Skip to main content
. 2023 Jul 10;15(14):3565. doi: 10.3390/cancers15143565

Table 1.

Network Hyperparameters, Tuning, and Computing for Image Translation using CycleGAN and DC2Anet.

Implementation (Hyperparameter, Tuning, and Computing) Value
Resolution (FLAIR) 256 × 256
Resolution (T2W) 512 × 512
Preprocessing Rigid registration to ensure 256 × 256 resolution for FLAIR images
Input Image Size 256 × 256 pixels
Training Epochs 400
Batch Size 2
Optimizer Adam
Learning Rate 2·10−4 (fixed for the first 200 epochs, linear decay to 0 for the next 200 epochs)
Generator Iterations 3
Discriminator Iterations 1
Cycle Consistency Loss Weight (λcyc) 10
Adversarial Loss Weight (λGAN) 1
Computing Platform Google Colab
Programming Language Python 3.7
Deep Learning Framework TensorFlow 2.4.1