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Abstract: The intestinal barrier is a precisely regulated semi-permeable physiological structure that
absorbs nutrients and protects the internal environment from infiltration of pathological molecules
and microorganisms. Bile acids are small molecules synthesized from cholesterol in the liver, secreted
into the duodenum, and transformed to secondary or tertiary bile acids by the gut microbiota. Bile
acids interact with bile acid receptors (BARs) or gut microbiota, which plays a key role in maintaining
the homeostasis of the intestinal barrier. In this review, we summarize and discuss the recent studies
on bile acid disorder associated with intestinal barrier dysfunction and related diseases. We focus
on the roles of bile acids, BARs, and gut microbiota in triggering intestinal barrier dysfunction.
Insights for the future prevention and treatment of intestinal barrier dysfunction and related diseases
are provided.

Keywords: bile acid; bile acid receptor; gut microbiota; intestinal barrier; IBD; sepsis; NASH;
CRC; aging

1. Introduction

The intestinal barrier is a highly complex and precisely controlled physiological
structure. It interacts with the external environment as a physical, biochemical, and
immunological barrier and regulates many critical homeostatic functions [1]. In health,
the intestinal barrier is semi-permeable and protects the internal environment from the
potential infiltration of pathological molecules and microorganisms while allowing for the
absorption of nutrients and water [2]. However, under pathological situations, such as
ischemia, trauma, stress, and infection, the integrity of the intestinal barrier is disrupted,
leading to many local and systemic diseases.

Bile acids are hydroxylated sterols derived from cholesterol in the liver via either the
classical (neutral) or alternative (acidic) pathway. Primary bile acids are synthesized in the
liver, stored in the gallbladder, and then secreted into the intestine. In the gut, bile acids
are transformed into secondary or tertiary bile acids by the microbiota [3]. Traditionally,
bile acids were thought to be involved in the absorption and metabolism of lipid and lipid
soluble vitamins. Recent data suggest that bile acids act as hormones and engage bile acid
receptors (BARs), including farnesoid X receptor (FXR), Takeda G protein-coupled receptor
5 (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), pregnane X receptor (PXR), vitamin
D receptor (VDR), and constitutive androstane receptor (CAR), to play important roles
in the metabolism, inflammation, immune homeostasis, tumorigenesis, aging, and other
aspects of organism [4–9].

There are many dynamic interactions and two-way cross talks between bile acids and
the intestinal barrier. Bile acids are recognized as key molecules that control the integrity of
the compromised intestinal barrier. In this review, we focus on the role of bile acids in the
maintenance of intestinal barrier, the relationship between bile acid disorders and intestinal
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barrier dysfunction, and their related diseases. Additionally, we discuss the potential
of modifying the metabolism of bile acids and their signaling pathways as therapeutic
approaches to liver and intestinal disease.

2. Bile Acids and Intestinal Barrier

The integrity of the intestinal barrier requires constant renewal of the epithelial bound-
ary, maintenance of tight junctions (physical barrier), mucus secretion and normal gut
microbiota (biochemical barrier), and a finely regulated intestinal lamina propria immune
system (immune barrier). Because of the complexity and heterogeneity of the intestinal
barrier, specific mechanisms underlying the dysfunction of the intestinal barrier are still far
from clear. That bile acids may play a pivotal role in many aspects of the maintenance of
intestinal barrier integrity is a novel concept (Figure 1). Of interest, it is now understood
that bile acids can activate specific BARs or other downstream signaling pathways to
modulate biological functions of the intestinal mucosal barrier [10–12].
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Figure 1. The roles of bile acids in the homeostasis of the intestinal barrier. Bile acids (BAs) are
synthesized in the liver, stored in the gallbladder, and secreted into the intestine. In the gut, bile
acids modify the growth of gut microbiota. Reciprocally, bile acids are dehydroxylated and/or
de-conjugated by the gut microbiota to form secondary or tertiary bile acids (Box 1). Bile acids such as
CDCA and TUDCA are involved in the maintenance of the integrity of the intestinal barrier through
affecting the expression of tight junction proteins (Box 2). Bile acids are also involved in modifying
the gut microbiota and intestinal mucosal lamina propria local immune system. In this location, they
regulate macrophage polarization, inflammatory T helper 17 (Th17) cells and regulatory T cell (Treg)
cells, and dendritic cells (DCs).

2.1. Bile Acids and Intestinal Epithelial Cells Tight Junctions

Tight junctions provide the main connection between intestinal epithelial cells and
are formed by zonula occludens (ZOs), claudins (Cldns), and occludin (Ocln) proteins,
which play an important role in maintaining the normal physiological function of epithelial
cells [13]. The composition of bile acids is affected by diet, exercise, drugs, age, and other
factors, and responds dynamically to local and whole-body ques (Figure 2). Alteration of
the bile acid profile changes the permeability of the intestinal mucosa and affects the barrier
function through regulating the expression of tight junction proteins. For example, a high
fat diet (HFD)-induced increase in deoxycholic acid (DCA) is a major environmental factor
in the development of colorectal cancer (CRC). Apart from inducing chronic inflammation,
reductions in zonula occludens 1 (ZO-1) and goblet and Paneth cells were observed in
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Apcmin/+ mice after DCA treatment [14]. In contrast, lithocholic acid (LCA) ameliorated
the TNF-α-induced distribution of ZO-1, E-cadherin, occludin, and claudin-1 [15]. The
administration of curcumin, a polyphenolic compound isolated from turmeric, decreased
the lipopolysaccharides (LPS)-induced injury of intestinal tight junctions and alleviated
acute inflammation in the mucosa, likely through altering the microbiome and modulation
of bile acid metabolism [16].
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Figure 2. Bile acid disorder and intestinal-barrier-dysfunction-related diseases. Bile acid (BA)
metabolic disorder can be caused by alcohol intake, drugs, HFD, pollution, stress, and a sedentary
lifestyle. Bile acid metabolic disorders can cause increased CA and DCA (shown by ↑), decreased
CDCA and LCA (shown by ↓), and increased 12α-OH/non-12α-OH BAratio (↑). This imbalance in
the BA profile can damage the intestinal barrier, increase the translocation of pathogenic microbiota
and metabolites (shown by red arrows), and promote systemic inflammation and immune system
activation. These then potentiate IBD, sepsis, NAFLD, CRC, and aging. HFD, high fat diet; LPS,
lipopolysaccharides; CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; LCA,
lithocholic acid; FXR, farnesoid X receptor; TGR5, Takeda G protein-coupled receptor 5; IBD, intestinal
inflammatory diseases; NAFLD, non-alcoholic fatty liver disease; CRC, colorectal cancer.

Epithelial myosin light chain kinase (MLCK) was found to regulate tight junction pro-
tein expression and intestinal barrier function [17]. Related to this, chenodeoxycholic acid
(CDCA) reversed an LPS-induced decrease in tight junction protein expression through ac-
tivating MLCK [18]. Moreover, tauroursodeoxycholic acid (TUDCA), a bile acid commonly
used for hepatobiliary diseases treatment, acting via TGR5-MLCK, actually improved the
impairment of the E. coli-induced epithelial barrier [19].

2.2. Bile Acids and Gut Microbiota

The intestine hosts a co-evolved microbial ecosystem that is part of the intestinal
mucosal barrier. The relationship between the gut microbiota and metabolism of bile acids
was well reviewed [20–22] and not germane to the present focus. Here we focus on the
bidirectional interactive feedback between bile acids and gut microbiota and its effects on
the intestinal mucosal barrier function.
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Ursodeoxycholic acid (UDCA) supplementation attenuated inflammation and reduced
intestinal permeability caused by multidrug-resistant extended-spectrum β-lactamase
(ESBL)-producing E. coli in colibacillus diarrhea. UDCA supplementation inhibited bacterial
growth and invasion, alleviated commensal bacterial dysbiosis, and corrected colitis via the
TGR5- nuclear factor-kappa B (NF-κB) pathway [23]. Fibroblast growth factor FGF 15/19
(FGF15/19) is mainly expressed in the intestine under the control of the FXR. The activation
of the FXR-FGF19 axis modulated intestinal flora and inhibited intestinal inflammation via
restoring the normal bile acid pool [24].

As gut microbiota constantly comes into contact with the external environment, the
composition and function of the microbiota is susceptible to many factors, such as diet,
medications, exercise, and emotions. In keeping with this, the consumption of an HFD
modified the gut microbiome and bile acid pool and increased intestinal mucosal perme-
ability [25]. In mice, dietary fiber with insulin altered the composition of the microbiota
and the levels of microbiota-derived metabolites, notably bile acids, that triggered type 2
inflammation at barrier surfaces [10,26]. Some special diets, such as methionine-restricted
diets (MRDs) and l-Glutamine, enhanced the intestinal barrier integrity by regulating the
intestinal microbiota and bile acids profiles [27,28]. And a BAR signaling-independent,
physicochemical mechanism for conjugated the BA-mediated protection of epithelial barrier
function was described. In this situation, conjugated bile acids, through micelle formation,
protected the intestinal epithelium from damage by unconjugated bile acids [29] (Figure 1).

2.3. Bile Acids, Intestinal Stem Cells (ISCs), and Epithelial Injury Repair

Balance between intestinal epithelial proliferation and cell death from damage, stress,
and other pathological conditions maintain normal intestinal barrier function. Intestinal
epithelial cells are self-renewed every 3–5 days, in part, from Lgr5+ intestinal stem cell
(ISCs) as at counteract intestinal barrier damage and different stress stimuli [30]. Lgr5+
ISCs replenish damaged epithelial cells and generate progenitors of goblet and Paneth
cells. These cells secrete mucus and antimicrobial peptides to support the integrity of the
intestinal mucus layer [31].

Data demonstrated that bile acids metabolism plays a potential role in the self-renewal
function of Lgr5+ ISCs. Based on pathway synthesis and chemical structures, bile acids are
grouped into 12α-hydroxylated (OH) bile acids and non-12α-OH bile acids [3]. What the
two groups exert varies, and, at times, they have opposing effects on ISCs. For instance,
the 12α-OH bile acid CA can inhibit the activity of peroxisome proliferator-activated
receptor alpha (PPARα), impeding fatty acid oxidation (FAO), and the self-renewal of Lgr5+
ISCs [32]. An HFD-driven increase in DCA decreased ISC proliferation and differentiate
into goblet cells through pathologic endoplasmic reticulum stress [33]. In contrast, the non-
12α-OH bile acid LCA activates TGR5 and downstream proto-oncogene tyrosine-protein
kinase (SRC) and Yes-associated protein (YAP) pathways to promote ISC renewal [34].
The 12α-OH bile acid deoxycholic acid (DCA) inhibited mucosal healing in mice, but
the non-12α-OH bile acid UDCA inhibited FXR activity and increased the expression of
the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels in colonic
epithelial cells to promote mucosal healing [35]. Dcha-20, a novel LCA derivative with
vitamin-D-like activity, upregulated the expression and activity of CYP3A4, an indicator
of intestinal functional maturation, in a human-induced pluripotent stem-cell-derived
intestinal organoid [34]. This suggests a novel strategy to enhance the regenerative capacity
of the intestinal epithelium and promote epithelial injury repair [36].

2.4. Bile Acids and Intestinal Local Immune Homeostasis

The intestinal lamina propria is colonized by a variety of innate and adaptive immune
cells and gut-associated lymphoid tissue and is termed the intestinal immune barrier [37–39].
Under normal conditions, this microecosystem is tightly and finely regulated. Environ-
mental factors and the gut microbiota and their metabolites (microorganism-associated
molecular patterns and pathogen-associated molecular patterns) are recognized by spe-
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cific receptors (Toll-like receptors, TLRs) on immune cells, leading to intestinal immune
homeostasis and self-tolerance [39].

Bile acids modulate immune responses in the intestine through BARs, including TGR5,
FXR, VDR, CAR, and retinoic-acid-receptor-related orphan nuclear receptor-γt (RORγt).
Unique lymphocyte populations function cooperatively to maintain the intestinal immune
system, especially the balance between pro-inflammatory T helper 17 (Th17) cells and
anti-inflammatory Treg cells [40]. Two derivatives of LCA, 3-oxoLCA and isoalloLCA,
inhibited RORγt to suppress Th17 cell differentiation and increased the differentiation
of Treg cells through the production of mitochondrial reactive oxygen species [41]. The
secondary bile acid, isoLCA, via VDR, modulated colonic FOXP3 + Treg cells expressing
RORγt and ameliorated their susceptibility to inflammatory colitis [42]. The secondary bile
acid, 3β-hydroxydeoxycholic acid (isoDCA), increased Foxp3 and suppressed dendritic
cell immunostimulatory properties [43].

In addition to T lymphocytes, bile acids can also affect the homeostasis of the intestinal
immune barrier through modifying the function of macrophages. HFD leads to systemic
low-grade inflammation in the intestinal mucosa. This effect was related to changes in gut
microbiota and bile acids (e.g., increased CA and DCA) and, subsequently, M1 macrophage
polarization and pro-inflammatory cytokines production [25,44]. In macrophages, UDCA-
FXR signaling suppressed NF-κB activation and reduced inflammatory cytokine production,
promoting M2 macrophage polarization in low-birth-weight piglets [45]. Furthermore,
systemic FXR activation lowered bile acid synthesis, suppressed macrophages production
of IL1β and TNFα, and inhibited Th1/Th17 lymphocyte polarization [46].

3. Bile Acid and Intestinal-Barrier-Dysfunction-Related Diseases

Bile acids and BARs are involved in different types of diseases and disorders, including
diabetes, obesity, fatty liver, cardiovascular disease, lung disease, and cancer. In this section,
we focus on the diseases related to the disfunction of the intestinal barrier caused by bile
acid metabolic dysregulation (Figure 2) (Table 1).

Table 1. Bile acids and intestinal-barrier-dysfunction-related diseases.

Diseases BAs BARs Mechanism Reference

IBD PBAs↑
SBAs↓

Inhibit FXR
and TGR5

Alter the expression of tight junction proteins and the
renewal of intestinal stem cells; inhibit Paneth cell
function and type I interferon signaling.

[32,47–51]

Sepsis TBAs↑
TωMCA↑

Inhibit FXR
and TGR5

TUDCA prevents sepsis through inhibiting TGR5-NF-κB
and endoplasmic reticulum stress. TBAs increase the gut
barrier integrity.

[52–57]

NAFLD
DCA↑

Conjugated PBAs↑
Unconjugated PBAs↓

Inhibit FXR

Interfere with TLR4/TGF-β1 signaling pathway, activate
autophagy and intestinal integrity, decrease intestinal
barrier function, and induce changes in microbiota
composition.

[58–64]

CRC

CA↑
DCA↑

CDCA↓
LCA↓

Inhibit
FXR-FGF15

Enhance TGR5

Promotes dysregulated immunity, loss of the intestinal
barrier, invasion of microbial and pathogenic
metabolites, and increases inflammation.

[65–68]

Aging
LCA↓

iso-LCA↓
3-oxo-LCA↓

Inhibit RORγt Encourage age-related immune dysregulation and
promote chronic inflammation. [42,69–73]

Abbreviations: BAs, bile acids; PBAs, primary bile acids; BARs, bile acids receptors; TGR5, Takeda G protein-
coupled receptor 5; FXR, farnesoid X receptor. TωMCA, tauro-ω-muricholic acid; CA, cholic acid; DCA, de-
oxycholic acid; LCA, lithocholic acid; UDCA, ursodeoxycholic acid. ↑ means increased level of bile acids, and
↓ means decreased level of bile acids.
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3.1. Inflammatory Bowel Diseases (IBDs)

Inflammatory bowel disease (IBD) is a chronic non-specific inflammation of the gas-
trointestinal tract. IBD most often manifests as ulcerative colitis (UC) or Crohn’s disease
(CD) [74]. Apart from local immune dysregulation and auto inflammation in the intestinal
mucosa, increased intestinal permeability is associated with disease progression [75]. Bile
acids and gut microbiota contribute to mucosal barrier integrity and homeostasis. Not
surprisingly, the mutual interaction between them is undisputedly related to the pathogen-
esis, prevention, and therapy of IBD [12,21,76,77]. The dysbiosis of bile acids and bile acid
signaling participate in the occurrence and progression of IBD. Indeed, altered bile acid
profiles were reported in IBD [12,47–49,77]. Increased primary bile acids and decreased
secondary bile acids, particularly DCA and LCA, were characteristic of active IBD [47–49].
Individuals with Crohn’s disease, but not ulcerative colitis, had a reduced bile acid pool
size compared to individuals without IBD [78]. Further, the microbial gene pathways
involved in secondary bile acid biosynthesis were found to be depleted in the terminal
ileum of individuals with IBD patients compared with healthy controls [79].

Some bile acids altered the expression of tight junction proteins and the renewal of
intestinal stem cells, leading to the intestinal barrier injury, increasing the incidence of
IBD [32,50]. In contrast, some other bile acids may maintain intestinal immune barrier
homeostasis by activating BARs such as FXR and TGR5. The DCA-mediated activation of
FXR inhibited Paneth cell function and type I interferon signaling in mice with Crohn’s
disease [51]. Nuclear xenobiotic receptor CAR signaling altered the transcriptome of Teff
cells that infiltrated the small intestine lamina propria (siLP) and suppressed Crohn’s
disease-like small bowel inflammation [80]. Relevant to IBD, an association between
cooperation within the gut microbiota, such as the generation of LCA or metabolite butyrate,
and the modulation of P-glycoprotein (P-gp), was demonstrated [81].

Immunosuppressants, glucocorticoids, amino salicylic acid, and tumor necrosis factor
antagonists are employed in the treatment of IBD. However, these agents have unwanted
side effects and only modest efficacy. Bile acids and their derivatives, and BAR regulators,
are treatment strategies for IBD. In line with this, secondary bile acids, such as UDCA- and
LCA-induced activation of TGR5, improved gut barrier integrity and reduced the inflam-
mation in murine colitis [82,83]. Until now, most of the BAR-targeting drugs developed for
IBD focused on the agonists of FXR and TGR5 [83–85].

3.2. Gut Origin of Sepsis

Sepsis is a serious clinical syndrome in critically ill patients caused by systemic infec-
tion and abnormally activated immune response [86]. Extending this, the gut is thought
to be a “motor” of sepsis and related multiple organ failure (MOF) [87]. In this capacity,
intestinal barrier dysfunction and bacterial translocation (BT) would worsen any infec-
tious process [88]. Gut-origin sepsis involves bacteria and bacteria-associated products
crossing a disrupted intestinal mucosal barrier into the mesenteric lymph nodes and their
circulation [89].

The role of bile acids in intestinal barrier retention is well confirmed. However, there
is also a close relationship between the metabolism of bile acids and gut-originating sepsis.
Consistent with this view, the inflammatory mediators released during sepsis inhibited
hepatobiliary transporter gene expression, resulting in hyperbilirubinemia and cholesta-
sis [90]. Serum bile acid concentrations were significantly higher in animals and humans
with sepsis. Thus, bile acids may be a potential marker for early sepsis [52,53]. Of interest
is the analysis of plasma from septic individuals found to be glycochenodeoxycholate- and
phenylalanine-associated with survival of sepsis [91].

Strategies targeting bile acids and bile acid pathways may be a treatment for gut-
origin sepsis. TUDCA, a hydrophilic bile acid used for the treatment of various cholestatic
disorders, stimulated intestinal epithelial cell migration and preserved the intestinal barrier.
Acting through TGR5-NF-κB, it also prevented sepsis-mediated cholestasis and bacterial
dysbiosis [23,54,55]. Burkholderia pseudomallei is responsible for up to 40% sepsis-related
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mortality. TUDCA promoted B. pseudomallei clearance by inhibiting endoplasmic reticulum
(ER) stress-induced apoptosis [56]. Recently, conjugated bile acids have been found to
increase the integrity of the gut barrier [29,57]. Simple oral gavage with conjugated bile
acids decreased bacterial translocation and endotoxemia and increased survival in septic
mice [92]. Another bile acid derivative, camptothecins bile acid, inhibited NF-κB and
alleviated sepsis-induced liver injury [93].

Related to this, the probiotic Lactobacillus rhamnosus reduced sepsis mortality by re-
balancing metabolic bile acid profiles [94]. Babaodan, a natural preparation, appeared to
alter NF-κB and NLRP3 (NLR family pyrin domain containing 3) inflammasome complex
assembly to limit LPS-induced sepsis [95]. The beneficial actions of Babaodan were believed
to be due, in part, to bile acids. FGF19 inhibited bile acid synthesis by suppressing CYP7A1.
In sceptic mice, pretreatment with FGF19 was protective against LPS-induced liver, ileum,
and kidney injury [96]. Activation of bile acid receptors FXR and TGR5 altered the NLRP3
inflammasome and cAMP/PKA/CREB signaling to decrease sepsis [97,98].

3.3. Non-Alcoholic Fatty Liver Disease (NAFLD)

Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with
a spectrum of severity, including non-alcoholic fatty liver disease, non-alcoholic steato-
hepatitis (NASH), cirrhosis, and secondary hepatocellular carcinoma [99–101]. Although
the pathological mechanism of NAFLD has not been fully elucidated, increased intestinal
permeability and impaired intestinal barrier function participate in the disease [102–104].
Because about 70–75% of the liver blood supply comes from the portal vein, which drains
blood from the mesenteric veins of the intestinal tract, the liver is, in the face of disrupted
barrier function, the first-line organ to encounter the endotoxin and bacterial components
translocated from intestine [101].

Bile acids may also affect the progression of NAFLD through adjusting the intestinal
barrier [105–107]. Long-term HFD intake can lead to gut dysbiosis and the aberrant
metabolism of bile acids. Bidirectional crosstalk between gut microbiota and bile acids
could impair the intestinal epithelial function, increasing the translocation of gut-derived
endotoxins such as LPS to the blood and lymphatics to activate hepatic TLR-4/NF-κB
signaling and promote NAFLD or NASH [108,109]. HFD-mediated changes in bile acids
decreased FXR and TGR5 signaling and degraded the intestinal barrier [110,111].

Due to its insidious onset, NAFLD is difficult to diagnose at an early stage. Alterations
in bile acid homeostasis were associated with NASH and liver fibrosis. Therefore, bile
acids may be promising non-invasive diagnostic biomarkers for NAFLD [112,113]. Circu-
lating levels of DCA and gut microbiota containing DCA generating genes increased with
NAFLD severity and fibrosis stage [58,59]. Yet, no differences in total bile acids were seen
between NAFLD and NASH. Closer inspection did note that primary conjugated bile acids
increased, and unconjugated bile acids significantly decreased in relation to the degree of
liver fibrosis [60].

OCA, a CDCA derivative and FXR agonist, interfered with TLR4/TGF-β1 signaling
to activate autophagy and intestinal integrity in NASH [61–63]. TUDCA attenuated the
progression of HFD-induced NAFLD in mice and was associated with less gut inflam-
mation, better intestinal barrier function, and changes in the microbiota composition [64].
Furthermore, natural compounds from plants and exercise were found to lessen NAFLD, in
part, by regulating bile acid metabolism, counteracting HFD-induced microbial imbalance,
and supporting the intestinal barrier [114–116].

3.4. Colorectal Cancer (CRC)

CRC is one of the most prevalent cancers worldwide and is linked to environmental
factors, particular HFD [117–119]. Long-term HFD caused dysbiosis and a shift in the
bile acids profile, especially unconjugated bile acids and secondary bile acids [65,66]. The
dysbiosis of bile acids, such as high levels of CA and DCA and an increased 12α-OH/non-
12α-OH bile acids ratio, promoted dysregulated immunity, loss of the intestinal barrier,
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invasion of microbial and pathogenic metabolites, and increased inflammation, all of which
could increase CRC [67].

Elevated levels of fecal secondary bile acids, especially DCA, were associated with an
increased risk of CRC [120–122]. Oral treatment with DCA in Apcmin/+ mice reduced the
expression of tight junction proteins and the number of intestinal goblet and Paneth cells,
induced low-grade inflammation, and aggravated intestinal tumorigenesis [14,123]. HFD-
mediated changes in the gut microbiome and increased secondary bile acids invoked Wnt
signaling with epithelial cell proliferation and colonic neoplasm [124]. Likewise, gavage
with CA for 10 weeks markedly increased intestinal adenoma progression along with
impaired intestinal barrier function and IL-6/STAT3-related low-grade inflammation [125].

The dysregulation of bile acids-BAR pathways also plays a pivotal role in the pro-
gression of CRC. Decreased FXR-FGF15 signaling and overexpressed TGR5 were observed
in azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CAC mice [68]. In con-
trast, the activation of FXR protected the intestinal barrier, decreased inflammation, and
restricted tumor growth [126]. HFD and dysregulated Wnt signaling (APC mutation)
altered bile acids profiles, increased the malignant transformation of Lgr5+ cancer stem
cells, and promoted adenocarcinoma progression which was counteracted by the activation
of FXR [127]. Additionally, kaempferol upregulated FXR expression and increased CDCA
to decrease tumor growth in Apcmin/+ mice [128]. OCA treatment enhanced FXR binding
to the suppressor of the cytokine signaling 3 (SOCS3) promoter, increased SOCS3, and
decreased Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3)
signaling to limit tumorigenesis [129]. Furthermore, an FXR agonist plus GSK126 (an EZH2
inhibitor) showed synergistic anti-tumor effects [130].

3.5. Aging

Aging is defined as a progressive decline in cellular and organismal function [131].
Aging is associated with genomic instability, epigenetic alterations, telomere attrition,
loss of proteostasis, disabled macroautophagy, mitochondrial dysfunction, cellular senes-
cence, stem cell exhaustion, altered intercellular communication, deregulated nutrient-
sensing, chronic inflammation, and dysbiosis [132]. Chronic inflammation, also known
as inflammaging and immunosenescence, is a consistent feature of aging and age-related
diseases [69]. This raises the notion that the translocation of gut microbiota and bile acid
disorders may encourage age-related immune dysregulation.

Of some importance, rodents given LCA showed decreased lipid necrosis, better
mitochondrial structure, limited reactive oxygen species production, and lived longer [70].
And, somewhat predictably, bile composition changes with age [71–73]. Centenarians
(individuals at age > 100 years) had a distinct gut microbiome and unique secondary bile
acids, including various isoforms of LCA. The bile acids and metabolites from such indi-
viduals were antimicrobial to Gram-positive (but not Gram-negative) multidrug-resistant
bacteria [7,133,134].

Even though longevity is the people’s long-standing pursuit, to clarify the exact
mechanism and pick out the ‘Mr. Key’ in this process is still the most important to success.
Fortunately, many lines of evidence have clearly demonstrated that modifying the bile acids
profile can delay aging effectively. A Mediterranean diet or calorie restriction altered the gut
microbiota and bile acids, which was posited to improve health during aging [135–138]. In
rodents, methionine restriction increased macroautophagy/autophagy and altered bile acid
conjugation and levels to lengthen lifespan [139,140]. Modifying the bile acid profile with
medications or fecal transplantation also relieved age-associated metabolic dysregulation
in mice [141,142].

4. Conclusions and Perspective

A well-functioning intestinal barrier maintains normal function of the digestive tract
and positively impacts the entire individual. This is not surprising as the intestinal barrier
is the largest interface between the individual and the environment. It is sensitive to
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changes in many external and internal factors such as diet, pollution, alcohol, drugs, stress,
and life cycle [143–145]. Bile acids are the only small molecules synthesized de novo and
metabolized by the digestive system. Bile acids traverse the enterohepatic circulation
6–8 times per day and have a complex dynamic interaction with the gut microbiota [3]. It is
reasonable to ascribe a central role to bile acids in intestinal homeostasis.

Given the physiological significance of bile acids signaling, greater insight into the
complex relationship between bile acids and the intestinal barrier could uncover safe thera-
pies for intestinal, hepatobiliary, and age-related diseases. Encouraging is the considerable
progress achieved in modifying bile acid signaling through the use of bile acids and their
derivatives (e.g., UDCA and OCA), targeting BARs, and through the regulation of the gut
microbiota (e.g., by fecal microbiota transplant). However, considering interindividual
variability in disease status and tolerance to treatment, personalized medicines are still
in need.

Bile acid metabolism is a multi-step physiological process, except for 12a-hydroxylated,
many other modification processes, such as 7a-dehydroxylation, hydrolysis, and epimeriza-
tion, may also play significant roles in the physiochemical and signaling properties of BAs.
For example, some derivatives of LCA, formed by isomerization, can affect the function of
the intestinal immune barrier through suppressing Th17 cell differentiation and increasing
the differentiation of Treg [40,41]. Even the composition of BAs in mice differs from that of
humans because the majority of CDCA in mice is typically converted to MCA [135]. But,
according to the most recent research, both have been reported to improve the function of
gut barrier [18,146,147].

In summary, fine-tuning the metabolism of bile acids is important in the homeostasis
of the intestinal barrier. Disorders of bile acids and BAR signaling are involved in intestinal
barrier dysfunction. Targeting bile acids and bile acid pathways may provide treatments
to the related diseases arising from the deterioration of the intestine barrier. Still, further
studies are warranted to elucidate the underlying mechanisms of action. Large, controlled,
longitudinal clinical studies will assist in this.
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