Skip to main content
. 2023 Jul 20;13(14):2417. doi: 10.3390/diagnostics13142417

Table 5.

The detailed parameter settings of preset classifiers.

Preset Classifier Description Parameter Value
FDT Fine Decision Tree Maximum number of splits 100
Split criterion Gini’s diversity index
CDT Coarse Decision Tree Maximum number of splits 100
Split criterion Gini’s diversity index
LDA Linear Discrimenant Analaysis Discriminant type linear
LR Logistic Regression - -
GNB Gaussian Naïve Bayes Distribution name Gaussian
KNB Kernel Naïve Bayes Distribution name Kernel
Kernel type Gaussian
LSVM Linear Support Vector Machine Kernel function Linear
Kernel scale Automatic
Box contraint level 1
standardize data TRUE
MGSVM Medium Gaussian SVM Kernel function Gaussian
Kernel scale 5.6
Box contraint level 1
Standardize data TRUE
CGSVM Coarse Gaussian SVM Kernel function Gaussian
Kernel scale 22
Box contraint level 1
Standardize data TRUE
CKNN Cosine K-Nearest Neighbor Number of neighbors 10
Distance metric cosine
Distance weight equal
Standardize data TRUE
WKNN Weighted kNN Number of neighbors 10
Distance metric Euclidean
Distance weight Squared Inverse
Standardize data TRUE
Ensemble Subspace Discriminant Ensemble method Subspace
Learner type Discriminant
Number of learners 30
Subspace dimension 16