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Abstract: Obstructive sleep apnea (OSA) is a prevalent sleep disorder that affects approximately
3–7% of males and 2–5% of females. In the United States alone, 50–70 million adults suffer from
various sleep disorders. OSA is characterized by recurrent episodes of breathing cessation during
sleep, thereby leading to adverse effects such as daytime sleepiness, cognitive impairment, and
reduced concentration. It also contributes to an increased risk of cardiovascular conditions and
adversely impacts patient overall quality of life. As a result, numerous researchers have focused on
developing automated detection models to identify OSA and address these limitations effectively
and accurately. This study explored the potential benefits of utilizing machine learning methods
based on demographic information for diagnosing the OSA syndrome. We gathered a comprehensive
dataset from the Torr Sleep Center in Corpus Christi, Texas, USA. The dataset comprises 31 features,
including demographic characteristics such as race, age, sex, BMI, Epworth score, M. Friedman
tongue position, snoring, and more. We devised a novel process encompassing pre-processing, data
grouping, feature selection, and machine learning classification methods to achieve the research
objectives. The classification methods employed in this study encompass decision tree (DT), naive
Bayes (NB), k-nearest neighbor (kNN), support vector machine (SVM), linear discriminant analysis
(LDA), logistic regression (LR), and subspace discriminant (Ensemble) classifiers. Through rigorous
experimentation, the results indicated the superior performance of the optimized kNN and SVM clas-
sifiers for accurately classifying sleep apnea. Moreover, significant enhancements in model accuracy
were observed when utilizing the selected demographic variables and employing data grouping tech-
niques. For instance, the accuracy percentage demonstrated an approximate improvement of 4.5%,
5%, and 10% with the feature selection approach when applied to the grouped data of Caucasians,
females, and individuals aged 50 or below, respectively. Furthermore, a comparison with prior studies
confirmed that effective data grouping and proper feature selection yielded superior performance in
OSA detection when combined with an appropriate classification method. Overall, the findings of
this research highlight the importance of leveraging demographic information, employing proper
feature selection techniques, and utilizing optimized classification models for accurate and efficient
OSA diagnosis.
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1. Introduction

Obstructive sleep apnea (OSA) is a severe respiratory disorder that was first introduced
in 1837 by Charles Dickens [1]. The foremost common symptoms of OSA are loud snoring,
dry mouth upon awakening, morning headaches, and concentration difficulties [2,3]. There
are over 100 million patients who suffer from sleep apnea, and it can affect both adults and
children [4–6]. Moreover, it is estimated that nearly 22 million Americans suffer from a
type of apnea that varies from moderate to severe [7]. Typically, the apnea–hypopnea index
(AHI) is used to measure the severity of the apnea. For example, with nearly 326 million
people living in the USA, it’s reported that 10% of the US population have mild OSA with
AHI scores larger than 5, 3.5% have moderate OSA with AHI scores larger than 15, and 4%
have severe OSA syndrome (i.e., apnea/hypopnea) [7].

The publication titled “Hidden health crisis costing America billions” by the American
Academy of Sleep Medicine (AASM) presents a new analysis that sheds light on the
considerable economic consequences of undiagnosed OSA [8]. Neglecting sleep apnea
significantly raises the likelihood of expensive health complications such as hypertension,
heart disease, diabetes, and depression [9]. By examining 506 patients diagnosed with
OSA, the study showcases the potential improvements in their quality of life following
treatment, including enhanced sleep quality, increased productivity, and a notable 40%
reduction in workplace absences. A substantial 78% of patients regarded their treatment as
a significant investment. Frost & Sullivan, a leading market research firm, has estimated
the annual economic burden of undiagnosed sleep apnea among adults in the United States
to be approximately $149.6 billion. This staggering amount encompasses $86.9 billion in
lost productivity, $26.2 billion in motor vehicle accidents, and $6.5 billion in workplace
accidents. Sleep apnea can be categorized into three distinct types:

• Obstructive sleep apnea (OSA): The most common type of apnea is known as ob-
structive sleep apnea (OSA), which is identified by two primary characteristics. The
first is a continuous reduction in airflow of at least 30% for a duration of 10 seconds,
which is accompanied by a minimum oxygen desaturation of 4%. The second is a
decrease in airflow of at least 50% for 10 seconds, coupled with a 3% reduction in
oxygen saturation [10].

• Central sleep apnea (CSA): CSA occurs when the brain fails to send appropriate
signals to the muscles responsible for breathing. Unlike OSA, which stems from
mechanical issues, CSA arises due to impaired communication between the brain and
muscles [11,12].

• Mixed sleep apnea (MSA): MSA, also known as complex sleep apnea, represents a
combination of obstructive and central sleep apnea disorders, thus presenting a more
complex pattern of symptoms and characteristics.

Detecting OSA using an electrocardiogram (ECG) is an expensive process that is
inaccessible to a large number of the world’s population. The attributes of the ECG signal
differ in the case of awake and sleep intervals [13]. Hence, using a combined signal of
awake and sleep stages reduces the overall reliability of the detection process. Several
researchers recommend examining the ECG signal based on minutes [14]. In general, to
detect OSA, the signal length should be at least 10 seconds in length. The diagnosis of OSA
from ECG signals using various machine learning methods is a commonly used approach
in the literature. For example, artificial neural networks (ANN) and convolutional neural
networks (CNN) were introduced to detect and classify OSA. Wang et al. [15] used the
CNN model to detect OSA based on ECG signals. The authors extracted a set of features
from each signal and then trained a three-layered CNN model. The obtained results
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showed an acceptable performance and the ability to apply the proposed method over
wearable devices.

Erdenebayar et al. [16] provided an automated detection method for OSA using a
single-lead ECG and a CNN. The CNN model proposed in their study was meticulously
constructed, featuring six convolution layers that were carefully optimized. These layers
incorporated activation functions, pooling operations, and dropout layers. The research
findings demonstrated that the proposed CNN model exhibited remarkable accuracy in
detecting OSA solely by analyzing a single-lead ECG signal. Faust et al. [17] introduced the
use of a long short-term memory (LSTM) neural network to detect sleep apnea based on RR
intervals signal. Their results showed the ability of the LSTM network to detect sleep apnea
with an accuracy equal to 99.80%. Schwartz et al. [18] employed several machine learning
methods to detect four types of abbreviated digital sleep questionnaires (DSQs). The
authors showed the ability of machine learning in detecting sleep disturbances with high
accuracy. Lakhan et al. [19] proposed a dramatic involvement of a deep learning approach to
detect multiple sleep apnea–hypopnea syndrome (SAHS). Two types of classifications were
employed in their paper: binary classification with three cutoff indices (i.e., AHI = 5, 15, and
30 events/hour) and multiclass classification (i.e., no SAHS, mild SAHS, moderate SAHS,
and severe SAHS). The obtained results for the binary classification showed that an AHI
with 30 events/hour outperformed other cutoffs with an accuracy of 92.69%. For multiclass
classification problems, the obtained accuracy was 63.70%. Banluesombatkul et al. [20]
employed a novel deep learning method to detect OSA (i.e., normal and severe patients).
The proposed method used three different deep learning methods: (i) one-dimensional
CNN (1-D CNN) for feature extraction; (ii) deep recurrent neural networks (DRNNs) with
an LSTM network for temporal information extraction; and (iii) fully connected neural
networks (DNNs) for feature encoding. The proposed method showed acceptable results
compared to the literature.

There have been several efforts to identify the relation between the snoring sound
and OSA in the literature. In general, loud snoring is one of the indicators of OSA, and
it is commonly thought that the frequency and amplitude of snoring are associated with
the severity of the OSA [21]. Alshaer et al. [22] employed an acoustic analysis of breath
sounds to detect OSA. The previous research suggests that OSA can be detected using
snoring attributes. However, clinicians should pay attention to the possibility of missing an
OSA diagnosis for patients with minimal snoring. Kang et al. [23] applied linear predict
coding (LPC) and Mel-frequency cepstral coefficient (MFCC) features to detect OSA based
on the amplitude of the snoring signal. The proposed method was able to classify three
different events, namely, snoring, apnea, and silence, from sleep recordings with accuracies
of 90.65%, 90.99%, and 90.30%, respectively.

Feature extraction and feature selection are the most commonly used techniques for
data dimensionality reduction. Several papers have been published that highlight the
importance of feature selection in OSA detection. Various features are extracted from the
ECG signals; then, feature selection is used to reduce the number of extracted features and
to determine the most valuable features related to OSA. In the stage of feature extraction,
a set of features is extracted from the time series data, which aims to reveal the hidden
information within the ECG signal. However, a feature set may contain redundant and
irrelevant information, and feature selection is adopted to resolve this issue. A feature
selection algorithm can help find the nearly optimal combination of features. Although fea-
ture selection is an expensive method, it can produce better classification performance, and
high accuracy is significantly important in OSA detection. There are different classification
methods that are used to select important features, such as support vector machine (SVM)
networks, k-nearest neighbor (kNN) algorithms, artificial neural networks (ANN), linear
discriminant analysis (LDA), and logistic regression (LR).

Many researchers have used demographic data to identify OSA. Sheta et al. [24,25]
applied LR and ANN models to detect OSA based on demographic data. A real dataset
was used that consists of several demographic features (i.e., weight, height, hip, waist, BMI,
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neck size, age, snoring, the modified Friedman (MF) score, the Epworth sleepiness scale, sex,
and daytime sleepiness). The obtained results suggested that the proposed method could
detect OSA with an acceptable accuracy. Surani et al. [26] applied the AdaBoost method
as a machine learning classifier to detect OSA based on demographic data. The obtained
results were promising. Surani et al. [27] applied a wrapper feature selection method based
on binary particle swarm optimization (BPSO) with an ANN to detect OSA. The obtained
results illustrated that the use of BPSO with an ANN can detect OSA with high accuracy.
Haberfeld et al. [28] proposed a mobile application called Sleep Apnea Screener (SAS) to
detect OSA based on demographic data. The authors used nine demographic features (i.e.,
height, weight, waist, hip, BMI, age, neck, M. Friedman, Epworth, snoring, gender, and
daytime sleepiness). The application had two machine learning methods: LR and SVM.
Moreover, the authors studied the performance of each classifier based on gender. The
reported results showed that the proposed application can help patients detect OSA easily
compared to an overnight test for OSA diagnosis.

There are many screening approaches for OSA, including tools such as the Berlin
Questionnaire, the STOP-BANG Questionnaire, Epworth Sleepiness Scale (ESS), clinical
assessment, and population-specific screening tools [29]. These approaches aim to identify
individuals at a higher risk of OSA based on symptoms, risk factors, and questionnaire
responses. Positive screening results prompt further evaluation using diagnostic tests such
as polysomnography (PSG) or home sleep apnea testing (HSAT). Screening helps prioritize
resources and directs individuals toward comprehensive sleep assessments. Subramanian
et al. [30] introduced a novel screening approach known as the NAMES, which employs
statistical methods to identify OSA. The NAMES assessment combines various factors,
including neck circumference, airway classification, comorbidities, the Epworth scale, and
snoring, to create a comprehensive evaluation that incorporates medical records, current
symptoms, and physical examination findings. Experimental findings demonstrated the
efficacy of the NAMES assessment in detecting OSA. Furthermore, the inclusion of BMI
and gender in the assessment improved its screening capabilities.

This work proposes an efficient classification framework for the early detection of OSA.
In specific, it is an extension of the NAMES work machine learning classification method
and utilizes a metaheuristic-based feature selection scheme. The main contributions are
summarized as follows:

1. The OSA data was grouped based on age, sex, and race variables for performance
improvement. This type of grouping is novel and has never been presented in this
area of research before.

2. Various types of the most well-known machine learning algorithms were assessed to
determine the best-performing one for the OSA problem. These methods included
twelve predefined (fixed) parameter classifiers and two optimized classifiers (using
hyperparameter optimization).

3. A wrapper feature selection approach using particle swarm optimization (PSO) was
employed to determine the most valuable features related to the OSA.

4. Experimental results from the actual data (collected from Torr Sleep Center, Texas,
USA) confirmed that the proposed method improved the overall performance of the
OSA prediction.

The rest of this paper is organized as follows: Section 2 presents the proposed method
used in this work. Section 3 gives a brief description of the dataset used in the experiment.
Section 5 discusses the experimental results and simulations. Finally, the conclusion and
future work are presented in Section 8.

2. Proposed Diagnosis Process

The proposed OSA diagnosis process is illustrated in Figure 1. We suggest collecting
data from patients who have undergone demographic, anthropometric measurements,
and polysomnographic studies from a community-based sleep laboratory. An expert
from the Torr Sleep Center (Corpus Christi, TX, USA) controlled the collection process
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for the polysomnography (PSG) evaluation of suspected OSA between 5 February 2007,
and 21 April 2008. We processed the data to make the data more suitable for the analysis
process. All missing data were handled, and a normalization technique was employed to
transform the data into a standard scale. The next step was classification-based grouped
data, where the classification model was implemented based on two types of learning
methods—fixed parameter setting and adaptive parameter setting—through the training
process. The benefit of using two kinds of learning methods is to learn more about the
dataset and find the optimal parameter settings. After that, we applied a wrapper feature
selection using the best performing classifier to identify the most valuable features related
to OSA. This step can reveal useful information to physicians and doctors to understand
the demographic characteristics of OSA patients. Finally, we used a set of evaluation
criteria (i.e., accuracy, TPR, TNR, AUC, precision, F-score, and G-mean) to evaluate the
performance of each classifier.

Figure 1. The proposed methodology. The figure illustrates the step-by-step process of the pro-
posed methodology, which involved five steps: data collection, data preprocessing, data grouping,
classification, feature selection, and evaluation.

3. Sleep Apnea Dataset

The initial dataset employed in this study encompasses 620 patients, comprising
366 males and 254 females. The age range for males spans from 19 to 88 years, while
for females, it ranges from 20 to 96 years. Notably, the prevalence of snoring was 92.6%
among males and 91.7% among females. Each patient underwent comprehensive full-night
monitoring as part of the study. The dataset comprises 31 input features and a binary
output, represented by either 0 or 1, thus indicating the presence or absence of obstructive
sleep apnea (OSA) (see Table 1 for a detailed presentation of these features). Additionally,
the study recorded each individual’s Friedman tongue position (FTP), which encompasses
four distinct positions, as depicted in Figure 2. Additionally, the Epworth scale, which is
used to assess sleepiness, was collected. The scale details are presented in Table 2. Notably,
the dataset is imbalanced, with 357 patients identified as positive cases with OSA and
263 individuals identified without OSA. Table 3 provides a comprehensive overview of the
dataset’s characteristics.

Table 1. List of dataset features.

Attributes Data Type

f1 Race Categorical
f2 Age Numeric
f3 Sex Categorical
f4 BMI Categorical
f5 Epworth Numeric
f6 Wast Numeric
f7 Hip Numeric
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Table 1. Cont.

Attributes Data Type

f8 RDI Numeric
f9 Neck Numeric
f10 M.Friedman Numeric
f11 Co-morbid Categorical
f12 Snoring Categorical
f13 Daytime sleepiness Categorical
f14 DM Categorical
f15 HTN Categorical
f16 CAD Categorical
f17 CVA Categorical
f18 TST Numeric
f19 Sleep Effic Numeric
f20 REM AHI Numeric
f21 NREM AHI Numeric
f22 Supine AHI Numeric
f23 Apnea Index Numeric
f24 Hypopnea Index Numeric
f25 Berlin Q Categorical
f26 Arousal index Numeric
f27 Awakening Index Numeric
f28 PLM Index Numeric
f29 Mins. SaO2 Numeric
f30 Mins. SaO2 Desats Numeric
f31 Lowest SaO2 Numeric
class Witnessed apnea Categorical

Table 2. Epworth scale range.

Range Description

0–5 Lower normal daytime sleepiness
6–10 Higher normal daytime sleepiness
11–12 Mild level of sleepiness experienced during the daytime
13–15 Moderate level of sleepiness experienced during the daytime
16–24 Significant level of sleepiness experienced during the daytime

Table 3. Description of sleep apnea dataset. The table provides essential information about the sleep
apnea dataset, including the total number of samples (No. samples), the number of features (No.
features), the count of positive samples (No.positive samples), and the count of negative samples
(No. negative samples).

Datasets No. Features No. Samples Negative Positive

Original Dataset 31 274 149 125

Race Caucasian 30 151 92 59
Hispanic 30 123 57 66

Gender Females 30 118 85 33
Males 30 156 64 92

Age Age ≤ 50 31 109 55 54
Age > 50 31 165 94 71
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Figure 2. Friedman tongue position (FTP): (a) Class 1 visualizes the uvula and tonsils/pillar. (b) Class
2a visualizes most of the uvula but not the tonsils/pillar. (c) Class 2b visualizes the entire soft palate
to the uvular base. (d) Class 3 shows some of the soft palates with the distal end absent. (e) Class 4
visualizes only the hard palate [31].

4. Data Preprocessing

In the data classification-process-based machine learning, data preprocessing is when
the data gets encoded to transfer it to a state that the machine can quickly analyze. In
this case, the features of the data were smoothly interpreted by the algorithm. Data
preprocessing is a vital step in any machine learning process [32]. This process aims to
reduce unexpected behavior through the learning process, thereby enhancing the machine
learning algorithm’s performance [33,34]. A set of operations such as data cleaning, data
transformation, and data reduction are usually involved in data preprocessing. Precisely,
the main preprocessing steps used in this research are the following: fill the missing values,
data grouping, normalization, and feature selection.

4.1. Missing Data

It is ubiquitous to have missing elements from either rows or columns in your dataset.
A failure to collect accurate data can occur during the data collection process or be due to a
particular adopted data validation rule. There are several methods to handle missing data.
They include the following:
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• If more than 50% of any rows or columns values are missing, we have to remove the
whole row/columns, except where it is feasible to fill in the missing values.

• If only a rational percentage of values are missing, we can adopt simple interpolation
methods to fill in those values. Interpolation methods include filling missing values
with the mean, median, or mode value of the respective feature.

In this work, we applied a statistical imputation approach [35,36]. All missing values
for each attribute were replaced with a statistical measure that was calculated from the
remaining values for that attribute. The statistics used were the mean and mode for the
numeric and nominal features, respectively. These methods were chosen because they
are fast, easy to implement, prevent information loss, and work well with a small dataset.
Figure 3 depicts an example of missing value imputation.

Figure 3. Imputation of Missing Values. NaN refers to a missing value. Mean is a statistical measure
used for imputing missing numerical values by replacing them with the mean value of the available
data. Mode is a statistical measure used for imputing missing categorical values by replacing them
with the mode (most frequently occurring value) of the available data.

4.2. Data Normalization

Data normalization is the process of standardizing numerical attributes into a common
scale [37,38]. This operation is strongly recommended for the machine learning process to
avoid any bias towards dominant features. Min–max normalization was applied in this
research to rescale every numerical feature value into a number within [0,1]. For every
feature, every value x gets transformed into xn using formula given in Equation (1).

xn =
x−min

max−min
, (1)

where xn is the normalized value of x, and min and max represent the minimum and
maximum value of the feature, respectively.

4.3. Role of Grouping in OSA Diagnosis

Recently, there have been many research efforts toward understanding the relationship
between sex, age, and ethnicity in the diagnosis of sleep apnea.

Several research articles have explored the concept of data grouping. For example, in
a study conducted by Mohsenin et al. [39], the authors examined the relationship between
gender and the prevalence of hypertension in individuals with obstructive sleep apnea
(OSA). The study, based on a large cohort of patients assessed at the Yale Center for
Sleep Medicine, investigated how gender influences the likelihood of hypertension in OSA
patients. The results revealed that hypertension rates increased with age and the severity
of OSA, with obese men in the clinic-based population being at approximately twice the
risk of hypertension compared to women. Similarly, another study by Freitas et al. [40]
investigated the impact of gender on the diagnosis and treatment of OSA.
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The study conducted by Ralls et al. [41] delved into the roles of gender, age,
race/ethnicity, and residential socioeconomics in OSA syndromes. The research reviewed
the existing literature and shed light on several intriguing findings. OSA was found to
predominantly affect males, while women exhibited lower apnea–hypopnea index (AHI)
values than men during specific sleep stages. Interestingly, women required lower levels of
continuous positive airway pressure (CPAP) for treating OSAs of similar severities. The
study also highlighted the impact of environmental factors, such as obesity, craniofacial
structure, lower socioeconomic status, and residing in disadvantaged neighborhoods, on
the prevalence and severity of OSA among different ethnic and racial groups.

In a research paper by Slaats et al. [42], an investigation was conducted to explore the
relationship between ethnicity and OSA, which specifically focused on upper airway (UA)
morphology, including Down syndrome. The findings of the study revealed that black
African (bA) children exhibited a distinct upper airway morphology and were more prone
to experiencing severe and persistent OSA compared to Caucasian children. This suggests
that ethnicity plays a role in the susceptibility to OSA and highlights the importance of
considering ethnic differences in diagnosing and managing the condition.

The Victoria Sleep Cohort study, as discussed in Irene et al. [43], investigated the
gender-related impact of OSA on cardiovascular diseases. The study found consistent
evidence linking OSA with cardiovascular risk, with a particular emphasis on men with
OSA. The authors highlighted that the relationship between OSA and cardiovascular risk
is influenced by gender, thereby indicating the need for tailored OSA treatment approaches
for men and women. Additionally, Mohsenin et al. [44] conducted a study examining the
effect of obesity on pharyngeal size separately for men and women, thus providing insights
into the influence of obesity on the upper airway in OSA patients of different genders.

One of the main objectives of this study is to investigate the detection of OSA before
and after grouping data based on demographic variables such as age, gender, and race.
Accordingly, the original data was grouped by ethnicity (Caucasian and Hispanic), gender
(males and females), and age (age ≤ 50 or age > 50). Consequently, six datasets were
investigated: Caucasian, Hispanic, females, males, age ≤ 50, and age > 50. In Table 3, we
are showing the data-distribution-based grouping. In Figure 4, we show the distribution of
apnea and no apnea with respect to age, gender, and race attributes for all datasets.

(a) Age (b) Gender (c) Race

Figure 4. Bar charts comparing data samples with and without obstructive sleep apnea (OSA)
grouped by age, gender, and race. The charts provide insights into the prevalence of OSA within
different demographics.

4.4. Wrapper Feature Selection

Feature selection (FS) plays a crucial role in data mining, wherein it serves as a
preprocessing phase to identify and retain informative patterns/features while excluding
irrelevant ones. This NP-hard optimization problem has significant implications in data
classification, as selecting valuable features can enhance the classification accuracy and
reduce computational costs [45,46].

FS methods can be categorized into two families based on the criteria used to evaluate
the selected feature subset: these include filters and wrappers [46,47]. Filter FS techniques
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employ scoring matrices to assign weights to features, such as mutual information or
chi-square tests. Features with weights below a threshold are then eliminated from the
feature set. On the other hand, wrapper FS methods utilize classification algorithms such
as SVM or linear discriminant analysis to assess the quality of the feature subsets generated
by a search method [48,49].

Generally, wrapper FS approaches tend to yield higher classification accuracy by
leveraging dependencies among features within a subset. In contrast, filter FS methods may
overlook such dependencies. However, wrapper FS comes with a higher computational
cost compared to filter FS [50].

Feature subset generation involves the search for a highly informative subset of fea-
tures from a set of patterns. Various search strategies, such as heuristic, complete, and
random, are employed for this purpose [51–53]. The complete search involves generat-
ing and examining all possible feature subsets in the search space to identify the most
informative one. However, this approach becomes computationally infeasible for large
datasets due to the exponential growth of subsets. For instance, if a dataset has 31 features,
the complete search would generate 231 subsets for evaluation. Random search, as the
name implies, randomly explores the feature space to find subsequent feature subsets [54].
Although random search can, in some cases, generate all possible feature subsets similar to
a complete search [45,55], it lacks a systematic search pattern.

In contrast, heuristic search is a different approach used to feature subset generation.
It is characterized by iteratively improving the quality of the solution (i.e., a feature subset)
based on a given heuristic function, thereby aiming to optimize a specific problem [56].
While heuristic search does not guarantee finding the best solution, it can often find good
solutions within reasonable memory and time constraints. Several metaheuristic algo-
rithms, such as particle swarm optimization (PSO) [57], ant colony optimization (ACO) [58],
the firefly algorithm (FA) [59], ant lion optimization (ALO) [60], the whale optimization
algorithm (WOA) [61], and the grey wolf optimizer (GWO) [62], have demonstrated their
effectiveness in addressing feature subset selection problems. Examples of FS approaches
can be found in [63–69].

This paper presents a wrapper feature selection approach based on particle swarm
optimization (PSO) [70]. The main concept behind PSO is to simulate the collective behavior
of bird flocking. The algorithm initializes a group of particles (solutions) that explore the
search space in order to find the optimal solution for a given optimization problem. Each
particle in the population adjusts its velocity and position based on the best solution found
so far within the swarm. By considering the best particle, each individual particle updates
its velocity and position according to specific rules, as outlined in Equations (2) and (3).

The PSO-based wrapper feature selection approach described in the paper utilizes this
algorithm to search for an effective feature subset that improves the performance of the
chosen optimization problem. For further details, please refer to [70,71].

vj
i(m + 1) = ω1vj

i(m) + c1r1(pbestj
i − xj

i(m)) + c2r2(gbestj
i − xj

i(m)) (2)

xj
i(m + 1) = xj

i(m) + vj
i(m + 1), (3)

where m denotes the current generation, ω1 is a parameter, named inertia weight, that is
used for controlling the global search and local search tendencies. vj

i(m) denotes the current

velocity at generation m for the j-th dimension of the i-th particle, and xj
i(m) denotes the

current position of the i-th particle for the j-th dimension. Two uniformly distributed
randomly assigned numbers between (0,1) are presented by r1 and r2, respectively, and c1
and c2 are known as acceleration coefficients. pbest is the optimal solution that the particle
i has found so far. gbest refers to the best solution found within the population so far.

To adapt the original PSO algorithm for discrete or binary search space, a modified
binary version was introduced by [57]. The primary step in this transformation is the
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utilization of a sigmoid (transfer) function, as shown in Equation (4), to convert the real-
valued velocities into probability values ranging from 0 to 1. The objective is to adjust
the particle’s position based on the probability defined by its velocity. This allows for the
representation of binary or discrete variables within the PSO framework.

S(vj
i(m)) =

1

1 + exp−vj
i(m)

, (4)

where vj
i(m) refers to the velocity of particle i at iteration m in the j-th dimension. The

updating process for the S-shape group is presented in Equation (5) for the next iteration
m + 1. After that, the position vectors can be updated based on the probability values of
their velocities as follows:

xj
i(m + 1) =

{
0 If rand < S(vj

i(m + 1))

1 If rand ≥ S(vj
i(m + 1)).

(5)

The basic version of the BPSO suffers from some drawbacks, such as trapping in
local minima. Mirjalili and Lewis [71] proposed a modified version of the BPSO in which
transfer functions for mapping continuous search the space into binary were employed.
The aim of introducing these functions is to avoid the problem of local optima and to
improve the convergence speed. In this work, we employed the S-shaped transfer functions
proposed in [71] for converting the PSO into binary. We examined these functions with the
PSO algorithm to choose the most appropriate one. Table 4 presents the utilized transfer
functions, and Figure 5 shows the shapes of these transfer functions.

Table 4. S-shaped transfer functions. The table provides the names and formulas of four S-shaped
functions (S1, S2, S3, and S4). These functions exhibit the characteristic sigmoidal shape, which is
commonly observed in S-shaped curves.

Name Transfer Function Formula

S1 S(x) = 1
1+e−2x

S2 S(x) = 1
1+e−x

S3 S(x) = 1
1+e(−x/2)

S4 S(x) = 1
1+e(−x/3)

Figure 5. S-shaped TFs. The figure illustrates the curves of four distinct S-shaped transfer functions.

4.5. Formulation of Feature Selection Problem

An FS is typically treated as a binary optimization problem, where candidate solutions
are represented as binary vectors. To address this, a binary optimizer such as binary particle
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swarm optimization (BPSO) can be utilized. This work proposes a wrapper FS method that
combines the BPSO as the search strategy and a classifier (e.g., KNN) to evaluate the quality
of the feature subsets generated by the BPSO. In the FS problem, a solution is encoded as
a binary vector with a length equal to the total number of features in the dataset. Each
element in the vector represents a feature, where a value of zero indicates the exclusion of
the corresponding feature, and a value of one indicates its inclusion or selection.

The paper introduces four FS approaches based on different binary variants of PSO,
with each utilizing a specific S-shaped transfer function to convert continuous values into
binary ones. The FS is considered to be a multi-objective optimization problem, thereby
aiming to achieve both high classification accuracy and a low number of features. These
two objectives are formulated as contradictory objectives in Equation (6) [46,64].

↓ Fitness = α× er + β× F
N

, (6)

where er indicates the error rate of the utilized classification algorithm (e.g., KNN) over a
subset of features produced by the BPSO optimizer. F is the number of selected features,
and N denotes the number of all the features. α = 0.99 and β = 0.01 [72,73] are two
controlling parameters to balance the importance of both objectives.

5. Experimental Setup

It is well-known that there is no universal machine learning algorithm that can be the
best-performing for all problems (As suggested by the No Free Lunch (NFL) theorem [74]).
This motivated our attempts to examine various fixed and adaptive classification algorithms
to identify the most applicable one for OSA. In the experiment, various classification
methods were tested. However, only those classifiers with better performances are reported.
Correspondingly, we adopted the decision tree (DT), naive Bayes (NB), K-nearest neighbor
(kNN), support vector machine (SVM), fine decision tree (FDT), coarse decision tree (CDT),
linear discriminate analysis (LDA), logistic regression (LR), Gaussian naive Bayes (GNB),
kernel naive Bayes (KNB), linear support vector machine (LSVM), medium Gaussian
support vector machine (MGSVM), coarse Gaussian support vector machine (CGSVM),
cosine k-nearest neighbor (CKNN), weighted K-nearest neighbor (WKNN), and subspace
discriminant (Ensemble) classifiers for performance validation. The detailed parameter
settings for these classification methods are presented in Table 5. Moreover, the kNN and
SVM with hyperparameter optimization settings (see Tables 6 and 7) were also employed
in this work.

In this study, a K-fold cross-validation with K = 10 was employed for performance
evaluation instead of a hold-out validation. K-fold cross-validation offers the advantage
of estimating the generalization error by using different combinations of training and
testing sets. This approach allows for comprehensive testing of the data. For assessing the
performance of the machine learning models, multiple metrics were utilized, including the
accuracy, true positive rate (TPR), true negative rate (TNR), area under the curve (AUC),
precision, F-score, and G-mean. These metrics were measured to ensure the effectiveness of
the model.

Table 5. The detailed parameter settings of preset classifiers.

Preset Classifier Description Parameter Value

FDT Fine Decision Tree Maximum number of splits 100
Split criterion Gini’s diversity index

CDT Coarse Decision Tree Maximum number of splits 100
Split criterion Gini’s diversity index

LDA Linear Discrimenant Analaysis Discriminant type linear
LR Logistic Regression - -
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Table 5. Cont.

Preset Classifier Description Parameter Value

GNB Gaussian Naïve Bayes Distribution name Gaussian
KNB Kernel Naïve Bayes Distribution name Kernel

Kernel type Gaussian
LSVM Linear Support Vector Machine Kernel function Linear

Kernel scale Automatic
Box contraint level 1
standardize data TRUE

MGSVM Medium Gaussian SVM Kernel function Gaussian
Kernel scale 5.6
Box contraint level 1
Standardize data TRUE

CGSVM Coarse Gaussian SVM Kernel function Gaussian
Kernel scale 22
Box contraint level 1
Standardize data TRUE

CKNN Cosine K-Nearest Neighbor Number of neighbors 10
Distance metric cosine
Distance weight equal
Standardize data TRUE

WKNN Weighted kNN Number of neighbors 10
Distance metric Euclidean
Distance weight Squared Inverse
Standardize data TRUE

Ensemble Subspace Discriminant Ensemble method Subspace
Learner type Discriminant
Number of learners 30
Subspace dimension 16

Table 6. Parameter settings of the optimized kNN for each dataset.

Dataset Number of Neighbors Distance Metric Distance Weight Standardize Data

All 16 Spearman Inverse TRUE
Caucasian 6 Correlation Squared Inverse TRUE
Hispanic 32 Cityblock Squared Inverse TRUE
Females 4 Hamming Squared Inverse FALSE
Males 22 Cityblock Equal FALSE
Age ≤ 50 14 Cosine Squared Inverse TRUE
Age > 50 31 16 Squared Inverse TRUE

Table 7. Parameter settings of the optimized SVM for each dataset.

Dataset Kernel Function Kernel Scale Box Contraint Level Standardized Data

All Polynomial (degree = 2) 1 0.002351927 TRUE
Caucasian Linear 1 0.18078 TRUE
Hispanic Linear 1 0.01115743 TRUE
Females Gaussian 2.990548535 122.3491994 FALSE
Males Linear 1 0.001000015 FALSE
Age ≤ 50 Gaussian 415.5625146 341.7329909 FALSE
Age > 50 Gaussian 26.42211158 7.503025335 TRUE

6. Experimental Results

The following sections show the evaluation of the developed results using the complete
dataset and the grouped dataset based on race, gender, and age.
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6.1. Results with All Data

The experiment was conducted in eight phases. In the first phase, we analyzed the
performance results of different classification algorithms for the complete dataset. Accord-
ingly, the DT, LDA, LR, NB, SVM, kNN, Ensemble, optimized kNN, and optimized SVM
algorithms provided the best results in this analysis. Thus, only the results of these classi-
fiers are reported, as shown in Table 8. As illustrated, a different result was perceived by
each classification algorithm. Compared with the other classifiers, the optimized classifiers
(SVM* and kNN*) retained the highest accuracies of 0.7226 and 0.7409, respectively. Our
findings suggest that the optimized classifiers achieved the best performance in the sleep
apnea classification.

Table 8. Performance of different classification algorithms on the data, where X* denotes the opti-
mized classifier X.

Classifier Accuracy TPR TNR AUC Precision F-Score G-Mean Mean Rank

DT 0.5876 0.6309 0.5360 0.5834 0.6184 0.6246 0.5815 8.97
LDA 0.6861 0.7584 0.6000 0.6792 0.6933 0.7244 0.6746 5.79
LR 0.6861 0.7383 0.6240 0.6811 0.7006 0.7190 0.6787 5.57
NB 0.6642 0.7785 0.5280 0.6533 0.6629 0.7160 0.6411 7.71
SVM 0.6898 0.8188 0.5360 0.6774 0.6778 0.7416 0.6625 5.71
kNN 0.6934 0.7517 0.6240 0.6878 0.7044 0.7273 0.6849 4.21
Ensemble 0.7044 0.8188 0.5680 0.6934 0.6932 0.7508 0.6820 3.93
SVM* 0.7226 0.7919 0.6400 0.7160 0.7239 0.7564 0.7119 2.14
kNN* 0.7409 0.8322 0.6320 0.7321 0.7294 0.7774 0.7252 1.14

The kNN* offered the best result with an accuracy of (0.7409), a TPR of (0.8322), an
AUC of (0.7321), a precision of (0.7294), an F-score of (0.7774), and anG-mean of (0.7252).
Moreover, the kNN* achieved the highest mean rank of 1.14, thus suggesting that the kNN*
was the best classifier when the complete dataset was used.

6.2. Data Grouping with Race

In the second phase, we inspected the performance of different classification algo-
rithms based on the grouped data by race. Tables 9 and 10 demonstrate the performance
of different classification algorithms based on the data of Caucasian and Hispanic races,
respectively. From Table 9, the highest accuracy of 0.7483 was obtained by the CKNN
and kNN*. In terms of the AUC value, the KNN* retained the best AUC of 0.7114, which
showed better performance in discriminating between the classes. Moreover, the kNN*
yielded the optimal mean rank of 2.29. When observing the results in Table 10, it is clear
that the kNN* scored the highest accuracy, TPR, TNR, AUC, precision, F-score, and G-mean.
The kNN* proved to be the best algorithm in this analysis. The results of the mean rank in
both Tables 9 and 10 support this argument.

Table 9. Performance of different classification algorithms for the grouped data of Caucasian race.

Classifier Accuracy TPR TNR AUC Precision F-Score G-Mean Mean Rank

FDT 0.7285 0.7935 0.6271 0.7103 0.7684 0.7807 0.7054 3.29
LDA 0.6908 0.7957 0.5254 0.6606 0.7255 0.7590 0.6466 6.71
LR 0.6887 0.7609 0.5763 0.6686 0.7368 0.7487 0.6622 6.21
GNB 0.6887 0.8261 0.4746 0.6503 0.7103 0.7638 0.6261 7.93
MGSVM 0.7219 0.8913 0.4576 0.6745 0.7193 0.7961 0.6387 5.79
CKNN 0.7483 0.9457 0.4407 0.6932 0.7250 0.8208 0.6455 4.36
Ensemble 0.7219 0.8696 0.4915 0.6805 0.7273 0.7921 0.6538 5.07
SVM* 0.7351 0.8478 0.5593 0.7036 0.7500 0.7959 0.6886 3.36
kNN* 0.7483 0.8804 0.5424 0.7114 0.7500 0.8100 0.6910 2.29
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Table 10. Performance of different classification algorithms for the grouped data of Hispanic race.

Data Accuracy TPR TNR AUC Precision F-Score G-Mean Mean Rank

CDT 0.6260 0.5263 0.7121 0.6192 0.6122 0.5660 0.6122 8.29
LDA 0.6423 0.5614 0.7121 0.6368 0.6275 0.5926 0.6323 6.50
LR 0.6260 0.5614 0.6818 0.6216 0.6038 0.5818 0.6187 8.00
GNB 0.6504 0.6140 0.6818 0.6479 0.6250 0.6195 0.6470 5.64
MGSVM 0.6829 0.5614 0.7879 0.6746 0.6957 0.6214 0.6651 2.86
WKNN 0.6585 0.5439 0.7576 0.6507 0.6596 0.5962 0.6419 5.07
Ensemble 0.6585 0.5965 0.7121 0.6543 0.6415 0.6182 0.6517 4.57
SVM* 0.6748 0.6316 0.7121 0.6719 0.6545 0.6429 0.6706 3.00
kNN* 0.7724 0.6316 0.8939 0.7628 0.8372 0.7200 0.7514 1.07

6.3. Data Grouping with Gender

The behavior of the different classification methods regarding the grouped data by
gender is studied in this subsection. Tables 11 and 12 outline the evaluation results of
different classification algorithms. According to findings in Table 11, it is seen that the best
accuracy of 0.7458 was achieved by the WKNN and Ensemble classifiers. However, the
Ensemble classifier offered the optimal mean rank of 2.43, which showed excellent results
for the grouped data of females. By inspecting the results in Table 12, we can observe that
the performance of the kNN* was the best. The kNN* ranked first (mean rank = 1.14) and
offered the highest accuracy of 0.6987, the highest TNR of 0.7500, the best AUC of 0.6875, a
precision of 0.6349, an F-score of 0.6299, and a G-mean of 0.6847.

Table 11. Performance of different classification algorithms for the grouped data of females.

Classifier Accuracy TPR TNR AUC Precision F-Score G-Mean Mean Rank

CDT 0.7119 0.8824 0.2727 0.5775 0.7576 0.8152 0.4906 4.86
LDA 0.6695 0.8118 0.3030 0.5574 0.7500 0.7797 0.4960 5.57
LR 0.6102 0.7529 0.2424 0.4977 0.7191 0.7356 0.4272 8.00
KNB 0.6356 0.7176 0.4242 0.5709 0.7625 0.7394 0.5518 5.00
MGSVM 0.7203 1.0000 0.0000 0.5000 0.7203 0.8374 0.0000 5.79
WKNN 0.7458 0.9765 0.1515 0.5640 0.7477 0.8469 0.3846 4.36
Ensemble 0.7458 0.8824 0.3939 0.6381 0.7895 0.8333 0.5896 2.43
SVM* 0.7203 1.0000 0.0000 0.5000 0.7203 0.8374 0.0000 5.79
kNN* 0.7373 0.9176 0.2727 0.5952 0.7647 0.8342 0.5003 3.21

Table 12. Performance of different classification algorithms for the grouped data of males.

Classifier Accuracy TPR TNR AUC Precision F-Score G-Mean Mean Rank

CDT 0.5256 0.2969 0.6848 0.4908 0.3958 0.3393 0.4509 8.64
LDA 0.6538 0.5938 0.6957 0.6447 0.5758 0.5846 0.6427 4.07
LR 0.6474 0.5938 0.6848 0.6393 0.5672 0.5802 0.6376 5.14
KNB 0.6234 0.6406 0.6111 0.6259 0.5395 0.5857 0.6257 5.86
LSVM 0.6346 0.5313 0.7065 0.6189 0.5574 0.5440 0.6126 6.79
CKNN 0.6282 0.6094 0.6413 0.6253 0.5417 0.5735 0.6251 6.50
Ensemble 0.6603 0.5469 0.7391 0.6430 0.5932 0.5691 0.6358 4.29
SVM* 0.6667 0.6094 0.7065 0.6579 0.5909 0.6000 0.6562 2.57
kNN* 0.6987 0.6250 0.7500 0.6875 0.6349 0.6299 0.6847 1.14

6.4. Data Grouping with Age

In the fourth phase, we investigated the performance of the different classification
algorithms based on the grouped data by age (age ≤ 50 or age > 50). Note that the age was
normally distributed around 50. Table 13 shows the evaluation results of age ≤ 50. As can
be seen, the SVM* obtained the highest accuracy of 0.7523, followed by the kNN* (0.7431).
Correspondingly, the SVM* contributed to the optimal TNR, AUC, precision, and G-mean.
On the other side, the evaluation results of age > 50 are tabulated in Table 14. As shown,
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the kNN* achieved the best accuracy of 0.7333. In addition, the kNN* ranked first with
the highest properties of the AUC, precision, F-score, and G-mean. Our findings indicate
that the algorithms with hyperparameter optimization (SVM* and kNN*) achieved the best
performance in the sleep apnea classification.

Table 13. Performance of different classification algorithms for the grouped data by age (Age ≤ 50).

Classifier Accuracy TPR TNR AUC Precision F-Score G-Mean Mean Rank

FDT 0.7064 0.7091 0.7037 0.7064 0.7091 0.7091 0.7064 4.00
LDA 0.6514 0.6727 0.6296 0.6512 0.6491 0.6607 0.6508 7.29
LR 0.6697 0.7091 0.6296 0.6694 0.6610 0.6842 0.6682 6.29
KNB 0.6239 0.5636 0.6852 0.6244 0.6458 0.6019 0.6214 8.00
LSVM 0.7064 0.8000 0.6111 0.7056 0.6769 0.7333 0.6992 4.93
CKNN 0.6514 0.8182 0.4815 0.6498 0.6164 0.7031 0.6276 7.07
Ensemble 0.7156 0.7818 0.6481 0.7150 0.6935 0.7350 0.7119 3.57
SVM* 0.7523 0.7818 0.7222 0.7520 0.7414 0.7611 0.7514 1.64
kNN* 0.7431 0.8364 0.6481 0.7423 0.7077 0.7667 0.7363 2.21

Table 14. Performance of different classification algorithms for the grouped data by age (Age > 50).

Classifier Accuracy TPR TNR AUC Precision F-Score G-Mean Mean Rank

CDT 0.6061 0.6702 0.5211 0.5957 0.6495 0.6597 0.5910 8.57
LDA 0.6667 0.7234 0.5915 0.6575 0.7010 0.7120 0.6542 5.36
LR 0.6606 0.7234 0.5775 0.6504 0.6939 0.7083 0.6463 6.43
KNB 0.6788 0.7979 0.5211 0.6595 0.6881 0.7389 0.6448 5.93
CGSVM 0.6727 0.9149 0.3521 0.6335 0.6515 0.7611 0.5676 6.29
CKNN 0.6909 0.7766 0.5775 0.6770 0.7087 0.7411 0.6697 3.43
Ensemble 0.6909 0.7979 0.5493 0.6736 0.7009 0.7463 0.6620 4.29
SVM* 0.7091 0.8511 0.5211 0.6861 0.7018 0.7692 0.6660 3.14
KNN* 0.7333 0.8617 0.5634 0.7125 0.7232 0.7864 0.6968 1.57

Table 15 summarizes the overall ranking results for all classifiers. Meanwhile, the
bar chart of the overall ranking is demonstrated in Figure 6. As illustrated in the results,
the SVM* and kNN* offered the best ranking in most cases. Among the classifiers, the
SVM* and kNN* assured the optimal average rank of 3.09 and 1.80, respectively. The
experimental results reveal the supremacy of the optimized algorithms for the classification
of sleep apnea. The observed improvement in the kNN* and SVM* is attributed to the
training process’s hyperparameter optimization, which enabled the models to explain the
target concepts better.

Table 15. Overall ranking results for all classifiers in dealing with different datasets based on
classification evaluation metrics reported in Tables 5–11.

Classifier All Caucasian Hispanic Females Males Age ≤ 50 Age > 50 Average Rank

DT 8.97 3.29 8.29 4.86 8.64 4.00 8.57 6.66
LDA 5.79 6.71 6.50 5.57 4.07 7.29 5.36 5.90
LR 5.57 6.21 8.00 8.00 5.14 6.29 6.43 6.52
NB 7.71 7.93 5.64 5.00 5.86 8.00 5.93 6.58
SVM 5.71 5.79 2.86 5.79 6.79 4.93 6.29 5.45
KNN 4.21 4.36 5.07 4.36 6.50 7.07 3.43 5.00
Ensemble 3.93 5.07 4.57 2.43 4.29 3.57 4.29 4.02
SVM* 2.14 3.36 3.00 5.79 2.57 1.64 3.14 3.09
KNN* 1.14 2.29 1.07 3.21 1.14 2.21 1.57 1.80
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Figure 6. Overall ranking of classifiers. The figure displays the overall ranking of tested classifiers
(DT, LDA, LR, NB, SVM, KNN, Ensemble, optimized SVM, and optimized KNN) based on the
Friedman test. The rankings provide insights into the comparative performance of these classifiers,
thus aiding in the identification of the most effective ones for the task at hand.

6.5. Summary Performance with Data Grouping

In the fifth part of the experiment, we studied the impact of grouping (race, gender,
and age) on the performance of different classifiers. Table 16 depicts the performance
evaluation before and after grouping. One can see that the performances of the classifiers
were substantially improved when the grouping was implemented, especially for the data
grouped by races (Caucasian and Hispanic).

From the analysis, it can be inferred that the grouping step is beneficial for performance
improvement. As observed in the result, the data grouped by Caucasian was the best model
for accurate sleep apnea classification, with an optimal mean rank of 1.33. Based on the
findings, we can conclude that grouping the data with race (Caucasian) maximizes the
features’ separability between classes. Furthermore, Table 17 reports the result of the
running time (in seconds). Across all the datasets, it is seen that the fastest algorithm was
the DT (rank of 1.29), followed by the LDA (rank of 2.14).

Table 16. Performance evaluation before and after grouping in terms of accuracy measure.

Classifier All Caucasian Hispanic Females Males Age ≤ 50 Age > 50

DT 0.5876 0.7285 0.6260 0.7119 0.5256 0.7064 0.6061
LDA 0.6861 0.6908 0.6423 0.6695 0.6538 0.6514 0.6667
LR 0.6861 0.6887 0.6260 0.6102 0.6474 0.6697 0.6606
NB 0.6642 0.6887 0.6504 0.6356 0.6234 0.6239 0.6788
SVM 0.6898 0.7219 0.6829 0.7203 0.6346 0.7064 0.6727
kNN 0.6934 0.7483 0.6585 0.7458 0.6282 0.6514 0.6909
Ensemble 0.7044 0.7219 0.6585 0.7458 0.6603 0.7156 0.6909
SVM* 0.7226 0.7351 0.6748 0.7203 0.6667 0.7523 0.7091
kNN* 0.7409 0.7483 0.7724 0.7373 0.6987 0.7431 0.7333

mean Rank 3.44 1.33 5.00 3.44 6.44 3.78 4.56
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Table 17. Comparison between classification algorithms dealing with all datasets in terms of running
time in seconds.

Classifier All Caucasion Hispanic Females Males Age ≤ 50 Age > 50 Average Rank

DT 1.7018 0.1440 0.1093 0.1185 0.1123 0.0911 0.1280 1.29
LDA 1.6479 0.1742 0.1670 0.1720 0.1729 0.1400 0.1654 2.14
LR 0.3802 0.3067 0.2393 0.2837 0.2654 0.2357 0.2433 4.00
NB 3.6635 2.1350 3.0485 2.7358 3.8645 4.1244 3.2748 6.86
SVM 2.9095 0.2939 0.2926 0.2804 0.2520 0.2577 0.2710 4.57
KNN 1.7064 0.1768 0.1940 0.1648 0.2247 0.1761 0.1751 3.00
Ensemble 4.2913 1.9599 2.1277 1.8031 1.9468 2.0706 2.0714 6.14

7. Feature Selection

In the sixth phase, we investigated the impact of feature selection techniques for all
cases. Generally speaking, data dimensionality has a large impact in the machine learning
development process. Data with high dimensionality not only contain irrelevant and
redundant features that can negatively affect the accuracy, but also require massive time
and computational resources [75]. Hence, feature selection can be an effective way to
resolve the above issue while improving the performance of the learning model. In this
research, we adopted the most popular feature selection method, called binary particle
swarm optimization (BPSO), to assess the significant features from the high-dimensional
feature space. It is worth noting that the kNN* was employed as the learning algorithm,
since it obtained the best performance from the previous analysis.

7.1. Evaluation of BPSO Using Different TFs

Initially, the BPSO with different S-shaped transfer functions (TFs) was studied. Gener-
ally, TFs play an essential role in converting the solution into a binary form. In other words,
it enables the particles to search around the binary feature space. However, different TFs
may yield different kinds of results [71]. Thus, we evaluated the BPSO with four other TFs
and found the optimal one.

Table 18 shows the average accuracy of the BPSO variants. Based on the result obtained,
the BPSO1 achieved the highest accuracy for all five cases except the complete dataset. By
observing the result in Table 19, the BPSO1 also yielded the smallest number of selected
features in most cases. Our results imply that the BPSO1 was highly capable of finding
the optimal feature subset, thereby enhancing the learning model’s performance for sleep
apnea classification. The results of the mean ranks support this clarification reported in
Tables 18 and 19.

Table 18. Comparison between different BPSO variants using four S-shaped TFs in terms of average
accuracy based on kNN* classifier.

Dataset Measure BPSO1 BPSO2 BPSO3 BPSO4

All
AVG 0.7511 0.7518 0.7464 0.7449
STD 0.0075 0.0045 0.0039 0.0040

Caucasian AVG 0.7967 0.7954 0.7841 0.7808
STD 0.0136 0.0114 0.0084 0.0091

Females AVG 0.8034 0.7941 0.7949 0.7907
STD 0.0078 0.0070 0.0067 0.0098

Age > 50 AVG 0.7836 0.7782 0.7752 0.7655
STD 0.0111 0.0111 0.0092 0.0064

Hispanic AVG 0.7870 0.7862 0.7797 0.7740
STD 0.0064 0.0067 0.0071 0.0107

Age ≤ 50 AVG 0.8321 0.8211 0.8092 0.7945
STD 0.0168 0.0099 0.0149 0.0131

Males
AVG 0.7513 0.7205 0.7186 0.7180
STD 0.0159 0.0081 0.0047 0.0043

Mean Rank F-test 1.14 2.00 2.86 4.00
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Table 19. Comparison between different BPSO variants using four S-shaped TFs in terms of average
number of selected features [based on kNN*].

Dataset Measure BPSO1 BPSO2 BPSO3 BPSO4

All
AVG 17.6 16.4 17.7 16.9
STD 2.5473 3.0984 2.8304 2.6854

Caucasian AVG 13.0 13.7 14.9 14.5
STD 3.2660 2.9458 3.4785 2.7988

Females AVG 14.1 14.4 14.8 13.2
STD 1.8529 2.2211 2.0440 3.1903

Age > 50 AVG 14.8 15.0 15.4 16.0
STD 2.6583 2.4944 1.8974 3.4641

Hispanic AVG 14.6 14.7 15.4 16.2
STD 0.6992 2.0575 2.5473 2.8206

Age ≤ 50 AVG 14.8 15.6 15.4 15.5
STD 1.3166 1.7764 2.3190 2.5927

Males
AVG 12.5 12.8 14.8 13.6
STD 2.8771 3.1903 2.4404 1.3499

Mean Rank F-test 1.43 2.29 3.43 2.86

Table 20 tabulates the running time (in seconds) of the BSPO variants. As can be
observed, the BPSO1 often ran faster to find the near-optimal solution, while the BPSO2
was the slowest. Eventually, the BPSO1 was shown to be the best variant, and it was
employed in the rest of the experiment.

Table 20. Comparison between different BPSO variants using four S-shaped TFs in terms of average
running time [based on kNN*].

Dataset Measure BPSO1 BPSO2 BPSO3 BPSO4

All
AVG 464.0 481.7 466.2 467.8
STD 4.8617 3.6674 3.3655 3.2812

caucasion AVG 368.1 374.5 371.8 374.0
STD 4.3402 4.2569 3.6641 3.5733

females AVG 245.8 247.9 247.9 248.4
STD 2.1698 2.1417 1.7136 2.1340

age > 50 AVG 266.9 270.2 268.7 270.0
STD 2.5395 2.2341 2.4543 1.5417

hispanic AVG 260.5 262.9 262.1 263.9
STD 2.9500 2.1613 1.8231 2.4382

age ≤ 50 AVG 261.4 262.1 264.8 263.7
STD 2.3115 1.7837 2.1478 2.0247

males
AVG 382.7 251.8 250.3 250.9
STD 46.5774 1.8658 1.8342 1.7393

mean rank F-test 1.43 3.21 2.21 3.14

7.2. Comparison of BPSO with Well-Known Algorithms

In this subsection, the performance of the BPSO1 was further compared with the other
seven state-of-the-art methods. The comparison algorithms are the binary Harris hawk
optimization (BHHO) [73], the binary gravitational search algorithm (BGSA) [76], the binary
whale optimization algorithm (BWOA) [77], the binary grey wolf optimization (BGWO) [78],
the binary bat algorithm (BBA) [79], the binary ant lion optimizer (BALO) [78], and the
binary moth–flame optimization (BMFO) [48]. Table 21 presents the average accuracy
results obtained by the eight different algorithms. From Table 21, it is seen that the BPSO1
outperformed the other methods in tackling the feature selection problem. The results
show that the BPSO1 retained the optimal mean rank of 1.57, followed by the BHHO (2.29).
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Among the groups (race, gender, and age), age positively impacted accuracy when applying
the BPSO1. The results revealed using feature selection showed that the performance of
the grouped data by age could be substantially improved. Moreover, Table 22 presents the
result of the Wilcoxon signed rank test. From Table 22, the BPSO1 outperformed the other
methods in this work.

Table 21. Comparison between BPSO and various well-know algorithms in terms of average accuracy.

Dataset Measure BPSO1 BHHO BGSA BWOA BGWO BBA BALO BMFO

All
AVG 0.7511 0.7515 0.7245 0.7507 0.7372 0.6624 0.7474 0.7504
STD 0.0075 0.0095 0.0086 0.0042 0.0064 0.0472 0.0038 0.0039

Caucasian AVG 0.7967 0.7821 0.7430 0.7815 0.7623 0.7060 0.7781 0.7821
STD 0.0136 0.0049 0.0061 0.0054 0.0049 0.0356 0.0056 0.0058

Females AVG 0.8034 0.8068 0.7517 0.8093 0.7864 0.6949 0.8017 0.8059
STD 0.0078 0.0067 0.0106 0.0072 0.0088 0.0344 0.0091 0.0063

Age > 50 AVG 0.7836 0.7703 0.7236 0.7691 0.7473 0.6945 0.7649 0.7721
STD 0.0111 0.0078 0.0122 0.0097 0.0081 0.0192 0.0110 0.0077

Hispanic AVG 0.7870 0.7805 0.7382 0.7789 0.7683 0.6805 0.7813 0.7772
STD 0.0064 0.0094 0.0120 0.0064 0.0103 0.0617 0.0071 0.0042

Age ≤ 50 AVG 0.8321 0.7991 0.7376 0.7991 0.7661 0.6661 0.7835 0.7853
STD 0.0168 0.0110 0.0189 0.0091 0.0108 0.0604 0.0151 0.0064

Males
AVG 0.7513 0.7224 0.6949 0.7154 0.7090 0.6430 0.7160 0.7160
STD 0.0159 0.0053 0.0106 0.0033 0.0033 0.0327 0.0031 0.0031

Mean Rank F-test 1.57 2.29 7.00 3.36 6.00 8.00 4.36 3.43

Table 22. p-values of the Wilcoxon signed rank test based on accuracy results reported in Table 21
(p-values ≤ 0.05 are in bold and significant).

Dataset
BPSO (the Best Performaing Method) vs.

BHHO BGSA BWOA BGWO BBA BALO BMFO

All 2.79× 10−1 2.62 × 10−4 5.05× 10−1 1.54 × 10−3 1.69 × 10−4 4.82 × 10−2 5.55× 10−1

Caucasian 8.58 × 10−3 1.51 × 10−4 1.12 × 10−2 2.27 × 10−4 1.66 × 10−4 5.03 × 10−3 1.13 × 10−2

Females 3.53× 10−1 1.50 × 10−4 1.16× 10−1 1.15 × 10−3 1.60 × 10−4 4.69× 10−1 5.13× 10−1

Age > 50 8.05 × 10−3 1.74 × 10−4 8.19 × 10−3 1.62 × 10−4 1.73 × 10−4 2.93 × 10−3 1.83 × 10−2

Hispanic 1.04× 10−1 1.56 × 10−4 1.89 × 10−2 4.39 × 10−4 1.62 × 10−4 1.18× 10−1 2.24 × 10−3

Age ≤ 50 3.85 × 10−4 1.64 × 10−4 3.28 × 10−4 1.58 × 10−4 1.71 × 10−4 1.61 × 10−4 1.45 × 10−4

Males 9.68× 10−1 1.51 × 10−4 8.81 × 10−3 2.72 × 10−4 1.57 × 10−4 1.26 × 10−2 1.26 × 10−2

Table 23 tabulates the evaluation of the average feature size. The result of the Wilcoxon
test is shown in Table 24. Our result indicates that the best algorithm in the feature reduction
was the BBA, while the BSPO1 ranked second. In terms of the computational complexity,
one can see from Table 25 that the BPSO1 again scored the optimal mean rank of 1.86 across
all datasets. The BPSO1 offers not only the highest accuracy and the minimal number of
features, but also the fastest computational speed.

Figure 7 illustrates the convergence behavior of the compared algorithms. We can
observe that the BPSO1 converged faster and deeper to reach the global optimum out
of all seven cases. The BPSO1 showed an excellent convergence rate against its com-
petitors. This can be interpreted due to the strong searching ability of the BSPO1 algo-
rithm. On the other side, the BBA and BGSA were found to have the lowest performance.
They suffered from early stagnation and premature convergence, thereby reducing the
classification performance.
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Table 23. Comparison between BPSO and various well-know algorithms based on the number of
selected features.

Dataset Measure BPSO1 BHHO BGSA BWOA BGWO BBA BALO BMFO

All
AVG 17.6 22.8 18.1 22.2 27.4 13 25.1 24.2
STD 2.55 2.10 2.23 2.66 1.17 2.11 1.37 1.81

Caucasian AVG 13.0 19.9 14.6 21.5 26.2 12.1 24.6 21.7
STD 3.27 3.28 2.63 2.32 0.79 2.33 1.35 1.89

Females AVG 14.1 23 15 22.8 27 13.4 24 24.8
STD 1.85 1.56 1.89 2.39 1.56 2.17 1.33 1.69

Age > 50 AVG 14.8 18.6 16.9 21.3 27.3 15.1 25.6 22.5
STD 2.66 5.87 2.88 3.47 1.64 2.42 1.65 2.12

Hispanic AVG 14.6 19.6 17.3 20.7 25.2 13 23.3 21.1
STD 0.70 3.78 3.53 3.59 1.23 2.45 1.89 2.38

Age ≤ 50 AVG 14.8 18.3 16.4 19 25.1 12.6 23.4 19.5
STD 1.32 2.11 2.80 1.83 1.20 2.46 1.51 1.18

Males
AVG 12.5 19.1 14.9 18.6 25.5 11.3 22.5 21.4
STD 2.88 5.24 1.60 3.75 1.84 4.57 1.96 2.27

Mean Rank F-test 1.86 4.43 3.00 4.57 8.00 1.14 6.86 6.14

Table 24. p-values of the Wilcoxon signed rank test based on the number of selected features reported
in Table 23 (p-values ≤ 0.05 are in bold and significant).

Dataset
BPSO (the Best Performaing Method) vs.

BHHO BGSA BWOA BGWO BBA BALO BMFO

9.43 × 10−4 7.01× 10−1 2.35 × 10−3 1.70 × 10−4 1.42 × 10−3 1.73 × 10−4 2.12 × 10−4

Caucasian 7.44 × 10−4 2.37× 10−1 2.65 × 10−4 1.57 × 10−4 5.41× 10−1 1.63 × 10−4 2.02 × 10−4

Females 1.60 × 10−4 2.30× 10−1 1.65 × 10−4 1.61 × 10−4 4.16× 10−1 1.62 × 10−4 1.51 × 10−4

Age > 50 1.02× 10−1 1.37× 10−1 7.30 × 10−4 1.67 × 10−4 7.31× 10−1 1.56 × 10−4 1.73 × 10−4

Hispanic 1.37 × 10−2 1.20 × 10−2 1.40 × 10−3 1.43 × 10−4 1.08× 10−1 1.51 × 10−4 1.44 × 10−4

Age ≤ 50 1.58 × 10−3 1.62× 10−1 4.79 × 10−4 1.67 × 10−4 2.65 × 10−2 1.70 × 10−4 1.61 × 10−4

Males 3.42 × 10−3 1.82 × 10−2 1.64 × 10−3 1.68 × 10−4 7.61× 10−1 2.00 × 10−4 2.03 × 10−4

Table 25. Comparison between BPSO and various well-know algorithms in terms of running time
(in seconds).

Dataset Measure BPSO1 BHHO BGSA BWOA BGWO BBA BALO BMFO

all
AVG 464.05 798.02 465.45 476.24 475.84 468.76 474.47 468.78
STD 4.862 9.414 4.992 4.813 5.720 5.622 7.119 6.179

caucasion AVG 368.14 613.92 376.20 378.73 377.41 376.77 375.30 374.28
STD 4.340 5.295 3.015 3.928 4.045 3.191 5.114 4.507

females AVG 245.75 401.38 248.90 248.18 249.38 250.27 247.90 247.08
STD 2.170 4.390 2.088 2.839 2.664 1.802 2.385 2.445

age > 50 AVG 266.88 441.47 267.54 272.05 272.21 269.97 269.77 269.41
STD 2.540 4.207 2.024 2.318 2.357 2.169 3.116 2.618

hispanic AVG 260.48 431.94 264.26 261.83 264.53 265.01 262.17 261.13
STD 2.950 4.529 1.983 2.527 2.019 3.110 2.884 1.943

age ≤ 50 AVG 261.38 429.46 266.24 263.29 266.10 265.21 262.29 262.48
STD 2.311 3.038 2.525 1.785 2.330 2.237 3.266 1.700

males
AVG 382.68 409.66 250.95 249.72 251.26 255.21 249.02 249.54
STD 46.577 4.520 1.540 2.240 1.781 3.173 2.732 2.101

mean rank F-test 1.86 8.00 4.14 4.86 6.00 5.43 3.14 2.57
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Figure 7. Convergence behavior of compared algorithms. The figure depicts the convergence behavior
of feature selection algorithms, thereby showcasing their fitness progress over iterations and assisting
in the identification of an effective approach.

7.3. Relevant Features Selected by BPSO

In the seventh phase, we inspected the relevant features selected by the BPSO1 algo-
rithm. Table 26 outlines the best accuracy results of the classifiers with and without the
BPSO algorithm. As shown in Table 26, the classification accuracy increased when the
BSPO was deployed. The result affirms the importance and effectiveness of the feature
selection method in sleep apnea classification. Taking the Caucasian dataset as an example,
an increment of roughly 6% accuracy was achieved by the BPSO1 algorithm, with a feature
reduction of 56.67%. In the dataset with age ≤ 50, the proposed approach improved the
accuracy by at least 11% while eliminating more than half of the irrelevant and redundant
features in the dataset. Moreover, the reduction in the feature size contributed to the overall
decrease in classifier complexity.

Table 27 presents the details of the selected features yielded through the BPSO al-
gorithm. Instead of using all 31 features, the results show that the number of features
chosen was 18 for all datasets, 13 for the Caucasian dataset, 14 for the Hispanic dataset,
13 for the females dataset, 11 for the males dataset, 15 for the age ≤ 50 datasets, and 17
for the age > 50 datasets. The findings suggest that fewer than 20 features are sufficient for
accurate sleep apnea classification. On the one hand, Figure 8 exhibits the importance of
the features in terms of the number of times each feature was chosen by the BPSO. Across
all the datastes, it is suggested that the most selected features were f22 and f11, followed by
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f14 and f8. Correspondingly, these features had high discriminative power that could best
describe the OSA compared to others.

Table 26. Best results for classifiers without using feature selection (kNN*) and after using feature
selection (BPSO-kNN*) in terms of accuracy, number of features, and improvement rate.

Dataset
KNN* BPSO-KNN Improvement Rate

Accuracy No. Features Accuracy No. Features Features Reduction Accuracy

All 0.7409 31 0.7628 18 41.94% 2.19%

Caucasion 0.7483 30 0.8080 13 56.67% 5.96%

Hispanic 0.7724 30 0.7968 14 53.33% 2.44%

Females 0.7373 30 0.8136 13 56.67% 7.63%

Males 0.6987 30 0.7885 11 63.33% 8.97%

Age ≤ 50 0.7431 31 0.8624 15 51.61% 11.93%

Age > 50 0.7333 31 0.8061 17 45.16% 7.27%

Table 27. Details of selected features selected by the BPSO that scored the best accuracy results for
each dataset [best result out of 10 runs].

Dataset Accuracy #Features f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28 f29 f30 f31

all 0.7628 18 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 1 1 0 1 1 1 0 0 1 1
caucasian 0.8080 13 - 0 1 0 1 1 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1
Hispanic 0.7968 14 - 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0
females 0.8136 13 1 0 - 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 1
males 0.7885 11 0 0 - 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1
age<=50 0.8624 15 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1
age>50 0.8061 17 1 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1

Figure 8. Importance of features in terms of the number of times each feature was selected by BPSO
for all datasets [over 10 runs for each dataset].

7.4. Comparison of the BPSO-kNN with CNN, MLP, and kNN*

In the final part of the experiments, we compared the performance of the BPSO-kNN
to the kNN* and the other well-known models, including the convolutional neural network
(CNN) and multilayer perceptron neural network (MLP). Note that the maximum number
of epochs for both the CNN and MLP were set at 150. Table 28 presents the accuracy and
computational time of the BPSO-kNN, CNN, MLP, and kNN* methods. Upon inspecting
the result, the BPSO-kNN contributed to the highest accuracy for all the datasets. Although
the computational complexity of the BPSO-kNN was much higher than the CNN, MLP,
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and kNN*, it can usually ensure an accurate classification process. All in all, our findings
affirm the superiority of the BSPO-kNN for the sleep apnea classification.

Based on previous analysis, it showed that the performance of the OSA diagnosis
can be enhanced after applying the feature selection method. According to Figure 9,
the accuracy percentage showed an increment of at least 3% in most datasets. As can
be observed, an increment of roughly 10% could be achieved with the feature selection
approach for the dataset age ≤ 50. From the aforementioned, the irrelevant and redundant
features are meaningless, and they will degrade the performance of the model, as well
as increase the dimensionality of the dataset. By utilizing the BPSO-kNN, most of the
unwanted features can be removed while keeping the most informative ones, which
guarantees a better diagnosis of the OSA. As a bonus, the BPSO-kNN selects the useful
features from the dataset in an automatic way, which means it can be implemented without
the need for prior knowledge and experience. In short, feature selection is an essential and
efficienct tool for sleep apnea classification.

Table 28. Comparison of the BPSO-kNN with kNN*, CNN, and MLP. The table compares the
performance of the proposed model, BPSO-kNN, which incorporates feature selection, with other
models, including kNN*, CNN, and MLP, which do not employ feature selection.

Dataset
CNN MLP kNN* BPSO-kNN

Accuracy Time Accuracy Time Accuracy Time Accuracy Time

All 0.6105 291.656 0.5438 0.789 0.7409 1.706 0.7628 464.050
Caucasion 0.7283 204.591 0.6159 3.282 0.7483 0.177 0.8080 368.142
Hispanic 0.6513 180.510 0.5285 2.341 0.7724 0.194 0.7968 245.754
Females 0.7023 208.605 0.6102 3.398 0.7373 0.165 0.8136 266.882
Males 0.6263 174.349 0.5769 2.969 0.6987 0.225 0.7885 260.481
Age ≤ 50 0.6427 177.557 0.5780 2.917 0.7431 0.176 0.8624 261.377
Age > 50 0.6629 219.354 0.5455 3.483 0.7333 0.175 0.8061 382.676

Figure 9. Bar chart of accuracy percentage change after grouping based on age, gender, and race.
The figure compares the accuracy of the model when using the entire dataset (all) to the accuracy
after grouping based on age, gender, and race. Positive values denote an increase in accuracy, thus
showcasing the effectiveness of grouping based on these demographic factors.

7.5. Comparison Study

To verify the performance of the proposed approach, we compared the obtained
results with those reported in the preceding work on the same dataset. For this purpose, the
proposed BPSO-kNN was compared with the screening tool (NAMES assessment) offered
by Subramanian et al. [30]. Table 29 presents the AUC scores of the NAMES assessment
using different combinations of features versus the BPSO-kNN. According to the findings,
it is observed that the developed BPSO-kNN outperformed the other methods, with an
optimal AUC rate of 0.8320. By comparing our proposed model to [27,28], it is clear that
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the proposed model overwhelmed the SVM, LR, and ANN models. The results again
validate the superiority of the feature selection process. These observations confirm that
data grouping and the proper selection of features with an effective classification method
can yield better performance for OSA detection.

Table 29. Comparison of the proposed BPSO-kNN with other approaches from the literature in terms
of AUC scores.

Results of NAMES [30] Proposed (BPSO-KNN) Haberfeld et al. [28] Surani et al. [27]

Combination AUC Dataset Average AUC SVM LR LR ANN

NC + MF + CM + ESS + S + BMI 0.6577 all 0.7438
NC + MF + CM + ESS + S + M 0.6572 caucasion 0.7690
NC + MF + CM + ESS + S + BMI + M (NAMES2) 0.6690 hispanic 0.7811
NC + MF + M + ESS + S 0.6583 females 0.6707 0.6220 0.6080 0.7030 0.5830
BMI + MF + CM + ESS + S + M 0.6436 males 0.7318 0.6070 0.6070 0.7130 0.6360
(NC + MF) × 2 + CM + ESS + S 0.6661 age ≤ 50 0.8320
(NC + BMI) × 2 + M + ESS + S 0.6433 ag > 50 0.7684
(NC + MF) × 2 + M + ESS + S 0.6484
(NC + BMI) × 2 + CM + ESS + S 0.6426
(NC + MF + BMI)×2 + CM + ESS + S + M 0.6478

8. Conclusions and Future Works

This study proposed an alternative approach to detect obstructive sleep apnea (OSA),
which utilized demographic data instead of traditional ECG analysis. Expert physicians
and sleep specialists collected a dataset of 31 features from 620 patients at the Torr Sleep
Center in Texas, USA. The research focused on evaluating the performance of various
machine learning classifiers using fixed and adaptive learning methods, thereby aiming to
identify the most suitable classifier for the collected data. The results demonstrated that the
kNN classifier achieved the highest accuracy among the tested classifiers. Additionally, a
wrapper feature selection method based on the BPSO (binary particle swarm optimization)
was employed with the kNN classifier to determine the most relevant features associated
with OSA. The experimental outcomes indicate that the proposed method enhanced the
overall prediction performance for OSA. As part of future work, the investigation will
expand to include several wrapper feature selection methods, such as binary genetic
algorithms (BGA) and binary ant colony optimization (BACO), thus aiming to assess the
performance of the kNN classifier with different feature selection techniques.
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