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Simple Summary: Fascin is an actin-bundling protein that is highly expressed in mature dendritic
cells and intratumoral dendritic cells. Dendritic cells are professional antigen-presenting cells of the
immune system. Fascin is responsible for regulating dendritic cell migrations and tumor metastasis.
The mechanism by which fascin regulates the functions of dendritic cells is currently being explored.
In this review, we summarize fascin’s involvement in the physiological processes of normal dendritic
cells including dendritic cell maturation, migration, and antigen presentation. In cancer patients,
there is a subset of dendritic cells with high levels of fascin; activation of this subset of dendritic cells
has been shown to enhance antitumor immune response. Fascin inhibitors increase intratumoral
dendritic cell accumulation and activation, and cooperate with immune checkpoint inhibitors.

Abstract: Dendritic cells (DCs) are professional antigen-presenting cells that play a crucial role
in activating naive T cells through presenting antigen information, thereby influencing immunity
and anti-cancer responses. Fascin, a 55-kDa actin-bundling protein, is highly expressed in mature
DCs and serves as a marker protein for their identification. However, the precise role of fascin in
intratumoral DCs remains poorly understood. In this review, we aim to summarize the role of fascin
in both normal and intratumoral DCs. In normal DCs, fascin promotes immune effects through
facilitating DC maturation and migration. Through targeting intratumoral DCs, fascin inhibitors
enhance anti-tumor immune activity. These roles of fascin in different DC populations offer valuable
insights for future research in immunotherapy and strategies aimed at improving cancer treatments.

Keywords: fascin; dendritic cells; tumor microenvironment; anti-tumor immune responses

1. Introduction

Dendritic cells (DCs) are the most efficient antigen-presenting cells of the immune
system and play a crucial role in inducing primary immune responses and activating
naive T cells [1–4]. DCs arise from hematopoietic progenitors and undergo myeloid
and lymphoid differentiation pathways [5]. These cells exist in two states, immature
and mature, with distinct functions [6]. Immature DCs are responsible for internalizing
and processing antigens in non-lymphoid tissues, while under antigen stimulation, DCs
mature and migrate to lymphoid tissues, thereby activating naive T cells and exerting
immune effects [6,7].

Fascin possesses a unique structure comprising four beta-trefoil domains [8–12]. Fascin
crosslinks F-actin filaments into parallel bundles and reorganizes the actin cytoskeleton,
leading to the regulation of cell adhesion, migration, and cellular interactions [13–15].
Actin cytoskeleton remodeling provides the driving force for various cellular processes
including cell migration and invasion [16,17]. Fascin bundles F-actin filaments through
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its two main actin-binding domains [18]. Fascin has been shown to participate in the
formation of various membrane protrusions including filopodia, invadopodia, and veil-
like protrusions [19]. Fascin depletion decreases the size and number of filopodia and
invadopodia as well as affects actin dynamics [20].

Three fascin genes have been identified: fascin-1, fascin-2, and fascin-3. Fascin-1
is expressed in various types of cells, such as vascular endothelial cells, glial cells, and
DCs, while fascin-2 and fascin-3 are predominantly found in retinal photoreceptor cells
and the testis, respectively [21]. Fascin-1 (referred to as fascin here) is discussed in this
review. Fascin is highly expressed in mature DCs but not detectable in immature DCs,
macrophages, neutrophils, T cells, and B cells [22], making it a reliable marker for mature
DCs. Additionally, fascin is overexpressed in various metastatic tumors and aberrantly
expressed in different cancer types, where it is considered a marker and therapeutic target
for cancer metastasis [23–25]. Fascin expression has been associated with tumor cell
migration, invasion, metastasis, and adaptive immune response [24–26].

DCs are present both in normal tissues and the tumor microenvironment. When
DCs migrate from peripheral tissues to the tumor microenvironment, they could uptake
tumor antigens and undergo maturation, accompanied by increased fascin expression.
Studies have shown increased fascin expression in mature DCs [6]. The upregulation
of fascin in mature DCs enhances their migration [6,27–29]. DCs are highly motile cells,
and fascin deficiency impairs their motility. Fascin plays a critical role in enhancing DCs’
motility through actin cytoskeleton reorganization (see below for details) [30–33]. Moreover,
reduced fascin expression hampers cytoskeleton rearrangement in DCs/Langerhans cells,
resulting in decreased T- cell activation [34]. Immature DCs lacking fascin exhibit high
efficiency in antigen uptake but poor T cell activation [29].

Importantly, while high fascin expression in normal tissue DCs promotes immune re-
sponses, its overexpression in intratumoral DCs is associated with tumor development [35,36].
Immune cell profiling and proteomic analyses have demonstrated that inhibiting fascin
expression in intratumoral DCs enhances antigen uptake and increases immune cell pres-
ence, suggesting that suppressing fascin activity contributes to tumor inhibition within the
tumor microenvironment [37]. In addition, fascin inhibitors can impede intratumoral DC
migration, leading to increased DC accumulation within the tumor microenvironment and
promoting intratumoral DC activation [37]. There is a cell-intrinsic antagonism between
DC migration and antigen uptake [36]. Within the immune process, DCs in the tumor
microenvironment play a crucial role in fostering T cell immunity and immunotherapy
responses, making them potential anti-tumor targets [38]. Fascin inhibitors can promote T
cell activation through activated DCs, thereby achieving anti-tumor effects [37].

This review focuses on elucidating the role of fascin in normal and intratumoral DCs
from an immune-related perspective, providing an understanding of how fascin regulates
the functions of DCs.

2. Roles of Fascin in Normal Dendritic Cell Physiology
2.1. Fascin in DC Maturation

During the development of immature DCs into mature DCs, cytoskeletal changes take
place [38]. Fascin is not expressed or is expressed at low levels in immature DCs but is
highly expressed in mature DCs. Fascin is specifically induced and expressed during DC
maturation, contributing to the dynamic assembly of veil-like membrane protrusions, the
disassembly of podosomes, migration to lymph nodes, and the assembly of the immuno-
logical synapse [22].

Fascin promotes the transformation of actin filaments into actin bundles, leading
to the formation of membranous protrusions on the surface of mature DCs, facilitating
their circulation [22]. In vitro studies have shown that DCs lacking fascin genes exhibit
a low occurrence of membrane-protrusive activities and impaired chemotaxis toward
CCL19, a chemokine involved in mature DC lymphocyte recirculation [28]. Knockout
of the fascin-1 gene in mice results in thinner, more spread DCs with fewer and smaller
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dorsal folds [22]. Re-expressing fascin through transfection can reverse the effects of fascin
deletion [22]. Furthermore, inhibition of fascin expression using antisense constructs delays
the morphologic maturation of DCs [38]. Thus, fascin contributes greatly to dendrite
formation and the morphological maturation of DCs.

Furthermore, the fascin promoter exhibits robust activity in mature DCs and is tran-
scriptionally targeted to mature DCs. The activity of the fascin promoter increases signifi-
cantly during DC maturation. The regulatory sequence of the fascin promoter is located at
the 5’-flanking promoter region, which contains a putative GC box, a composite cAMP re-
sponsive element/AP-1 binding site, and a TATA box [4]. High-level expression of fascin is
induced during the maturation of DCs from CD14+ blood precursors in culture. Inhibition
of fascin expression hampers the morphological maturation of DCs [27]. Fascin and other
markers of mature DCs increase during the maturation of DCs. However, in mature DCs,
knockdown of fascin has no impact on other markers of mature DCs, e.g., CD86, CD11c,
and MHC II (major histocompatibility complex class II) [22].

2.2. Fascin in DC Migration

Fascin plays a crucial role in the maturation of DCs and promotes their migration. The
maturation of DCs is characterized by the assembly of numerous membranous protrusions
and the disassembly of podosomes [28]. Fascin is closely associated with the decomposition
of podosomes, which are actin-rich membrane protrusions that act as cell matrix adhesion
structures and hinder DC migration [28,39,40]. High levels of fascin weaken the ability of
DCs to form podosomes [28]. Mature DCs lacking fascin exhibit low membrane activity
and do not decompose podosomes [28]. However, after transfection with GFP-fascin, most
DCs express fascin, decompose podosomes, and show increased migration to lymph nodes
compared to fascin-knockout DCs [28]. When mature DCs lack fascin proteins, podosomes
do not decompose [22]. DCs transiently lose podosomes shortly after activation, then
recover podosomes within hours. Later, they permanently lose podosomes after activation,
concomitant with the generation of characteristic veil-like membrane protrusions [28].
While the first and transient loss of podosomes is controlled via pathways involving
prostaglandin E2, RhoA, rho-kinase, and ADAM17, fascin has been shown to increase the
second and cause permanent loss of podosomes in mature DCs [39,41,42]. Hence, during
DC maturation, the expression levels of fascin increase, and podosomes in these mature
DCs undergo several rounds of growth and contraction before finally decomposing, which
enhances their mobility [33]. The migration of mature DCs to lymph nodes facilitates
subsequent antigen presentation processes.

2.3. Fascin in Antigen Presentation

Antigen presentation refers to the process through which antigen-presenting cells take
up antigens, process them, and present immune peptides on their surface, which are then
recognized by immunocompetent cells [43]. The reorganization of the actin cytoskeleton
in DCs promotes antigen uptake, processing, presentation, and the activation of resting T
cells [44]. How fascin is directly involved in antigen uptake and presentation is not clear.
Immature DCs, with no or low levels of fascin proteins, have high antigen uptake activity.
Mature DCs have high levels of fascin proteins and increased migration to the lymph nodes.
It is not clear whether these mature DCs maintain high levels of fascin proteins after they
reach the lymph nodes. Fascin has been shown to participate in the interactions between
DCs and T cells. Regulatory T (Treg) cells suppress the function of DCs via direct physical
contact using DC’s own fascin-dependent cytoskeleton, leading to weaker interactions
between DCs and conventional T cells [45]. When fascin expression levels in DCs were re-
duced using siRNA, Treg cells could no longer bind DCs [45]. On the other hand, inhibiting
fascin expression using antisense oligonucleotides reduced the heterologous stimulating
activity of cultured bone-marrow-derived DCs. This decrease in fascin expression weakens
the activation ability of DCs towards T cells [29] (Figure 1). Furthermore, CD40-CD40L
signaling upregulates fascin expression in DCs during the activation of T cells, promoting
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continuous contact between DCs and T cells [46]. Additionally, ectopic expression of fascin
can restore the contact between DCs and T cells and complete the antigen presentation
process even in the absence of CD40-CD40L binding in DCs [46].
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Figure 1. Roles of fascin in the maturation, migration, and antigen presentation of normal DCs.
Fascin is barely expressed, if at all, in immature DCs and is induced during their maturation, leading
to dynamic assembly of veil-like membrane protrusions, breakdown of podosomes, and migration to
lymph nodes. This process results in an increased number of DCs migrating to lymph nodes. Mature
DCs lacking fascin exhibit lower membrane activity, undecomposed podosomes, and a thinner
and more widely distributed morphology. Transfection of fascin protein restores fascin expression,
decomposes podosomes, and enhances DC migration.

3. Roles of Fascin in Intratumoral DCs
3.1. High-Fascin Intratumoral DCs

Recent advancements in single-cell RNA sequencing (scRNA-seq) studies have signifi-
cantly contributed to our understanding of the tumor microenvironment in cancer patients.
Specifically, these studies have shed light on the upregulation of fascin expression in intra-
tumoral DCs [47–50]. In a comprehensive scRNA-seq analysis of non-small-cell lung cancer
(NSCLC) patients, DCs isolated from tumor tissues exhibited higher levels of fascin com-
pared to matched non-tumor lung tissues. This distinct population of high-fascin expressed
intratumoral DCs was termed “mregDCs” (mature DCs enriched in immunoregulatory
molecules) [47]. Additionally, this subset of DCs showed elevated expression of CCR7,
CCL19, LAMP3, and CCL22 [47]. Importantly, the activation of these specific mregDCs was
found to enhance the response to anti-PD-1 antibody treatment, highlighting their potential
role in immunotherapy [47]. It is worth noting that both cDC1 and cDC2 have the capacity
to differentiate into mregDCs [47].

Furthermore, a comparative scRNA-seq study across colorectal, lung, ovarian, and
breast cancers, including tumor and matched normal tissues, revealed higher expression of
fascin in intratumoral DCs compared to other tumor-infiltrating immune cells, endothelial
cells, and fibroblasts [48]. The intratumoral DCs were further categorized into five distinct
phenotypes based on their transcriptomes: cDC1, cDC2, migratory cDCs, plasmacytoid
DCs, and Langerhans-like DCs [48]. Among these subsets, migratory cDCs exhibited
elevated expression of fascin, along with CCR7, CCL17, CCL19, and CCL22 [48].

Moreover, a scRNA-seq study focusing on hepatocellular carcinoma identified three
enriched DC subsets: cDC1, cDC2, and LAMP3+ DCs [49]. The LAMP3+ DCs displayed
high expression of LAMP3, fascin, CD80, CD83, CCR7, and CCL19 [49]. Importantly, their
activation was found to enhance T cell-mediated cancer immunotherapy [49].
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In another scRNA-seq investigation involving NSCLC tumor tissue samples, four
distinct subsets of DCs were identified: cDC1, cDC2, pDC, and “activated” DCs [50].
The “activated” DCs were characterized by elevated expression levels of fascin, LAMP3,
CCL19, CCR7, and CCL22 [50]. Notably, fascin’s increased expression defined this subset
of “activated” DCs in both human and mouse lung tumor tissues [50].

Considering the consistent upregulation of fascin, CCR7, CCL19, CCL22, and LAMP3
among the different DC subsets identified by various research groups (mregDCs, migratory
DCs, LAMP3+ DCs, and “activated” DCs), it is plausible that these subsets may represent
the same or overlapping populations of DCs. Furthermore, the activation of these DC
subsets has been shown to enhance the anti-PD-1 antibody antitumor immune response,
suggesting their potential as targets for immunotherapeutic strategies [47].

3.2. Fascin Inhibition Increases Intratumoral DC Accumulation and Activation

Intratumoral DCs play a crucial role in obtaining tumor antigens, migrating to lymph
nodes, and activating T cell responses [51,52]. The processes of antigen uptake and migra-
tion in DCs are antagonistic [36]. Fascin promotes DC migration by increasing podosome
disassembly and reducing adhesion force [28]. Thus, fascin inhibitors decrease the po-
dosome decomposition and the migration ability of DCs to leave tumor tissues, conse-
quently leading to increased numbers of intratumoral DCs [22,37]. This was confirmed
by the recent study that inhibition of fascin with a fascin inhibitor NP-G2-044 blocked
the migration of intratumoral DCs [37], and fascin-deficient DCs showed low mobility
compared with normal DCs [28]. Furthermore, the combination of NP-G2-044 and immune
checkpoint inhibitor anti-PD-1 antibody increased the expression of CD40, CD80, and CD86,
which are the markers of activated DCs [37]. The stimulatory molecule CD40 promotes T
cell activation, regulates CD8+ T cell expansion, and enhances DC survival rate [53]. In
addition, activation of DCs leads to the activation of CD8+ killer T cells in the tumor tissue,
ultimately enhancing the anti-tumor immune response [37]. Activated intratumoral DCs
upregulate T cell activation to initiate adaptive anti-tumor immunity [54,55]. Thus, fascin
inhibitors lead to the accumulation of intratumoral DCs.

3.3. Fascin Inhibitors Cooperate with Immune Checkpoint Inhibitors to Enhance Anti-Tumor
Immune Response

The immune checkpoint molecule PD-1 is widely expressed in intratumoral T cells [53].
Interaction between PD-1 and its ligand PD-L1 reduces the proliferation and effectiveness
of CD8+ T cells [56]. The mechanisms through which fascin inhibition increases the anti-
cancer immune cell response include the accumulation of DCs within the tumor tissues
and the increased antigen uptake. First, in mouse studies, the number of intratumoral
DCs is increased because of the reduced mobility of intratumoral DCs after inhibiting
fascin [37]. Second, in both cell-based and mouse studies, fascin inhibitor treatment
increased antigen uptakes by DCs [37]. Proteomic mass spectrometry analysis of proteins
within the tumor microenvironment revealed that treatments with a fascin inhibitor and
an anti-PD-1 antibody, compared with anti-PD-1 treatment alone, increased the levels of
proteins involved in vesicle-mediated transport and clathrin-mediated endocytosis [37].

Furthermore, activated DCs produce interleukin 12 (IL-12), a pro-inflammatory cy-
tokine produced by intratumoral DCs, which enhances the anti-tumor immune response [57].
Intratumoral DCs sense interferon γ (IFN-γ) released from neighboring T cells, leading to
IL-12 production, which stimulates anti-tumor T cell immunity [58,59]. Prolonged activa-
tion of DCs results in lower IFN-γ secretion from T cells, and deficiencies in IL-12 affect
T cell activation [59]. This leads to the induction of a T cell depletion program and the
formation of an immunosuppressive microenvironment [60,61]. However, inhibition of
fascin, in combination with anti-PD-1 antibodies, can relieve this inhibition, reactivate DCs,
and initiate immune responses that inhibit tumor aggressiveness [37]. The contributions
of IL-12 and IFN-γ to the anti-tumor effect of fascin inhibition and anti-PD-1 antibodies
were verified using neutralizing anti-IL-12 and IFN-γ monoclonal antibodies [37]. Neu-
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tralization of IL-12 and/or IFN-γ eliminated the increased overall survival effect observed
with the combination of the fascin inhibitor and anti-PD-1 antibody [37]. Hence, targeting
high-fascin intratumoral DCs is crucial to enhance the anti-tumor immune response of
anti-PD-1 antibodies (Figure 2).
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Figure 2. Inhibition of fascin decreases intratumoral DC migration and promotes DC accumulation
within the tumor microenvironment. Migration and antigen uptake in DCs are antagonistic processes.
High fascin expression in intratumoral DCs promotes their migration. Conversely, fascin inhibitors
promote antigen uptake by these DCs, inhibit migration, and increase accumulation in the tumor
microenvironment. Activated DCs secrete IL-12, which activates CD8+ T cells to secrete IFN-γ and
exert an anti-tumor effect.

4. Conclusions

Fascin plays a crucial role in the maturation, migration, antigen uptake, and antigen
presentation of DCs. Mature DCs with highly expressed fascin migrate to lymph nodes via
the decomposition of podosomes, the decrease in adhesion, and the increase in membrane
protrusion dynamics. Intratumoral DCs with a high expression of fascin are not conducive
to enhancing anti-tumor immune response. The number of intratumoral DCs is increased
through reducing the mobility of intratumoral DCs after inhibiting fascin, and activated
DCs are increased when used with anti-PD-1 antibody, further activating T cells. The
detailed molecular mechanisms through which fascin inhibition enhances the immune
response require further investigation.
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