Table 5.
The detailed parameter settings of preset classifiers.
Preset Classifier | Description | Parameter | Value |
---|---|---|---|
FDT | Fine Decision Tree | Maximum number of splits | 100 |
Split criterion | Gini’s diversity index | ||
CDT | Coarse Decision Tree | Maximum number of splits | 100 |
Split criterion | Gini’s diversity index | ||
LDA | Linear Discrimenant Analaysis | Discriminant type | linear |
LR | Logistic Regression | - | - |
GNB | Gaussian Naïve Bayes | Distribution name | Gaussian |
KNB | Kernel Naïve Bayes | Distribution name | Kernel |
Kernel type | Gaussian | ||
LSVM | Linear Support Vector Machine | Kernel function | Linear |
Kernel scale | Automatic | ||
Box contraint level | 1 | ||
standardize data | TRUE | ||
MGSVM | Medium Gaussian SVM | Kernel function | Gaussian |
Kernel scale | 5.6 | ||
Box contraint level | 1 | ||
Standardize data | TRUE | ||
CGSVM | Coarse Gaussian SVM | Kernel function | Gaussian |
Kernel scale | 22 | ||
Box contraint level | 1 | ||
Standardize data | TRUE | ||
CKNN | Cosine K-Nearest Neighbor | Number of neighbors | 10 |
Distance metric | cosine | ||
Distance weight | equal | ||
Standardize data | TRUE | ||
WKNN | Weighted kNN | Number of neighbors | 10 |
Distance metric | Euclidean | ||
Distance weight | Squared Inverse | ||
Standardize data | TRUE | ||
Ensemble | Subspace Discriminant | Ensemble method | Subspace |
Learner type | Discriminant | ||
Number of learners | 30 | ||
Subspace dimension | 16 |