized by difficulties
with social skills, repetitive activities, speech, and nonverbal communication. The Centers for Disease
Control (CDC) estimates that 1 in 44 American children currently suffer from ASD. The current gold
standard for ASD diagnosis is based on behavior observational tests by clinicians, which suffer from
being subjective and time-consuming and afford only late detection (a child must have a mental age
of at least two to apply for an observation report). Alternatively, brain imaging—more specifically,
magnetic resonance imaging (MRI)—has proven its ability to assist in fast, objective, and early ASD
diagnosis and detection. With the recent advances in artificial intelligence (AI) and machine learning
(ML) techniques, sufficient tools have been developed for both automated ASD diagnosis and early
detection. More recently, the development of deep learning (DL), a young subfield of AI based on
artificial neural networks (ANNs), has successfully enabled the processing of brain MRI data with
improved ASD diagnostic abilities. This survey focuses on the role of AI in autism diagnostics and
detection based on two basic MRI modalities: diffusion tensor imaging (DTI) and functional MRI
(fMRI). In addition, the survey outlines the basic findings of DTI and fMRI in autism. Furthermore,
recent techniques for ASD detection using DTI and fMRI are summarized and discussed. Finally,
emerging tendencies are described. The results of this study show how useful AI is for early, subjective
ASD detection and diagnosis. More AI solutions that have the potential to be used in healthcare
settings will be introduced in the future.

Keywords: autism spectrum disorder (ASD); fMRI; DTI; artificial intelligence; deep learning; survey;
diagnostics

1. Introduction

Autism spectrum disorder (ASD) is a long-term neurodevelopmental disorder char-
acterized by impaired social communication and interaction, restricted and repetitive
stereotypical behavior patterns, and diminished cognitive skills. The World Health Or-
ganization (WHO) estimates that ASD affects about 67 million individuals around the
world. Males are four times more affected than females [1–3]. The exact etiology of ASD is
still unclear. Heterogeneous and multi-factorial causes are suggested, including genetic
background [4].
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Autistic symptoms usually begin to develop within the first two years of life. Early
ASD manifestations can be found in 12-month-old infants. However, the average age for
diagnosis is around five years [1,5]. The current gold standard in ASD diagnosis is based
on behavior observational tests by clinicians such as the Autism Diagnostic Observation
Schedule (ADOS) or Autism Diagnostic Interview-Revised (ADI-R) report, but these ap-
proaches are subjective and time-consuming. Early and appropriate diagnosis is crucial to
help limit the deterioration of the condition and to improve prognostic outcomes [2,6,7].

Magnetic resonance imaging (MRI) is an essential non-invasive method in the detec-
tion of brain structure, white-matter (WM) integrity, and functional activity [8]. Structural
MRI (sMRI) has been used to describe the morphological brain changes in ASD regarding
the shape and volume of different brain regions. Diffusion tensor imaging (DTI) provides
an assessment of anatomical connections and has shown disorganized micro-structural
WM integrity in the autistic population. Functional MRI (fMRI) relies on the detection of
dynamic physiological information from active brain regions. Measuring the change in
blood-oxygenation-level-dependent (BOLD) signals in various brain states (resting state or
task-evoked) can reveal functional architecture abnormalities in the ASD population [9,10].
Although different MRI modalities have shown promise in distinguishing ASD individ-
uals from healthy controls (HCs), MRI results remain inconsistent and nonreplicable [8].
Therefore, the need for neuroimaging biomarkers remains an ongoing clinical challenge.
Several computer-aided design systems (CADS) have been widely applied to integrate
multimodal MRI with artificial intelligence (AI). Machine learning (ML) is a subfield within
(AI). In neuroimaging, ML is widely used in medical image analysis through extracting
informative features and constructing the best-fitting algorithm to provide the desired
output [5,11]. The most frequently selected features for ASD include color, shape, texture,
and spatial relationship features. These features are computed to study developmental
brain abnormalities and can be applied to improve the diagnosis and to classify subtypes
and the degree of severity of ASD [12,13].

The availability of large datasets, including those from the Autism Brain Imaging Data
Exchange (ABIDE), has led to an increase in publications combining ML with different
neuroimaging biomarkers. These studies aim to reduce subjectivity and to establish a
more objective, data-driven method for identification, classification, and prognosis of ASD
children [5].

In this survey, we aim to review the publications predicting or identifying ASD
based on different MRI modalities (i.e., DTI and fMRI) using ML methods. DTI studies
since 2011 are presented. There has been a great increase in the number of publications
based on functional imaging (fMRI). Here, we focus on recent fMRI studies in the last
five years. A manual search is done using electronic databases in PubMed and Google
Scholar for articles and papers published in English until July 2022 using search terms as
follows: (autism, autism spectrum disorders, or ASD) and (diffusion tensor imaging or
DTI) AND (functional magnetic resonance imaging, fMRI, task-based fMRI, T-fMRI, resting
state fMRI, rs-fMR, or BOLD) and (artificial intelligence, AI, machine learning, ML, deep
learning, or DL) and (detection, diagnosis, or findings). The eligibility criteria included
original research articles published, accepted for publication, or available online in English.
Age- or sex-based studies were included. Case reports and review articles, including
narrative, systematic reviews, and meta-analyses, were excluded from data extraction but
were used as reference searches. Studies comparing a group of ASD individuals with a
group of typically developed controls were included. However, studies conducted on the
comparison of ASD with other neurodevelopmental, cognitive, or psychiatric disorders
such as attention-deficit hyperactive disorder (ADHD) were excluded. Given that this
review is designed to look at DTI and fMRI studies based on ML findings, ML algorithms
with neuroimaging data were used as a biomarker in differentiating ASD individuals from
typically developed controls. In addition, other imaging modalities such as structural MRI,
MR spectroscopy, or positron emission tomography were excluded as well.
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2. MRI findings for ASD
2.1. ASD Findings Using Diffusion Tensor Imaging (DTI)

DTI is a non-invasive, in vivo tool that measures water diffusion within WM tracts,
thus providing a macroscopic picture of WM ultrastructure within the imaged voxel. The
most important DTI metrics are mean diffusivity (MD) and fractional anisotropy (FA). MD
measures the overall amount of diffusion and is related to cellular density. FA captures the
directional changes of diffusion and represents the degree of alignment of WM tracts and
cellular structure, ranging from 0 (random or isotropic) to 1 (unidirectional or anisotropic).
Other parameters include axial diffusivity (AD) and radial diffusivity (RD). AD measures
the diffusion in a direction parallel to WM tracts and represents axon integrity, whereas RD
is the perpendicular diffusion and is related to myelin integrity [14–16].

White-matter tracts are composed of bundles of axons that carry the communication
signals between brain regions. Alteration in synaptogenesis caused by dysmaturation of
myelination has been reported in the ASD population. Myelin alteration leads to changes
in axonal fiber density, caliber, and homogeneity with subsequent impairment of WM
microstructural organization and integrity [10,17,18].

Many studies have shown reduced FA and increased MD in widespread WM tracts
and brain regions of the ASD population when compared to typically developed controls
(TD), denoting reduced WM integrity. The most-commonly involved tracts are long-range
association fibers that directly and indirectly connect the brain regions responsible for
social cognition and verbal communication. Those tracts include the superior longitudi-
nal fasciculus, occipitofrontal fasciculus, arcuate fasciculus, uncinate fasciculus, inferior
longitudinal fasciculus, and cingulum [1,19–21]. A study by Jung et al. [19] revealed the
correlation between impaired connectivity at the occipital cortex in ASD boys with the
core symptoms and clinical outcomes of ASD. A significant negative correlation was found
between tract length (left cingulum cingulate gyrus and right uncinate fasciculus) and the
total score of the Social Communication Questionnaire (SCQ).

Valenti [22] presented a comprehensive review of several published articles that used
DTI in the evaluation of corpus callosum (CC) integrity in ASD. They found a significant
difference in DTI and tractography findings between the ASD group and healthy controls,
indicating both micro- and macro-structure alterations in CC. In addition, those structural
alterations are correlated with socio–communicative deficits. Shukla et al. [23] found in-
creased RD and reduced FA in CC and the internal capsule (IC). Others have shown altered
IC connectivity with the correlation of DTI changes with the core ASD symptoms [24–26]. A
study focused on language-related tracts (arcuate fasciculus) to differentiate ASD patients
from non-ASD individuals with a developmental language disorder found a significant
reduction in FA of the arcuate fasciculus in ASD individuals [27].

Moreover, other studies reported age-related differences in the widespread WM micro-
structure of ASD population when compared to healthy controls. For example, in [28,29],
the authors found increased FA in autistic infants and toddlers, while indices decreased
in elder autistic children. This was attributed to better tract coherence and alignment
in infancy. Other studies have shown the opposite, as there was a significant positive
correlation of FA with increasing age of autistic children while MD and RD measures
showed a significant negative correlation with age [30,31]. These studies suggest that
neurodevelopmental maturation of WM trajectories with increased age is associated with
changes in diffusivity parameters.

Apart from using DTI biomarkers alone, several imaging-based ML studies have
been applied to overcome the limitations found in DTI studies alone. DTI lacks a full
description of crossing WM trajectories. Despite the sensitivity of DTI metrics to capture
microstructural changes, DTI is less specific for other WM disorders affecting myelination
and axonal density [32]. In addition, there is still limited integration between clinical and
imaging biomarkers. The need for informative data relevant to diagnosis and treatment
decisions is challenging. Therefore, ML has been developed to aid the identification and
classification of ASD children using clinical, behavioral, and imaging biomarkers [10].
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2.2. ASD Findings Using fMRI

Functional neuroimaging is used to investigate the functional connectivity and activity
of brain regions. Electroencephalography (EEG) has been used as a basic method to record
electrical activities of the brain from the scalp with high temporal resolution (in millisec-
onds) [33]. Further, fMRI detects brain activity by measuring the associated variations in
blood-oxygenation-level-dependent spontaneous signals (BOLD) in response to various
stimuli [34]. It is a four-dimensional technique (4D) that captures the three-dimensional
brain volume (3D) repeatedly over a period of time. This technique has high spatial res-
olution (in millimeters) but low temporal resolution [35]. This can be explained by the
time limitations of fMRI, which cannot record the fast dynamics of brain activity and the
slow response of the brain hemodynamic system, thus requiring multiple scans over time.
Moreover, fMRI is sensitive to motion artifacts [36]. Techniques based on fMRI include two
broad categories: event-related or task-based (T-fMRI) and resting-state (rs-fMRI). Task-
based (T-fMRI) measures brain function after performing specific tasks, while (rs-fMRI)
measures brain function in the absence of task demands.

2.2.1. Task-Based (T-fMRI)

Task-based protocols employ paradigms that map the core behavioral symptoms
of ASD patients, namely, facial emotional recognition, response to social stimuli, and
reward behavior [1]. Other tasks include motor, visual processing, language, auditory,
and executive functions. Social communication skills are supported by a distributed brain
network within different brain regions collectively named the “social brain” [37]. Many
T-fMRI studies have notably demonstrated atypical activity in social brain regions among
ASD individuals during social tasks (primarily hypoactivation).

Social communication deficits in ASD include variable manifestations such as impaired
recognition of faces, making inferences about others’ intentions, and diminished social
responsiveness. In addition, there is reduced attention to social cues, human voices, and
biological motions [1,37,38]. A study that examined the activity of social brain regions in
response to the visual perception of generic faces showed hypoactivation in the fusiform
gyrus and amygdala among ASD children. These regions are responsible for such tasks.
However, similar activation was found in ASD patients as well as TD controls when the
faces were familiar [39]. Another study employed a task to distinguish between attention
to biological motions (eye gaze, walking, hand, or mouth movements) versus mechanical
motions (clock or wheel). This study revealed reduced activation of the superior temporal
sulcus and ventrolateral prefrontal cortex in ASD children compared to TD controls. The
study clarified that ASD children are easily distracted by non-facial stimuli and cannot
fixate on faces to the same degree as normal children [40].

Investigating brain activity in response to cognition of facial expressions, such as
sad facies (visual tasks), revealed increased activation in the amygdala, ventral prefrontal
cortex, and striatum in the adolescent ASD group compared to the control group [41].

Regarding the response to reward or positive feedback behavior, ASD children are
less responsive than normal children. Normally, a reward activates the visual striatum
region and engages the frontostriatal network [1]. A study employed a social reward task
such as a smiling face or a momentary reward task such as gold coins. ASD boys showed
a nonactivated visual striatum, while it was activated in TD boys Scott-Van Zeeland AA.
Moreover, a study comparing the response of both ASD boys and girls revealed more
activation in the lateral frontal cortex and insula of ASD girls, denoting that suppressed
reward center activation is a distinctive feature of ASD boys [42].

A meta-analysis of fMRI studies was proposed by Philip et al. [43]. They reviewed
T-fMRI studies that investigated the functional brain response to auditory and language-
related tasks. They revealed reduced activation in clusters of brain regions in ASD children,
adolescents, and adults compared to TD controls. Those regions are both superior temporal
gyri, the right pyramids of the cerebellar vermis, and the left middle cingulate gyrus. The
superior temporal gyrus is activated with receptive language, so reduced activation in
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response to spoken language denotes the underlying verbal communication difficulties in
ASD individuals. On the other hand, relative over-activation in ASD adults compared to
controls was found in the posterior cingulate gyrus, the motor cortex, and the cerebellar
declive. The exact cause of increased activation in ASD groups was not clear; this may
suggest the use of atypical language processing strategies [43].

2.2.2. Resting-State (rs-fMRI)

The complexity and different varieties of fMRI tasks in addition to the unique social
skills and intellectual condition of ASD children can limit some task-based experiments.
Another point is the difficulty of tasks with potential language barriers that preclude some
children, particularly infants, from participation [1,44].

Resting-state (rs-fMRI) is a promising alternative to T-fMRI. The technique is suitable
for infants and toddlers. It helps examine functional brain connectivity in the absence of
task performance. The total time of the examination is about 5–6 min. The participants just
lie in the MRI scanner with their eyes closed or with their vision fixed on a crosshair [44].
Several rs-fMRI studies aim to explore large-scale resting brain networks (RBNs). These
are organized brain regions that show cortical synchronization patterns with coherent
spontaneous fluctuations in neural activity during rest [45]. RBNs include the default
mode network, dorsal and ventral attention network, salient network, visual network, and
sensorimotor networks [45].

It has been found that the most common region with altered brain connectivity is the
default mode network (DMN). It becomes activated during the resting state, whereas it
becomes less activated with the engagement of cognitively-demanding tasks [46]. DMN is
a large-scale network composed mainly of the posterior cingulate gyrus, precuneus, and
medial prefrontal cortex. It has shown reduced connectivity in ASD patients compared
with TD controls [46–48]. The dorsal attention network (DAN) is located in the intraparietal
sulcus and frontal eye field. This network is activated to reorient the attention towards
relevant stimuli. Sun et al. [45] showed increased functional connectivity in the superficial
temporal gyrus and cerebellum, indicating the presence of circuit connections between
the DAN and cerebellum. The ventral attention network (VAN) also has been studied by
SUN [45]. The authors found increased connectivity in the insula, which is a critical region
in VAN responsible for social emotions. The salience network is another RSN that has been
examined. It is composed primarily of the dorsal anterior cingulate cortex and the anterior
insula. It is linked with the detection and filtering of salient stimuli [1]. Uddin et al. [49]
observed a reduction in functional connectivity in this network with 83% accuracy for
differentiating autistic children from TD controls. Additionally, a study by Wang et al. [50]
investigated the functional connectivity of sensory networks in autistic children, including
auditory, visual, and sensorimotor networks. They found increased functional connectivity
in all networks in ASD children that was correlated with the severity of social impairment
of the children.

Several other networks have been examined by rs-fMRI and have provided support
to the theory of “brain hypoconnectivity” in ASD. Long-range reduced brain connectivity
was found in the superior temporal region of autistic individuals when compared with
TD controls [51]. In addition, other studies have observed underconnectivity in the latero–
basal subregion of the amygdala, interhemispheric connectivity in the sensorimotor and
occipital cortices, and underconnectivity in connections between the anterior and posterior
cingulate gyrus and the precuneus [52]. Overconnectivity has been also observed in
some studies; researchers found increased connectivity in some areas, such as the frontal,
temporal, and occipital regions [48,53,54]. Kleinhans and his colleagues [55] observed
areas of overconnectivity within the amygdala (superficial and centro–medial subregions).
However, the latero–basal subregion showed underconnectivity; this region stands for the
presentation and severity of ASD symptoms. The mixed pattern or the inconsistent over-
and underconnectivity can be attributed to the small sample size used in these studies,
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phenotypic heterogeneity among ASD individuals, or an adjustment mechanism by the
brain to bypass the underconnected regions [1,44].

Overall, both DTI and fMRI have revealed important findings that are associated with
ASD. These findings are summarized in Figure 1.

Figure 1. Summary of DTI and fMRI findings in autism.

3. The Role of AI in ASD Diagnosis

Artificial intelligence (AI) involves the replication of human thinking and problem-
solving using artificially intelligent components. Machine learning (ML) is an integral
aspect of AI that involves utilizing image processing tools to extract features from an input
database. The data are then categorized through unsupervised learning or classified into
grades through supervised learning. Supervised learning uses labeled input–output pairs to
classify data, with classifiers such as SVM, random forest, and traditional neural networks
being commonly used. Deep learning (DL), a subset of ML, has become increasingly
popular in the medical field. The most commonly employed deep learning networks are
convolutional neural networks (CNNs). They consist of many convolutional and fully
connected layers to perform feature extraction and classification. Conversely, unsupervised
learning categorizes data based on input data patterns without the need for labeled input–
output pairs.

Figure 2. Components of artificial intelligence (AI) and its relation to machine learning (ML) and
deep learning.
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In modern times, AI has become a significant factor in numerous applications, in-
cluding the early identification and diagnosis of ASD (see Figure 2). This paper briefly
reviews various AI-based techniques for the early detection and diagnosis of ASD. To
evaluate the effectiveness of AI components, diverse metrics are utilized to address medical
concerns such as the classification, diagnosis, and early detection of eye diseases. A short
summary of these metrics is provided below. True positive (TP), true negative (TN), false
negative (FN), and false positive (FP) are represented by the abbreviations. The ensuing
performance metrics are defined in the following manner:

• Specificity: TN
FP+TN ;

• Sensitivity (recall): TP
TP+FN ;

• Accuracy: Accuracy = TP+TN
TP+TN+FP+FN ;

• Precision: TP
TP+FP ;

• F1-score: 2∗Precision ∗ Recall
Precision+Recall = 2∗TP

2∗TP+FP+FN ;
• The AUC is the region beneath the receiver operating characteristics (ROC) curve

that shows the relationship between the false positive rate (1-specificity, shown on the
x-axis) and the true positive rate (sensitivity, on the y-axis). The AUC value ranges
from 0 to 1, with a higher AUC value indicating better performance.

3.1. The Role of AI for ASD Diagnosis Using DTI

Currently, ML has been implemented with DTI metrics to evaluate structural connec-
tivity changes in ASD population. Several ML studies based on DTI metrics have been
performed by applying different features obtained using different algorithms for image
processing. For example, Ingalhalikar et al. [56] extracted DTI-based features such as FA
and MD metrics in each ROI to classify ASD patients and controls by learning the pattern of
the disease. Further, they correlated the degree of ASD with the clinical score of each subject
to aid in the diagnosis. A nonlinear SVM was used for classification. Li et al. [57] used
brain connectivity network features obtained from DTI to identify faulty sub-networks to
distinguish ASD subjects from the HC group. The detection was done by an SVM- recursive
feature elimination (RFE) algorithm. Jin et al. [58] used features extracted from ROI-based
WM connectivity and DTI metrics such as as FA, MD, and fiber length. A multi-kernel
SVM was used for the discrimination of ASD 6-month-old high-risk infants from low-risk
infants. Zhang et al. [59] used whole brain fiber clustering analysis with multi-fiber trac-
tography, FA, and MD features. An SVM classifier was used to distinguish ASD from
HCs. Qin et al. [60] used graph theory to analyze the topology of the white-matter network
of ASD preschool children. Edges and nodes were defined as FA and 90 brain regions,
respectively. They found disturbed topology of the structural networks of ASD subjects as
compared to HCs. Payabvash [32] used features extracted from edge density imaging (EDI)
as well as from conventional DTI metrics such as FA, MD, and RD. Variable ML classifiers
were used to discriminate ASD children from HCs. The best accuracy was achieved with the
EDI-based random forest model. Saad et al. [61] used DTI-based connectivity features with
graph theory to classify ASD and HCs. The classification was performed by an SVM and
a linear discriminant analysis (LDA). The principle component analysis (PCA) approach
was used to reduce noisy features. Better accuracy was obtained with SVM and two PCA
features. ElNakieb et al. [62] used global and local extraction of FA, MD, AD, RD, and
skewness features to examine the performance of CAD systems in ASD diagnosis. The
detection was performed using an SVM classifier. In [63], the authors used global and local
extraction of FA, MD, AD, RD, and skewness features to identify significantly different
paired WM areas in ASD and then to classify ASD individuals and HCs. They used an
SVM model for classification. In [64], the authors also used global and local extraction of
FA, MD, AD, RD, and skewness features to classify ASD individuals and HCs. They used
linear and nonlinear SVM classifiers. The best classification accuracy was achieved with
linear SVM (LSVM).

Other hybrid studies have combined DTI features with features extracted either from
functional MRI (fMRI) or structural MRI (sMRI). For example, An et al. [65] used region-to-
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region fiber connectivity DTI features and ROI-based functional connectivity (FC) features
from fMRI to validate connectivity patterns and then classify ASD subgroups using a multi-
view expectation maximization formulation (mv-EM). Deshpande et al. [66] used FA and
FC values with a multi-variate autoregressive model (MVAR). They investigated the differ-
ences between brain regions that may underpin the theory of mind in young ASD patients
and HCs. The classification was done by an SVM classifier. Crimi et al. [67] used structural
and functional connectivity features with a constrained multivariate auto-regressive model
(CMAR) that allows fusing the structural connectivity with the information from the func-
tional time series to represent effective brain connectivity. The classification between ASD
subjects and HCs was performed by an SVM classifier. D’Souza et al. [68] used pheno-
typic measures of rs-MRI connectivity and DTI tractography features with a multimodal
graph convolutional network (M-GCN) to extract predictive biomarkers from both ASD
individuals and HCs. Irimia et al. [69] used structural morphometric features such as
cortical thickness, volume, area, and mean curvature as well as connectivity features to
distinguish ASD individuals from HCs. Moreover, they distinguished ASD males and
females. The used classifier was an SVM model. Eill et al. [70] combined the anatomical
features (surface area, mean curvature, cortical thickness, volume, and local gyrification
index), DTI metrics (FA, MD, RD, and AD), and ROI-based FC matrices. They applied
a conditional random forest algorithm (CRF) to assess the role of each modality and to
explore the more informative one in diagnostic prediction. The use of combined variables
achieved higher accuracy (92.5%), and rs-fMRI connectivity variables provided better per-
formance than other anatomical modalities in the classification of ASD individuals from
HCs. Figure 3 highlights the different extracted features and the most-used classifiers in
DTI autism diagnostic systems. Table 1 summarizes ASD studies of DTI with ML models
and briefly outlines the dataset used and its demographics, the feature selection, the ML
classifier used, findings, and the accuracy whenever reported.

Figure 3. Summary of the most-utilized features and classifiers in different reported DTI autism
diagnostic systems.
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Table 1. Summary of ASD studies of DTI with machine learning (ML) models.

Article Dataset ASD HC Age Sex (Male%) Feature Selection ML Classifier Goal/Findings Accuracy

An et al., 2010
DTI+ fMRI [65] Clinical n.s. n.s. Child-control

dataset n.s.

• DTI: Region-to-region
fiber connectivity.

• fMRI: ROI-based
functional connectivity
(FC) dataset.

• Multi-view expectation
maximization (mv-EM)
formulation

• fMRI: ROI-based
functional connectivity
(FC) dataset (mv-EM).

• Goal: Validate connectivity patterns
and classify ASD subgroups using
mv-EM.

• Conclusion: Determination of
sub-networks of connectivity based
on functional and fiber connectivity
information.

Classification
error: 8.55%

Ingalhalikar et al.,
2011 [56] Clinical 45 30 10.5 ± 2.5 74.6% FA, MD SVM

• Goal: Identification of ASD
individuals versus HC group.
Correlate the degree of ASD with
clinical score to each subject to aid
in the diagnosis.

• Conclusion:
– FA significant difference in ASD

group in right occipital region, left
superior longitudinal fasciculus,
external, and internal capsules.

– MD significant difference in right
occipital gyrus and right temporal
WM.

80%

Li et al., 2012 [57] Clinical and
simulated 10 10 7–14 n.s. Brain connectivity

network
SVM-recursive feature
elimination (RFE)

• Goal: Identify the faulty
sub-networks to distinguish ASD
subjects from HC group.

• Conclusion: Faulty sub-networks
can be used as neuroimaging
biomarker for computer-assisted
diagnosis of ASD.

100%

Deshpande et al.,
2013 DTI + fMRI
[66]

Clinical 15 15 21.1 ± 0.9 n.s.
• FA values.
• FC values.

• Multi-variate
autoregressive model
(MVAR).

• SVM.

• Goal: Investigate differences
between brain regions that may
underpin the theory of mind in
young ASD patients and HCs.

• Conclusion: Impaired connectivity
in the social brain of ASD group.

95.9%



Biomedicines 2023, 11, 1858 10 of 36

Table 1. Cont.

Article Dataset ASD HC Age Sex (Male%) Feature Selection ML Classifier Goal/Findings Accuracy

Jin et al., 2015 [58] NDAR
40
High-risk
infants

40
Low-risk
infants

6-month-old
infants 70% FA, MD, and fiber length Multikernel SVM

• Goal: Use whole-brain WM
connectivity networks to identify
high-risk ASD infants.

• Conclusion: Identification of
potential imaging connectomic
biomarkers using multi-parameter
multi-scale networks for ASD
diagnosis and prognosis of
6-month-old high-risk infants.

76%

Crimi et al., 2017
sMRI+ DTI [67] ABIDE-II 31 23 n.s. n.s.

• Structural and FC
matrix SVM

• Goal: Use a constrained
multivariate autoregressive model
(CMAR) that allows fusion of the
structural connectivity with the
information from the functional
time series to represent effective
brain connectivity.

• Conclusion: Estimated effective
connectivity revealed different
brain architecture in ASD group
supported by both structural and
functional connectivities.

• Structural
connectivity:
60.57%.

• Functional
connectivity:
72.32%

Zhang et al., 2018
[59] Clinical 70 79 11.0 ± 2.6 100%

• WM fiber clusters-FA,
MD SVM

• Goal: Use whole-brain fiber
clustering analysis with multi-fiber
tractography model for group
classification of ASD.

• Conclusion: FA significantly
affected in ASD group; local long
tracts are more affected

78.3%

Irimia et al., 2018
sMRI+ DTI [69] Clinical 110 83 12.74 50%

• Structural: Cortical
thickness, volume,
area, and mean
curvature.

• Connectomic:
Connectivity density.

SVM

• Goal: Investigate the performance
of SVM in distinguishing ASD
individuals from HCs as well as
ASD males and females.

• Conclusion: Distinguish ASD from
HC; sensitivity = 97.17%
– Distinguish ASD males and

females; sensitivity = 96.3%
– Correlation of volumetric,

morphometric, and connectomic
with ASD.

94.82%
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Table 1. Cont.

Article Dataset ASD HC Age Sex (Male%) Feature Selection ML Classifier Goal/Findings Accuracy

Qin et al., 2018
[60] Clinical 39 19 2.89 ± 0.97 82% Graph-theory-based

features Edges and nodes

• Goal: Examine the white-matter
connections in the brains of
preschool-aged ASD children.

• Conclusion:
– Disturbed topology of the

structural networks of ASD
subjects.

– Nodes in the left precuneus,
thalamus, and superior parietal
cortex on both sides were found
to be more efficient.

– The greater the severity of ASD,
the greater the nodal efficiency of
the left precuneus.

—

Payabvash 2019
[32] Clinical 14 33 8.9 ± 2.7 100%

• Edge density imaging
(EDI).

• FA, MD, and RD.

• Naïve Bayes
• RF
• SVM

• Goal: Distinguish ASD children
from HCs using edge density
imaging (EDI) based on structural
connectivity.

• Conclusion: Significant lower EDI
in ASD; no significant difference in
FA, MD, or RD

75.3% in EDI
using RF

Saad et al., 2019
[61]

USC
Multimodal
Connectivity
Database

51 41 n.s. n.s. Graph-theory-based
features SVM

• Goal: Classify ASD and HCs based
on graph-theory-based features.

• Conclusion: Graph-theory-based
classification of ASD and HC
detected global and local
connectivity effectively. Principle
component analysis (PCA)
approach reduced noisy features
for better accuracy.

75%
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Table 1. Cont.

Article Dataset ASD HC Age Sex (Male%) Feature Selection ML Classifier Goal/Findings Accuracy

Eill et al., 2019
aMRI+ DTI+ fMRI
[70]

Clinical 46 47 13.63 ± 2.81 84.8%

• Cortical characteristics
including surface area,
mean curvature,
cortical thickness,
volume, and local
gyrification.

• Index-DTI metrics:
(FA,MD, AD, and RD).

• ROI: based on FC
matrices.

Conditional random
forest (CRF)

• Goal: Classify ASD individuals and
HCs based on CRF using a
combination of in-house datasets
including aMRI, DTI, and fMRI
data to assess the role of each
modality and explore the
more-informative ones in
diagnostic prediction.

• Conclusion:
– Resting-state functional

connectivity variables provided
better performance than other
anatomical modalities in the
classification of ASD individuals
from HCs.

– Principle component analysis
(PCA) approach reduced noisy
features for better accuracy.

• For each
modality
separately:
67%.

• For combined
variables:
92.5%.

ElNakieb et al.,
2019 [62] NADR 122 141 8–17.9 50%

Global and local
extraction of FA, MD,
AD, RD, and skewness
features

SVM

• Goal: Examine the performance of
CAD system in ASD diagnosis
based on WM connectivity.

• Conclusion:
– High global diagnostic decision of

ASD by CAD system. Correlation
between autistic behavior and
DTI changes.

– Principle component analysis
(PCA) approach reduced noisy
features for better accuracy.
Scalable system.

71%

ElNakieb et al.,
2020 [63] NADR 124 139 8–17.9 50%

Global and local
extraction of FA, MD,
AD, RD, and skewness
features

SVM

• Goal: Investigate the accuracy of
CAD system in ASD diagnosis
based on WM connectivity.

• Conclusion: High diagnostic
accuracy. Identification of
significantly different paired WM
areas in ASD. Scalable system.

73%
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Table 1. Cont.

Article Dataset ASD HC Age Sex (Male%) Feature Selection ML Classifier Goal/Findings Accuracy

ElNakieb et al.,
2021 [64] ABIDE-II 125 100 5.1–46.6 n.s.

Global and local
extraction of FA, MD,
AD, RD, and skewness
features

Linear and non-linear
classifiers

• Goal: Classify ASD individuals
using ML based on WM
connectivity. Correlation between
autistic behavior and DTI changes.

• Conclusion: Identification of
significantly different paired WM
areas in ASD.

99%

D’Souza et al.,
2021 DTI +
rs-fMRI [68]

Clinical 57 275 n.s. n.s.
Phenotypic measures of
rs-MRI connectivity. DTI
tractography

Multimodal graph
convolutional network
(M-GCN)

• Goal: Extract predictive biomarkers
for ASD diagnosis.

• Conclusion:
– The suggested approach obtains

indicative biomarkers from both
individuals with no health issues
and those with autism.

– M-GCN combines structural and
functional mapping information
to derive phenotypic measures
even when training data are
limited

—



Biomedicines 2023, 11, 1858 14 of 36

3.2. The Role of AI for ASD Diagnosis Using fMRI

Recent progress in ML algorithms combined with fMRI techniques has been estab-
lished for the diagnosis of ASD and has shown promising results. In this review, we include
several high-impact publications from the last five years. For example, Abraham et al. [71]
used features selected from ROI-based resting-state FC matrices to differentiate ASD from
HCs. They used an SVM classifier and found an increase in the predictive power with
the increase in participant numbers. Emerson et al. [72] used extracted features from
ROI-based resting-state FC matrices for the prediction of ASD in high-risk 6-month-old
infants based on correlated brain metrics with 24-month ASD-related behaviors. They
achieved 96.6% classification accuracy of ASD individuals at 24 months. The classifica-
tion was performed by an SVM classifier. Guo et al. [73] used ROI-based resting-state
FC matrices with deep neural networks with feature selection (DNN-FS) to select the
most relevant features from FCs related to ASD from the default mode to identify ASD
individuals from HCs. Jahedi A [74] obtained ROI-based FC features as biomarkers to
identify ASD patients from HCs. Combined use of conditional random forest (CRF) and
random forest classifiers achieved the best prediction accuracy. Kam et al. [75] used ex-
tracted features from seed-based FC matrices with discriminative restricted Boltzmann
machines (DRBM) to identify dominant FCs to differentiate ASD from HCs. An ensemble
classifier was applied and obtained high accuracy with multiple clusters using hierarchical-
level clustering of networks. Sadeghi et al. [76] used features from ROI-based FC nodal
matrices to extract local and global parameters of brain networks to identify ASD from
HCs. Multiple classifiers were used, but SVM showed superiority to other classifiers.
Subbaraju et al. [77] used extracted features from ROI-based resting-state FC matrices
with a spatial-feature-based detection method (SFM) to extract the most-discriminative
blood-oxygenation-level-dependent (BOLD) signals. An SVM classifier was used in the
classification of ASD individuals versus HCs. Tejwani et al. [78] used extracted features
from ROI-based enhanced FC variability across brain regions to distinguish between ASD
subjects and HCs. They used SVM, RF, Naïve Bayes, and multi-layer perception algorithms
for classification. Heinsfeld et al. [79] used extracted features from ROI-based FC matrices
with a DNN algorithm. The proposed method achieved better accuracy than SVM and RF
classifiers in classifying ASD and control subjects. Bi et al. [80] used ROI-based FC features
to differentiate between autistic individuals and HCs. They applied a random SVM cluster
and achieved high classification accuracy.

Furthermore, Fredo et al. [81] used features extracted from ROI-based FC matrices to
classify ASD individuals and HCs. The detection was done by CRF. Li et al. [82] conducted a
two-stage pipeline method composed of DNN and prediction distribution analysis to inves-
tigate the accuracy in classifying two datasets of ASD and HC subjects. They extracted fea-
tures from ROI-based FC matrices from both resting-state and task-fMRI. Bernas et al. [83]
extracted temporal neurodynamic fMRI biomarkers for ASD diagnosis with wavelet coher-
ence maps. The detection was done by an SVM classifier. Bhaumik et al. [84] used features
extracted from ROI-based FC matrices for the prediction and diagnosis of ASD subjects
versus HCs. The detection was done by an SVM and partial least square regression (PLS)
algorithms. Dekhil et al. [85] used power spectral densities as extracted features to classify
ASD individuals and HCs. An SVM was used and achieved high diagnostic accuracy
and prediction of clinical phenotypes. Xiao et al. [86] used the extracted time courses of
each subject with NN algorithms. The extracted features were inputted into a stacked
autoencoder (SAE) and then into a subsequent softmax classifier for the identification of
school-aged ASD children versus HC school-aged children. Yang et al. [87] used features
extracted from ROI-based FC matrices to classify ASD and HC subjects. The detection
was performed by SVM, LR, and ridge classifiers. They found that accuracy is improved
with combined classifiers. Wang et al. [88] used extracted features from ROI-based FC
matrices to classify ASD and HC subjects. In [89], they used an SVM recursive feature
model to achieve high classification accuracy of ASD and HC individuals on both global
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and across-site datasets. They also used extracted features from ROI-based FC matrices
to identify ASD subjects and HCs. An SVM-recursive feature model and a stacked sparse
auto-encoder (SSAE) were used to eliminate some meaningless features to enable the
SSAE to extract insightful features. Aghdam et al. [90] used extracted features from fast
Fourier transformation with the CNN method in order to classify ASD subjects and HCs.
Huang et al. [91] used extracted features from rs-fMRI multiple-group sparse networks.
They used an SVM classifier to distinguish ASD individuals. Jun et al. [92] used extracted
features from rs-fMRI local functional characteristics based on the estimated likelihood
of ROI by hidden Markov models (HMMs) to identify meaningful information for ASD
detection. The detection was performed by an SVM classifier. Eslami et al. [93] used
extracted features from ROI-based FC matrices with ASD-DiagNet in order to classify ASD
and HC subjects, and the proposed method achieved high classification accuracy. Mostafa
et al. [94] extracted features from ROI-based FC matrices and then the eigenvalues of the
Laplacian matrix of the brain network with a sequential feature selection algorithm. Linear
discriminant analysis (LDA) was used to classify ASD and HC subjects. Song et al. [95]
used extracted features from community pattern analysis of FC to classify the ASD popula-
tion and HCs in addition to the prediction of the clinical classes of ASD individuals. The
detection was performed by LDA. Spera et al. [96] used extracted features from ROI-based
FC matrices to classify ASD and HC subjects. They selected a homogeneous cohort of
young ASD males to lessen the impact of confounding factors. The detection was by linear
kernel SVM. Tang et al. [97] used extracted features from ROI-based FC from DMN and the
whole brain with joint symmetrical non-negative matrix factorization (JSNMF). An SVM
classifier was used to classify ASD and HC subjects. Yamagata et al. [98] used extracted
features from ROI-based FC matrices with a multivariate ML approach. A sparse logistic
regression (SLR) classifier was used to classify pairs of ASD patients and their unaffected
siblings from pairs of HCs and their siblings according to the endophenotype.

Recently, Chaitra et al. [99] used extracted features from ROI-based FC matrices to
classify ASD patients and controls. They employed a recursive-cluster-elimination SVM
algorithm. Fan et al. [100] used extracted features from maps based on estimated likelihood
values of ROI by HMM to identify ASD individuals from HCs. The detection was performed
by an SVM classifier. Liu et al. [101] employed the elastic network method to extract features
from ROI-based FC matrices to distinguish ASD individuals from HCs. They obtained high
classification accuracy using an SVM classifier in the automatic diagnosis of ASD compared
to LASSO and RR algorithms. Hu et al. [102] utilized extracted features from ROI-based FC
matrices with a fully connected neural network (FCNN) model in the classification of the
ASD population versus HCs. Sherkatghanad et al. [103] used extracted features from ROI-
based FC matrices to classify ASD individuals and HCs using a CNN model. A CNN model
is computationally less intensive as it uses fewer parameters than state-of-the-art methods
and can be used in prescreening of ASD patients. Thomas et al. [104] used the temporal
statistics of rs-fMRI data with 3D-CNN to classify ASD individuals. The classification was
also performed by an SVM model on the same dataset. The best classification accuracy
obtained by the SVM algorithm was 66%, while 3D-CNN achieved 64%, denoting that 3D-
CNN could not learn additional information in classifying ASD and HCs. Jiao et al. [105]
utilized extracted features from ROI-based FC matrices with the CapsNET method to
classify ASD individuals and HCs. Moreover, they stratified ASD subjects into groups
based on distinct FC measures. Liu et al. [106] used the extracted features from ROI-based
FC matrices with an elastic network method to classify ASD individuals versus HCs. Liu
et al. [107] utilized the extracted dynamic features from ROI-based FC matrices with a
multi-task feature selection method. A multi-kernel SVM classifier was used to classify ASD
individuals versus HCs. Zhang et al. [108] utilized the rs-fMRI dataset of ASD subjects and
HCs with a fast entropy method that included approximate entropy (ApEn) and sample
entropy (SampEn). The SVM classifier was used to diagnose ASD. Ronicko et al. [109] used
extracted features from ROI-based FC matrices with partial and full correlation methods.
Classification of ASD individuals and HCs was built by different models, namely, SVM, RF,
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Oblique RF, and CNN. Khan et al. [110] analyzed the extracted features from ROI-based FC
matrices with a teacher–student-neural-network-based feature selection method. Different
classifiers were used in classifying ASD and HC subjects, such as SVM, RF, LR, decision
trees, and linear discriminant classifiers.

More recently, Reiter et al. [111] used extracted features from ROI-based FC matrices of
ASD subjects and HCs. An RF classifier was used to investigate the effect of heterogeneity
of ASD samples on classification accuracy. They found that the most-homogeneous samples
achieved better RF classifier performance. Devika and Oruganti [112] utilized extracted data
from FC matrices to distinguish ASD and HC subjects. The classification was performed
by an SVM model. Ahammed et al. [113] used the extracted features from ROI-based
FC matrices with the bag-of-features extraction (BoF) method. The SVM was used as a
classifier for identifying ASD and HC subjects. Ahammed et al. [114] used the extracted
features from ROI-based FC matrices. They applied a DarkASDNet method to classify ASD
and HC subjects. Graña and Silva [115] utilized the extracted features from ROI-based
FC matrices of ASD subjects and HCs using nine different classifiers. They explored the
impact of choices during building up the ML pipelines on the predictive performance. They
found that the selection of some feature extraction methods can strengthen the classifier
performance, such as classical principal component analysis (PCA) and factor analysis
(FA). Al-Hiyali et al. [116] used the temporal dynamic features from default mode network
regions (DMNs) with several deep learning models for the diagnosis and classification of
ASD. SVM and K-nearest neighbors (KNN) were used for ASD classification, and KNN
achieved the highest classification accuracy. Pominova et al. [117] utilized extracted features
of FC matrices and full-size MRI series with a 3D convolutional autoencoder method. To
classify ASD and HC subjects, the SVM classifier was used. Yin et al. [118] used extracted
features from ROI-based FC matrices with graph theory and autoencoders to distinguish
ASD subjects from HCs. SVM, K-nearest neighbor (KNN), and DNN algorithms were used
for classification. Chu et al. [119] used extracted features from ROI-based FC network
regions with a multi-scale graph convolutional network (GCN) to classify ASD patients and
HCs by learning the distinctive FC features. Yang et al. [120] used extracted features from
FC matrices to distinguish ASD individuals from HCs. They used different classifiers such
as LR, KSVM, DNN, and supervised learning classifiers; among these, KSVM achieved
the best classification accuracy. Figure 4 highlights the different extracted features and the
most-used classifiers in fMRI autism diagnostic systems. Table 2 summarizes ASD studies
of fMRI with ML models and briefly outlines the dataset used and its demographics, the
feature selection, the ML classifier used, findings, and the accuracy whenever reported.

Figure 4. Summary of the most-utilized features and classifiers in different reported fMRI autism
diagnostic systems.
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Table 2. Summary of ASD studies of fMRI with machine learning (ML) models.

Article Dataset ASD HC Age Sex
(Male%) Feature Selection ML Classifier Goal/Findings Accuracy

Abraham et al.,
2017 rs-fMRI [71] ABIDE 403 468 n.s. 83.5%

• ROI-based FC
matrices. • SVM

• Goal: Extract predictive biomarkers
to differentiate ASD from HC.

• Conclusion: Increased predictive
power with the increase in
participant numbers.

67%

Emerson et al.,
2017 [72] fcMRI Clinical 11 high-risk

infants 48
6–24
months
high-risk

69.5%
• ROI-based FC

matrices. • SVM

• Goal: The ability to predict ASD in
high-risk infants at 6 months and
accurately diagnose ASD at 24
months.

• Conclusion: Early brain metrics
found at 6 months of age based on
their association with later
ASD-related behaviors provide an
accurate prediction of ASD in an
individual infant at 24 months.

96.6%

Guo et al., 2017
rs-fMRI [73] ABIDE I 55 55 12.7 ± 2.4 76.4%

• ROI-based FC
matrices.

• Deep neural networks
with feature selection
(DNN-FS)

• Goal: Classification of ASD patients
versus HCs.

• Conclusion: Identifying functional
connections in brain regions
associated with ASD, such as the
default-mode network,
cingulo–opercular network,
frontal–parietal network, and
cerebellum, can aid in ASD
diagnosis.

86.36%

Jahedi A 2017
fcMRI [74] ABIDE 126 126 17.3 ± 6.0 80.6%

• ROI-based FC
matrices.

• Conditional random
forest (CRF)

• RF

• Goal: Identification of sensitive and
specific biomarkers for ASD
diagnosis.

• Conclusion: Combined RF and CRF
achieved the best prediction
accuracy.

92.7%

Kam et al., 2017
rs-fMRI [75] ABIDE 119 144 <20 n.s.

• Seed-based FC.
• Discriminative

restricted Boltzmann
machine (DRBM)

• Goal: Identification of dominant
FCs to differentiate ASD from HCs.

• Conclusion: multiple clusters using
hierarchical-level clustering of
networks achieved high accuracy in
discriminating ASD from HCs.

• Single cluster
67.42%

• Multiple
cluster 80.82%
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Table 2. Cont.

Article Dataset ASD HC Age Sex
(Male%) Feature Selection ML Classifier Goal/Findings Accuracy

Sadeghi et al.,
2017 rs-fMRI [76] ABIDE 31 29 20.49 ± 6.16 100%

• ROI-based FC
matrices. • SVM

• Goal: Extract local and global
parameters of brain networks to
identify ASD.

• Conclusion:
– SVM showed superiority to other

classifiers.
– Local parameters of the brain

connectome in default mode,
salience ventral attention, control,
somatomotor and dorsal attention
networks can be used for autism
screening.

92%

Subbaraju et al.,
2017 rs-fMRI [77] ABIDE, PCP 505 530 6.5-58 84.8%

• ROI-based FC
matrices. • SVM

• Goal: Spatial-feature-based
detection method (SFM) extracts
the most-discriminative BOLD
signals.

• Conclusion:
– Shift in resting state activities to

prefrontal cortex in males.
– SFM yielded accurate diagnosis of

ASD.

78.6–95%

Tejwani et al., 2017
rs-fMRI [78] ABIDE 147 146 n.s. n.s.

• ROI-based FC
matrices.

• SVM
• RF
• Naïve Bayes
• Multilayer perception

algorithm

• Goal: Identifying ASD versus HCs.
• Conclusion:

– Increased FC in ASD more than
HCs.

– Dynamic FC measures are
comparable with static FC
measures such as node strength in
predicting ASD.

65%

Heinsfeld et al.,
2018 rs-fMRI [79] ABIDE I 505 530 Site-specific Site-specific

• ROI-based FC
matrices. • DNN

• Goal: Classification of ASD and
HCs.

• Conclusion: anterior–posterior
underconnectivity in ASD.

70%

Bi et al., 2018
rs-fMRI [80] ABIDE 45 39 13.4 ± 2.4 88%

• ROI-based FC
matrices. • Random SVM cluster

• Goal: Classification of ASD and
HCs using multiple SVMs.

• Conclusion:
– Higher accuracy with random

SVM.
– Anomalies were also found in

brain areas such as the inferior
frontal gyrus, hippocampus, and
precuneus.

96.15%
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Table 2. Cont.

Article Dataset ASD HC Age Sex
(Male%) Feature Selection ML Classifier Goal/Findings Accuracy

Fredo et al., 2018
rs-fMR [81] ABIDE I, II 160 160 12.16 ± 2.76 100%

• FC matrix • CRF

• Goal: Classify ASD and HCs using
CRF.

• Conclusion:
– Using characteristics extracted

from the cingulo–opercular task
control (COTC) region, more
precise classification can be
achieved.

– The connection between the
COTC and the dorsal attention
network was able to differentiate
between individuals with ASD
and healthy controls.

65%

Li et al., 2018
T-fMRI+rs-fMRI
[82]

• (T-fMRI)
Clinical

• (rs-fMRI)
ABIDE I

• (T-fMRI)
82

• (rs-fMRI)
41

• (T-fMRI)
48

• (rs-fMRI)
54

n.s. n.s. —

• 2-stage pipeline (DNN
+ prediction
distribution analysis)

• Goal: Detect brain region saliency
in distinguishing ASD from HCs.

• Conclusion: The proposed method
achieved efficient interpretation of
deep learning with neuroimaging.

• (T-fMRI)
87.1%

• (rs-fMRI) 85%

Bernas et al., 2018
rs-fMRI [83] ABIDE 24 39 15.5 ± 1.0 87%

• Wavelet coherence
maps. • SVM

• Goal: Extraction of temporal
neurodynamic fMRI biomarkers for
ASD diagnosis.

• Conclusion:
Wavelet-coherence-based classifiers
achieved robust and replicable
results in ASD diagnosis.

86.7%

Bhaumik et al.,
2018 rs-fMRI [84] ABIDE 167 205 13.4 ± 5.1 81.7%

• ROI-based FC.
• SVM
• Partial least square

regression (PLS)

• Goal: Diagnosis and prediction of
ASD by extracting neurobiological
markers to differentiate ASD and
HCs.

• Conclusion: Highest accuracy
achieved with SVM and PLS.

62%

Dekhil et al., 2018
rs-fMRI [85] NDAR 123 160 12.9 ± 3 53.3%

• Power spectral
densities • SVM

• Goal:
– To classify ASD and HCs.
– Design a plan for personalized

treatment.
• Conclusion: The proposed

algorithm provided better
diagnostic accuracy and prediction
of clinical phenotypes.

91%
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Table 2. Cont.

Article Dataset ASD HC Age Sex
(Male%) Feature Selection ML Classifier Goal/Findings Accuracy

Xiao et al., 2018
fMRI [86] ABIDE 42 42 9.78 ± 1.5 82.1%

• Time courses of
networks.

• Stacked autoencoder
(SAE)

• NN

• Goal: Identification of school-aged
ASD children from HC school-aged
children.

• Conclusion: The accuracy and
sensitivity can be improved by the
use of all the frequency sub-bands.

87.2%

Yang et al., 2019
rs-fMRI [87] ABIDE 505 530 6–6.4 84.8%

• Time courses of
networks.

• SVM
• LR
• Ridge

• Goal: classify ASD and HCs.
• Conclusion: combination of ML

classifiers can improve the accuracy
of ASD diagnosis.

71.98% with
Ridge

Wang et al., 2019
(a) rs-fMRI [88] ABIDE I, II 255 276 Site-specific Site-specific

• ROI-based FC. • SVM recursive features

• Goal: To find the optimal features
to achieve higher classification
accuracy of ASD and HCs.

• Conclusion: High classification
accuracy was achieved on both the
global and the across-site datasets.

90.6%

Wang et al., 2019
(b) rs-fMRI [89] ABIDE 501 533 n.s. n.s.

• ROI-based FC. • SVM recursive feature
• stacked sparse

auto-encoder (SSAE)

• Goal: To improve classification
accuracy in identifying ASD and
HCs.

• Conclusion: The proposed method
can eliminate some meaningless
features to enable the SSAE to
extract insightful features.

93.59%

Aghdam et al.
2019 rs-fMRI [90] ABIDE I, II 210 249 5–10 72.1%

• Fast Fourier
transformation • CNN

• Goal: Diagnosis of ASD in young
children.

• Conclusion: CNN is a powerful
tool in the diagnosis of ASD in
children.

70.5%

Huang et al., 2019
rs-fMRI [91] ABIDE 45 47 11.1 ± 2.3 80.4%

• Multiple group-sparse
networks • SVM

• Goal: To investigate how multiple
networks can be used to generate
different sparsity constraints and
create a group of networks from a
single brain.

• Conclusion: Better diagnosis was
achieved by using multiple
group-sparse FCNs.

79.4%
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Table 2. Cont.

Article Dataset ASD HC Age Sex
(Male%) Feature Selection ML Classifier Goal/Findings Accuracy

Jun et al., 2019
rs-fMRI [92] ABIDE 121 171 14.4 ± 5.8 78.4%

• Maps based on
estimated likelihood of
ROI by HMM

• SVM

• Goal: To distinguish between
individuals with ASD and healthy
controls, stochastic regional
temporal BOLD fluctuations were
analyzed, and their dynamic
characteristics were estimated as
likelihoods.

• Conclusion: The estimated
likelihood of a regional BOLD
signal from the corresponding
region-wise HMM can be used to
identify useful information for
detecting ASD.

84.6%

Eslami et al., 2019
rs-fMRI [93] ABIDE I 505 530 Site-specific Site-specific

• ROI-based FC • ASD-DiagNet

• Goal: Classification of ASD and
HC.

• Conclusion: High classification
accuracy and AUC were achieved
using ASD-DiagNet compared to
other methods.

70.3%

Mostafa et al.,
2019 rs-fMRI [94] ABIDE I 403 468 Site-specific Site-specific

• The eigenvalues of the
Laplacian matrix of
brain network

• LDA

• Goal: Classification of ASD and
HCs.

• Conclusion: Combining features of
the eigenvalues of the Laplacian
matrix of brain networks can help
diagnose ASD more accurately.

77.7%

Song et al., 2019
rs-fMRI [95] ABIDE 119 116 Site-specific Site-specific

• Community pattern
analysis of FC • LDA

• Goal:
– Classification of ASD and HCs.
– Prediction of the clinical class of

ASD individuals.
• Conclusion: FC differences

between ASD and HC revealed
both under- and overconnectivity.

• The highest
accuracy
achieved for
on-site data
was 85.16%.

• The maximum
accuracy for
multi-site data
was around
75%.



Biomedicines 2023, 11, 1858 22 of 36

Table 2. Cont.

Article Dataset ASD HC Age Sex
(Male%) Feature Selection ML Classifier Goal/Findings Accuracy

Spera et al., 2019
rs-fMRI [96] ABIDE 102 88 6.5–13 100%

• ROI-based FC • Linear kernel SVM

• Goal: Classification of ASD and HC
by reducing the heterogeneity of
age and sex.

• Conclusion: Mixed under- and
overconnectivity patterns were
found in the selected cohort of
homogeneous age and sex.

71%

Tang et al., 2019
rs-fMRI [97] ABIDE 42 37 n.s. n.s.

• ROI-based FC from
DMN and whole brain

• SVM
• Joint symmetrical

non-negative matrix
factorization (JSNMF)

• Goal: Classification of ASD and
HC.

• Conclusion: Better classification
performance was obtained with
training the classifiers with features
extracted from DMN than the
whole brain network.

AUC= 62.6

Yamagata et al.,
2019 rs-fMRI [98] Clinical 15 45 28.3 ± 6.1 100%

• ROI-based FC

• Sparse logistic
regression (SLR)

• Multivariate ML
approach

• Goal: To distinguish pairs of ASD
patients and their unaffected
siblings from pairs of HCs and their
siblings according to the
endophenotype.

• Conclusion:
– Multivariate ML approach can

identify ASD endophenotype
pattern of FC.

– The endophenotype-related FCs
are correlated with the clinical
severity of ASD.

75%

Chaitra et al., 2020
fMRI [99] ABIDE 432 556 n.s. n.s.

• ROI-based FC
• Recursive-cluster-

elimination
SVM

• Goal: Classification of ASD and
HCs.

• Conclusion: Combined FC and
graph measures achieved higher
accuracy and better prediction than
individual measures.

70.1%
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Table 2. Cont.

Article Dataset ASD HC Age Sex
(Male%) Feature Selection ML Classifier Goal/Findings Accuracy

Fan et al., 2020
[100] ABIDE 145 157 16.4 ± 6.5 100%

• Maps based on
estimated likelihood
values of ROI by HMM

• SVM
• A hidden Markov

model (HMM) was
applied to two distinct
groups in two distinct
locations.

• Goal: Classification of ASD and
HC.

• Conclusion: Abnormalities in the
frontopolar and orbitofrontal areas
and the inferior temporal, middle
temporal, amygdala, and fusiform
gyri are prominent features of ASD,
and they are associated with
clinical functional deterioration.

74.9%

Liu et al., 2020
[101] ABIDE 506 548 16.6 ± 8.1 85.3%

• ROI-based FC • SVM elastic network
method

• Goal:
– To diagnose autism spectrum

disorder using an elastic network
model based on data from
resting-state functional magnetic
resonance imaging (rs-fMRI)
(ASD).

– Aims to achieve an algorithm
with high fitness and low model
complexity by linearly adding a
penalty term for estimated error
and minimizing the residual sum
of squares.

• Conclusion:
– High classification accuracy in

automatic diagnosis of ASD
compared to LASSO and RR.

– The elastic network method saves
time and increases the algorithm’s
effectiveness because it does not
call for the pre-selection of
features. Furthermore, compared
to other algorithms, it has been
shown to have better accuracy.

76.8%

Hu et al., 2020
[102] ABIDE 403 468 n.s. n.s.

• ROI-based FC • Fully connected neural
network (FCNN)

• Goal: Classification of ASD and HC
using FCNN and comparing results
with other conventional classifiers.

• Conclusion: FCNN model achieved
the highest classification accuracy.

69.8%
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Table 2. Cont.

Article Dataset ASD HC Age Sex
(Male%) Feature Selection ML Classifier Goal/Findings Accuracy

Sherkatghanad
et al., 2020 [103] ABIDE I 505 530 Site-specific Site-specific

• ROI-based FC • CNN

• Goal: Classification of ASD and
HCs using CNN.

• Conclusion: CNN model is
computationally less intensive as it
uses fewer parameters than
state-of-the-art methods and can be
used to prescreen ASD patients.

70.2%

Thomas et al.,
2020 [104]

ABIDE I and
II 620 542 5–64

Median = 13 80%
• Nine summary

measures
• 3D-CNN
• SVM

• Goal: Classification of ASD and
HCs.

• Conclusion: Comparable results of
3D-CNN to SVM algorithm were
obtained, denoting that 3D CNN
could not learn additional
information in classifying ASD and
HCs.

64%

Jiao et al., 2020
[105] ABIDE I 505 530 n.s. n.s.

• ROI-based FC • CapsNET

• Goal:
– Distinguish ASD subjects from

HCs.
– Group people with ASD into

various groups based on their
unique functional connectivity
metrics.

• Conclusion:
– Comparing the CapsNET

approach to other deep learning
and ML techniques currently in
use, the CapsNET approach
showed superior classification
results.

– Heterogeneous FC patterns of
ASD captured by CapsNet were
consistent with existing
neuropsychiatric findings and
had a significant difference with
ADOS score.

71%
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Table 2. Cont.

Article Dataset ASD HC Age Sex
(Male%) Feature Selection ML Classifier Goal/Findings Accuracy

Liu et al., 2020
[106] ABIDE 250 218 Center

specific 84.8%
• ROI-based FC matrix • Elastic net

• Goal: The elastic network model
uses the rs-fMRI data to diagnose
ASD.

• Conclusion: The elastic network
approach saves time and increases
algorithm efficiency because it does
not call for feature selection in
advance.

83.33%

Liu et al., 2020
[107] ABIDE I 403 468 17.07 ± 7.95 83.5%

• Dynamic FC • Multi-kernel SVM

• Goal: To improve the classification
accuracy of ASD and HCs by
applying a multi-task feature
selection method.

• Conclusion: The proposed method
achieved higher accuracy
compared to other multi-task
methods.

76.8%

Zhang et al., 2020
[108] ABIDE I 21 26 25.3 ± 6.3 100%

• Approximate entropy
(ApEn)

• Sample entropy
(SampEn)

• SVM

• Goal: To investigate non-linear
neural mechanisms that may be
used as diagnostic biomarkers in
people with ASD.

• Conclusion: The fast entropy
method, which had lower entropy
values and was quicker than
conventional entropy methods,
proved to be a more effective
strategy for analyzing ASD patients
than the FC method.

AUC = 62

Ronicko et al.,
2020 [109] ABIDE I, II 300 300 11.87 ± 2.8 80.5%

• Partial and full
correlation ROI-based
FC matrix

• RF
• SVM
• ORF
• NN

• Goal: To classify ASD and HCs.
• Conclusion: In comparison to other

strategies, the PCCE-CNN,
PCCE-SVM, and MDMC-SVM
methods all displayed superior
performance.

70.3%
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Table 2. Cont.

Article Dataset ASD HC Age Sex
(Male%) Feature Selection ML Classifier Goal/Findings Accuracy

Khan et al., 2020
[110] ABIDE 505 530 Site-specific Site-specific

• ROI-based FC matrix

• SVM
• RF
• LR
• Decision tree
• Linear discriminant

classifier

• Goal: To detect ASD using a
teacher–student-neural-network-
based feature selection
method.

• Conclusion: In 13 out of 17
site-specific comparisons, the
suggested method outperformed
other cutting-edge techniques in
terms of accuracy.

82%

Reiter et al., 2021
[111] ABIDE 306 350 6–18 n.s.

• ROI-based FC matrix • RF

• Goal: To investigate the impact of
sample diversity on classification
accuracy for ASD.

• Conclusion: Improved performance
of RF classifier was found in the
most-homogeneous samples.

73.75%

Devika, K., and
Oruganti, V. R. M.
2021 [112]

ABIDE II 23 15 n.s. 84.2%
• FC matrix • SVM

• Goal: To detect ASD using ML
algorithms.

• Conclusion: The proposed model
showed effectiveness in classifying
ASD and HCs.

80.76%

Ahammed et al.,
2021 [113] ABIDE I 19 19 15–35 78.9%

• Bag-of-features
extraction (BoF) • SVM

• Goal: To classify ASD and HCs
based on BoF extraction method.

• Conclusion: The use of BoF
extraction method can support the
clinical assessment and treatment
of ASD.

81%

Ahammed et al.,
2021 [114] ABIDE I 79 105 15.25 ± 6.58 81%

• ROI-based FC matrix
of 3D-fMRI • DarkASDNet

• Goal: To classify ASD and HCs.
• Conclusion: DarkASDNet provided

a new benchmark method for
classification of ASD individuals.

94.7%
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Table 2. Cont.

Article Dataset ASD HC Age Sex
(Male%) Feature Selection ML Classifier Goal/Findings Accuracy

Graña, M., and
Silva, M. 2021
[115]

ABIDE 408 476 Site-specific Site-specific
• FC matrix • Nine classifiers

• Goal: To explore the impact of
choices during building up the ML
pipelines on the predictive
performance.

• Conclusion: Thorough analysis
showed that using certain methods
for feature extraction, such as factor
analysis and principal component
analysis (PCA), can improve the
performance of the classifier (FA).

Best median
AUC = 0.767

Al-Hiyali et al.,
2021 [116] ABIDE 41 41 n.s. n.s.

• Default mode network
regions (DMN)

• SVM
• K-nearest neighbors

(KNN)

• Goal: Utilized a variety of deep
learning models to identify and
categorize ASD using the temporal
dynamic features of fMRI data.

• Conclusion: Deep models become
more reliable and all-encompassing
as more data from various sources
are used to train them.

85.9% with
KNN

Pominova et al.,
2021 [117] ABIDE II 184 168 10.15 ± 2.98 n.s.

• FC matrices • 3D convolutional
autoencoders

• Goal: To provide ASD recognition
baselines based on FC matrices and
full-size MRI series.

• Conclusion:
– Eliminate site-related differences

from fMRI.
– Train robust neural network

models that can be transferable
between sites on a multi-site
dataset.

—

Yin et al., 2021
[118] ABIDE I 403 468 — —

• ROI-based FC matrix
• Autoencoders
• CNN
• DNN

• Goal: To distinguish ASD subjects
from HCs based on graph theory
and autoencoders.

• Conclusion: The proposed method
of deep ML achieved higher
accuracy than traditional ML
algorithms.

79.2%
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Article Dataset ASD HC Age Sex
(Male%) Feature Selection ML Classifier Goal/Findings Accuracy

Chu et al., 2022
[119] ABIDE 79 105 14.51 ± 6.23 79.9%

• FC network regions
• Multi-scale graph

convolutional network
(GCN)

• Goal: Value of multi-scale graph
representation learning (MGRL)
framework in ASD diagnosis.

• Conclusion: Results demonstrated
the effectiveness of MGRL in FCNs
feature learning and ASD diagnosis.

0.795

Yang et al., 2022
[120] ABIDE I 403 468 6–58 —

• FC matrix

• LR
• SVM
• DNN
• Supervised learning

classifier

• Goal: Distinguish ASD subjects
from HCs based on FC metrics.

• Conclusion: For categorizing
AIBDE fMRI data, the KSVM
classifier is the best option.

69.43%
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4. Discussions and Future Trends

The use of artificial intelligence (AI) in medical diagnosis is a rapidly growing field,
and there has been increasing interest in using AI for the diagnosis of autism spectrum
disorder (ASD). This survey article examines the potential role of AI in ASD diagnosis using
diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI). DTI is a
neuroimaging technique that can be used to assess the microstructure of white matter in the
brain, and fMRI is a technique that measures brain activity by detecting changes in blood
flow. Both DTI and fMRI have shown promise in the diagnosis of ASD, as they can provide
insights into the neural basis of the disorder. This article reviews the literature on the use
of DTI and fMRI in ASD diagnosis and the reported findings, highlighting the different
machine-learning techniques that have been employed. We also discuss the strengths and
limitations of these techniques and suggest areas for future research.

4.1. Summary of ASD Findings Using DTI and fMRI

As summarized in Figure 1, both DTI and fMRI have revealed significant differences
in ASD brains. In DTI, altered FA and MD have been reported in different brain regions. In
addition, alterations in CC integrity have been reported at both micro- and macro-structural
levels. Using fMRI, different reports have used T-fMRI to reveal atypical activities during
social tasks and different auditory and language tasks. On the other side, rs-fMRI, being
more suitable for infants and toddlers as not involving specific tasks, has been used to
report altered brain connectivity in DMN, DAN, and salience networks.

To build more meaningful findings using DTI and fMRI, more reports should be
carried out to verify how the age of participants affects these findings. In addition, there is
a need to carry out studies that involve large numbers of participants to further verify the
reported findings.

4.2. Summary of ASD Diagnostic Systems Using DTI and fMRI

Figures 3 and 4 summarize the most-utilized features and classifiers in different
reported DTI and fMRI autism diagnostic systems. For DTI, different tractography-based
or voxel-based features can be extracted. Tractography-based features include region-
to-region fiber connectivity, brain connectivity networks, and fiber lengths. Voxel-based
features include FA, MD, RD, AD, and skewness. A limited number of classifiers have been
reported in the literature, with SVM being the most frequently used. For fMRI, the ROI-
based FC matrices were the most frequently used features. In addition, seed-based, wavelet
coherent maps, FFT features, and dynamic FC features have also been investigated. A
wide variety of classifiers have been reported using fMRI, including regular ML classifiers,
neural networks, autoencoder, CNN, and ensembles of different classifiers.

More diagnostic systems should be investigated to further improve diagnostic ac-
curacy, considering more novel features or the fusion between the reported features.
In addition, the recent advances in deep learning methods and explainable AI should
be investigated.

4.3. Strengths of Using DTI and fMRI for ASD Diagnosis

One of the main strengths of using DTI and fMRI for ASD diagnosis is that these
techniques provide non-invasive, objective measures of brain structure and function. They
can be used to identify subtle brain abnormalities that may not be visible on structural MRI
or other imaging modalities and can provide insights into the neural basis of ASD. Another
strength of DTI and fMRI is their ability to capture brain activity in real-time, which allows
for the study of dynamic brain processes such as language, attention, and social interaction.
This can be particularly useful for understanding the specific brain abnormalities that
underlie the core deficits of ASD and for developing targeted interventions. Overall, the
use of DTI and fMRI in combination with machine learning techniques has the potential
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to revolutionize the way ASD is diagnosed and treated by providing a more accurate and
personalized approach to care.

4.4. Limitations of Using DTI and fMRI for ASD Diagnosis

One limitation of using DTI and fMRI for ASD diagnosis is that these techniques
are typically only available at specialized centers and may not be readily accessible to
all patients. In addition, these techniques can be time-consuming and costly, which may
limit their widespread use. Another limitation is that the findings from DTI and fMRI
studies in ASD are often inconsistent, and there is a lack of consensus on the specific
brain abnormalities that are associated with the disorder. This may be due in part to the
heterogeneous nature of ASD as well as the use of different ML techniques and sample
sizes in different studies.

To address these limitations and improve the accuracy of ASD diagnosis using DTI and
fMRI, it is important to continue to develop and validate ML techniques and to standardize
the acquisition and analysis of neuroimaging data. In addition, future research should
focus on identifying the specific brain abnormalities that are most strongly associated with
ASD and on developing more precise and predictive biomarkers for the disorder.

Overall, the use of AI for ASD diagnosis using DTI and fMRI shows great promise,
but there is still much work to be done in order to fully understand the neural basis of ASD
and to develop reliable and accurate diagnostic tools. Further research is needed to validate
and optimize these techniques and to determine their clinical utility. More specifically,
optimized software prototypes need to be developed and tested on large datasets acquired
from different laboratories and institutions before commercialization. The availability and
cost of these datasets are considered to be one of the largest potential barriers, especially
with the lack of infant- and toddler-related MRI data that are required to prove the ability
of these diagnostic-imaging-based systems to provide early autism diagnosis.

5. Conclusions

The literature reported significant differences in ASD brains using DTI and fMRI. DTI
reported altered FA, MD, and CC integrity in different brain regions. T-fMRI reported
atypical activity during social tasks and different auditory and language tasks. Finally,
rs-fMRI revealed altered brain connectivity in DMN, DAN, and salience networks. These
findings encourage researcher to utilize artificial intelligence (AI) and machine learning
(ML) techniques for ASD diagnosis using DTI and fMRI. The application of AI to DTI and
fMRI mainly involves two basic steps: feature extraction and classification. This survey
basically highlights the different databases, features, and classifiers that are used in different
autism diagnostic systems. These systems have shown great promise, but there is still
much work to be done in order to fully understand the neural basis of ASD and to develop
reliable and accurate diagnostic tools. The strengths of DTI and fMRI include their ability to
provide non-invasive, objective measures of brain structure and function and their ability
to capture brain activity in real-time. However, these techniques also have limitations,
including their availability, cost, and the inconsistent findings from different studies. To
address these limitations and improve the accuracy of ASD diagnosis using DTI and fMRI,
it is important to continue to develop and validate machine learning (ML) techniques
and to standardize the acquisition and analysis of neuroimaging data. In addition, future
research should focus on identifying the specific brain abnormalities that are most strongly
associated with ASD and on developing more precise and predictive biomarkers for the
disorder. This requires a concerted effort from researchers across different disciplines,
including neuroscience, psychology, and computer science. Overall, the use of AI in ASD
diagnosis has the potential to revolutionize the way the disorder is diagnosed and treated
by providing a more accurate and personalized approach to care. This will ultimately
lead to more effective and personalized treatment strategies for individuals with ASD and
could have a significant impact on the quality of life for individuals with this disorder and
their families.
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