Table 9.
Classifier | Accuracy | TPR | TNR | AUC | Precision | F-Score | G-Mean | Mean Rank |
---|---|---|---|---|---|---|---|---|
FDT | 0.7285 | 0.7935 | 0.6271 | 0.7103 | 0.7684 | 0.7807 | 0.7054 | 3.29 |
LDA | 0.6908 | 0.7957 | 0.5254 | 0.6606 | 0.7255 | 0.7590 | 0.6466 | 6.71 |
LR | 0.6887 | 0.7609 | 0.5763 | 0.6686 | 0.7368 | 0.7487 | 0.6622 | 6.21 |
GNB | 0.6887 | 0.8261 | 0.4746 | 0.6503 | 0.7103 | 0.7638 | 0.6261 | 7.93 |
MGSVM | 0.7219 | 0.8913 | 0.4576 | 0.6745 | 0.7193 | 0.7961 | 0.6387 | 5.79 |
CKNN | 0.7483 | 0.9457 | 0.4407 | 0.6932 | 0.7250 | 0.8208 | 0.6455 | 4.36 |
Ensemble | 0.7219 | 0.8696 | 0.4915 | 0.6805 | 0.7273 | 0.7921 | 0.6538 | 5.07 |
SVM* | 0.7351 | 0.8478 | 0.5593 | 0.7036 | 0.7500 | 0.7959 | 0.6886 | 3.36 |
kNN* | 0.7483 | 0.8804 | 0.5424 | 0.7114 | 0.7500 | 0.8100 | 0.6910 | 2.29 |