Table 11.
Performance of different classification algorithms for the grouped data of females.
Classifier | Accuracy | TPR | TNR | AUC | Precision | F-Score | G-Mean | Mean Rank |
---|---|---|---|---|---|---|---|---|
CDT | 0.7119 | 0.8824 | 0.2727 | 0.5775 | 0.7576 | 0.8152 | 0.4906 | 4.86 |
LDA | 0.6695 | 0.8118 | 0.3030 | 0.5574 | 0.7500 | 0.7797 | 0.4960 | 5.57 |
LR | 0.6102 | 0.7529 | 0.2424 | 0.4977 | 0.7191 | 0.7356 | 0.4272 | 8.00 |
KNB | 0.6356 | 0.7176 | 0.4242 | 0.5709 | 0.7625 | 0.7394 | 0.5518 | 5.00 |
MGSVM | 0.7203 | 1.0000 | 0.0000 | 0.5000 | 0.7203 | 0.8374 | 0.0000 | 5.79 |
WKNN | 0.7458 | 0.9765 | 0.1515 | 0.5640 | 0.7477 | 0.8469 | 0.3846 | 4.36 |
Ensemble | 0.7458 | 0.8824 | 0.3939 | 0.6381 | 0.7895 | 0.8333 | 0.5896 | 2.43 |
SVM* | 0.7203 | 1.0000 | 0.0000 | 0.5000 | 0.7203 | 0.8374 | 0.0000 | 5.79 |
kNN* | 0.7373 | 0.9176 | 0.2727 | 0.5952 | 0.7647 | 0.8342 | 0.5003 | 3.21 |