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Abstract: A serine/threonine-specific protein kinase B (PKB), also known as Akt, is a key factor in the
phosphoinositide 3-kinase (PI3K)/Akt signaling pathway that regulates cell survival, metabolism and
proliferation. Akt phosphorylates many downstream specific substrates, which subsequently control
the nuclear envelope breakdown (NEBD), centrosome maturation, spindle assembly, chromosome
segregation, and cytokinesis. In vertebrates, Akt is also an important player during oogenesis
and preimplantation development. In the signaling pathways regulating mRNA translation, Akt
is involved in the control of mammalian target of rapamycin complex 1 (mTORC1) and thereby
regulates the activity of a translational repressor, the eukaryotic initiation factor 4E (eIF4E) binding
protein 1 (4E-BP1). In this review, we summarize the functions of Akt in mitosis, meiosis and early
embryonic development. Additionally, the role of Akt in the regulation of mRNA translation is
addressed with respect to the significance of this process during early development.
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1. Introduction

Female germ cells and developing embryos are unique in many aspects, including
their life cycle, cell cycle regulation and transcriptional silencing. In mammals, the pri-
mordial germ cells appear early during embryonic development. After migration to the
gonadal ridges, which will eventually develop into gonads, cells increase their numbers
by undergoing multiple mitotic divisions. Then, after entering meiosis while still in utero,
they become arrested in the prophase of the first meiotic division until puberty, after which
they are gradually recruited for further development. The key step, essential for oocyte de-
velopment, is an interaction with cells of mesodermal origin within the developing gonads,
which will lead into formation of the follicles. After puberty, when the follicle-stimulating
hormone (FSH)/luteinizing hormone (LH) surges gradually stimulate their further de-
velopment, primordial follicles, together with oocytes they surround, are recruited for
growth. During this period, oocytes dramatically increase their size and eventually acquire
competence to resume meiosis, after which they undergo two consecutive chromosomal
divisions, without DNA replication in between, resulting in haploid cells, which are ready
for fertilization. Coincidentally with reaching their full size, oocytes become transcription-
ally inactive [1]. The completion of meiosis, fertilization and early embryonic development
are therefore dependent on regulated translation of maternally synthetized mRNAs, ac-
cumulated during oocyte growth [2,3]. Although the maternal RNAs are highly stable in
germinal vesicle (GV) stage oocytes, over 90% of these mRNAs are degraded soon after
fertilization during the first mitotic divisions [4] and the future of the embryo depends
on successful activation of its genome. Considering the unique life cycle of oocytes and
also transcription independent control of meiosis, fertilization and early cleavage cycles of
developing embryos, it is clear that pathways involved in translation and cell cycle control,
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including the phosphoinositide-3-kinase (PI3K)/Akt signaling pathway, are of paramount
importance [5].

2. The Protein Kinase Akt

The serine/threonine protein kinase Akt (v-akt murine thymoma viral oncogene ho-
molog) is a component of the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade that
plays a critical role in a variety of cellular processes, including cell cycle progression, glucose
metabolism, transcription, cellular growth, embryogenesis, as well as angiogenesis [6–8].
The Akt kinase family is comprised of three highly homologous isoforms: Akt1, Akt2 and
Akt3, which are closely related and consist of a conserved N-terminal pleckstrin homology
(PH) domain, a central catalytic domain, and a C-terminal regulatory hydrophobic motif
(HM) [9]. The expression of Akt isoforms is tissue-dependent; whereas the Akt1 and Akt2
are expressed in multiple tissues, the expression of Akt3 is mainly restricted to the brain [10].
The activation of Akt is initiated by its recruitment to the plasma membrane through the
binding of the PH domain of Akt to the phosphatidylinositol-3,4,5-trisphosphate (PIP3).
Subsequently, it requires phosphorylation by the PI3K-dependent kinase 1 (PDK1) at the
threonine 308 (Thr308) residue within the activation T-loop of the catalytic domain and
at serine 473 (Ser473) residue within the carboxyl terminal hydrophobic domain. The
phosphorylation at Ser473 is performed by the mammalian target of rapamycin complex 2
(mTORC2) [11,12]. Akt becomes fully activated only when it is phosphorylated at both the
Thr308 and Ser473 residues [13].

Activated Akt dissociates from the plasma membrane and it is translocated to both
the cytosol and nucleus, where many of its substrates are located [14,15]. The downstream
effect of Akt activity is mediated through the serine and/or threonine phosphorylation of
specific substrates involved in a range of cellular and physiological processes [16,17].

Inactivation of the PI3K/Akt pathway is mainly accomplished by phosphatase and
tensin homologue deleted on chromosome 10 (PTEN), which exhibits dual lipid and protein
phosphatase activity [18]. PTEN specifically catalyzes dephosphorylation of the 3′ phos-
phate of the inositol ring in phospholipid PIP3, resulting in formation of the bisphosphate
product phospholipid PIP and inhibition of Akt activity [19]. On the other hand, Akt is also
inactivated directly by dephosphorylation of the pT308 residue by protein phosphatase
2A (PP2A), dephosphorylation of the pSer473 residue is accomplished by the PH domain
leucine-rich repeat protein phosphatases (PHLPP) [20,21].

3. Role of Akt in Cell Cycle Control
3.1. Akt Is Involved in Regulation of Mitosis

The PI3K/Akt signaling pathway is involved in the control of cell cycle progression
as well as of cell proliferation and survival [22]. Akt regulates multiple processes and
pathways in each cell cycle stage. One of the best known examples is the activation of
cyclin-dependent kinases (CDKs), the serine threonine kinases that play principal roles
in the control of cell division [23–25]. During the G1 phase, Akt/mTOR has stimulatory
effect on cell cycle progression by promoting the expression of cyclin D1, cyclin-dependent
kinase 4 (CDK4) and phosphatase CDC25A [26]. At the G1/S transition, Akt promotes
the phosphorylation and inactivation of p21WAF1 and p27kip1, the inhibitors of cyclin-
dependent kinase 2 (CDK2) [27,28] (Table 1).

Table 1. Role of Akt in regulation of mitosis.

Cell Cycle Stage Akt Role in Mitosis References

G1 phase Akt/mTOR stimulates expression of cyclin D1, CDK4 and CDC25A, that are involved in
cell growth and proliferation [26]

G1/S Akt promotes inactivation of p21WAF1 and p27kip1, the CDK2 inhibitors [27,28]

S/G2 Enhanced Akt activity indicates a role for Akt in the S/G2 transition [29]



Cells 2023, 12, 1830 3 of 16

Table 1. Cont.

Cell Cycle Stage Akt Role in Mitosis References

G2/M Akt regulates cell cycle progression by direct phosphorylation and inactivation of Wee1 and
Myt1 kinases and activates the CDC25 phosphatase [23–25]

M-phase Akt is involved in the control of the mitotic spindle checkpoint affects the integrity and
composition of mitotic centrosomes [30,31]

Cytokinesis Akt participates in the regulation of cytokinesis [32]

A significantly higher Akt activity suggests a specific role of this kinase during the
transition from S to G2 phase [29,33]. The activation of CDK1, a catalytic subunit of the M
phase-promoting factor (MPF), is essential for cell cycle progression through the S/G2 and
G2/M phase in both meiosis and mitosis [34,35]. In the G2/M phase, Akt regulates the cell
cycle progression through the direct phosphorylation of CDK1 activators and inhibitors,
demonstrating the important role of PI3K/AKT pathway in promoting cell division [23,24].
Specifically, CDK1 at this point is inhibited by Wee1 and Myt1 kinases, which phosphorylate
Thr14 and Tyr15 residues within CDK1 ATP binding pocket and when cells are ready for
G2/M transition, Akt by phosphorylation inhibits both Wee1 and Myt1 kinases [36]. Akt
also phosphorylates and activates the CDC25 phosphatase, which is important for removal
of CDK1 Thr14 and Tyr15 phosphorylation, previously facilitated by Wee1 and Myt1,
enabling the activation of CDK1 during the G2/M transition [24]. Akt is involved in the
control of the mitotic spindle checkpoint [30], localizes to the spindle poles [37], affects the
integrity and composition of mitotic centrosomes [31], and participates on the regulation of
cytokinesis [32].

3.2. Akt Affects Progression of Meiosis

In the developing ovary, Akt promotes the proliferation of primordial germ cells [38].
After entering meiosis, mammalian oocytes are arrested in the prophase of the first meiotic
division until resumption of meiosis. During the in vitro maturation (IVM) of mammalian
cumulus-oocyte complexes (COCs), Akt is present in both oocytes and cumulus cells (CCs),
and its activity is required for the regulation of meiotic progression [39–41] (Table 2).

Table 2. Role of Akt in meiosis progression.

Meiosis Stage Akt Role in Meiosis References

Prophase of 1st meiosis Akt is involved in CDK1 activation and GVBD induction during meiosis resumption [42–46]

MI/MII transition Akt is required for the transition from meiotic metaphase I (MI) to metaphase II (MII) [39,43,47–49]

MI and MII-phase Akt participates in the formation and stabilization of the MI and MII meiotic spindles [43,48,50]

MI and MII-phase Akt contributes to centrosome integrity in oocytes [43]

Meiosis completion Akt is necessary for completion of meiosis [47,48,51]

In the fully grown oocytes residing in the antral ovarian follicles, the Akt activity is at
very low level [39,40]. In some species, its activity is however required during resumption
of meiosis. In mouse oocytes for example, the phosphorylation of Akt by the upstream
kinases is necessary to promote the resumption of meiosis under both in vivo and in vitro
conditions [42–44]. Similarly to the somatic cells, in oocytes Akt has been reported to
be involved in CDK1 activation and induction of germinal vesicle breakdown (GVBD);
equivalent to nuclear envelope breakdown or NEBD in somatic cells. For its full activity
during GVBD, Akt requires the phosphorylation of both T308 and S473 residues [43]. This
crucial role of Akt in CDK1 activation and GVBD induction was also reported in starfish
and zebrafish oocytes [45,46,52]. In contrast to the mouse and starfish, the Akt activity
seems to be dispensable during GVBD in porcine oocytes. Another meiotic event, during
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which the Akt activity is required, is the transition from meiosis I to meiosis II. The role of
Akt during this process seems to be generally conserved, as it was shown in bovine [39,47],
mouse [43,48] Xenopus [49] and porcine oocytes [40] (Table 2; Figure 1).
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MI levels, and the oocyte awaits fertilization. After fertilization, MPF activity is downregulated, Akt 
activity persists in the zygote, when the second polar body is extruded, and both male and female 
pronuclei are formed. MPF activity is restored before the first mitotic division. At the 2-cell embry-
onic stage, the first mitotic division is completed, Akt remains activated and MPF activity declines. 
Akt is involved in the regulation of zygotic genome activation (ZGA) which occurs in mouse embryo 
at the 2-cell stage. During the early embryo development, the Akt activity remains at high levels and 
MPF activity is cyclically downregulated and restored at each subsequent mitotic division. 
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[43,48,50]. During oocyte meiosis, Akt becomes phosphorylated at either Ser473 (pS473-
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Figure 1. Akt and maturation-promoting factor (MPF) activity during meiotic maturation, oocyte-to-
embryo transition and early embryo development. During the first meiotic arrest at the germinal
vesicle (GV) stage, Akt is inactivated. During germinal vesicle breakdown (GVBD), MPF and Akt
activity increases. At meiosis I (MI) stage, Akt activity is remains stable and activity of MPF reaches
maximum. At the MI/meiosis II (MII) transition, cyclin B is destructed by the anaphase promoting
complex/cyclosome (APC/C), MPF activity is reduced, and the first polar body is extruded. The
second metaphase plate is formed at the MII stage, and meiosis is stopped in the second meiotic
arrest. Akt activity is maintained after the first polar body extrusion, MPF activity is restored to the
MI levels, and the oocyte awaits fertilization. After fertilization, MPF activity is downregulated, Akt
activity persists in the zygote, when the second polar body is extruded, and both male and female
pronuclei are formed. MPF activity is restored before the first mitotic division. At the 2-cell embryonic
stage, the first mitotic division is completed, Akt remains activated and MPF activity declines. Akt is
involved in the regulation of zygotic genome activation (ZGA) which occurs in mouse embryo at the
2-cell stage. During the early embryo development, the Akt activity remains at high levels and MPF
activity is cyclically downregulated and restored at each subsequent mitotic division.

Spindle assembly during meiosis is unique. In contrast to mitosis in somatic cells, and
also to sperm meiosis, in which the spindle assembly is driven by centrosomes, in oocytes
the assembly of the spindle in both meiotic divisions is acentrosomal and requires instead
the clustering of microtubule-organizing centers (MTOCs) [53–55]. The centrosomes are lost
during oocyte development [56] and this fundamental difference between spindle assembly
in somatic cells and oocytes might contribute to the higher incidence of chromosome
segregation errors in the latter. The localization pattern on meiotic spindle indicates an
important role of Akt in the assembly and stabilization of this structure [43,48,50]. During
oocyte meiosis, Akt becomes phosphorylated at either Ser473 (pS473-Akt) or Thr308 (pT308-
Akt) residues, which has consequences for the diversity of Akt functions. It also affects the
localization pattern on meiotic spindle. Whereas pT308-Akt localization is restricted to the
spindle poles, pS473-Akt is detected along the spindle microtubules [43,48,50]. And for
correct spindle assembly in meiosis II, Akt carrying simultaneously phosphorylation of
both Ser473 and Thr308 residues, is required [48].

In addition, Akt is an important player in the regulation of apoptosis, in somatic cells
Akt prevents the translocation of the BAX protein to the mitochondria to start apoptosis [57].
Akt is also involved in the control of apoptosis during meiosis, the elevation of Akt activity
in matured oocytes led to an enhanced expression of genes involved in cell signaling and
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proliferation, and to a decreased expressions of pro-apoptotic genes such as BAX, BCL2
and caspase-3 [58]. It has been suggested that Akt could be involved in the regulation of the
expression, activity and localization of pro-apoptotic proteins in oocytes and, moreover,
AKT could stabilize endogenous apoptosis inhibitors [59].

Overall, Akt plays a critical role in regulating various aspects of meiosis, including
entry into meiosis, progression through the MI to MII stage, and apoptosis. The dysregula-
tion of Akt activity during oocyte maturation can lead to defects in meiosis and can result
in infertility or birth defects.

4. Role of Akt in Oogenesis and Folliculogenesis
4.1. Akt Regulates Follicle Development

The Akt signaling pathway is an important regulator of ovarian functions, such as the
survival, proliferation, and differentiation of granulosa cells (GCs) [60]. Akt also regulates
quiescence and the activation of primordial follicles [61]. The development of ovarian
follicles begins with the proliferation of GCs, which are the predominant somatic cell
type of the ovarian follicle and are involved in steroidogenesis and folliculogenesis [62].
During the growth and development of the ovarian follicle, the undifferentiated GCs are
present from primordial to preantral follicles [63]. In antral follicles, GCs differentiate
into CCs and mural granulosa cells (MGCs), CCs surround the oocyte and MGCs form
a layer that is firmly attached to the inner wall of the follicle. During folliculogenesis in
the human ovary, Akt has been detected in oocytes, in MGCs and in the thecal cells of
primordial follicles, in growing follicles, and in the luteal cells [64]. The results on mouse
knock-out models revealed the importance of Akt in oocyte growth and in the expression
of cell-cycle regulators. The fertility of Akt1−/− female mice was reduced due to the
altered follicular development and abnormal oocyte growth [65]. In the Akt1−/− ovaries,
there was a reduced expression of cell-cycle regulators cyclin D1 and cyclin D3, and the
expression of the survival factor KIT ligand and anti-apoptotic factor BCL2 like 1 was
also decreased [65]. In the cultured ovine preantral follicles, activation of the PI3K/AKT
pathway led to a promotion of primordial follicle activation and cell proliferation, and
resulted in a reduction of DNA fragmentation [66].

4.2. Akt Promotes Survival of GCs

MGCs, which form an inner layer of the ovarian follicle, play a crucial role in the
development of oocytes as they produce factors essential for oocyte growth and follicu-
logenesis [67]. The activity of the PI3K/Akt pathway is necessary for the induction of
numerous critical genes that mark the fully differentiated preovulatory MGCs [68,69]. The
PI3K/Akt pathway in in vitro cultured GCs can be activated by insulin-like growth factor
1 (IGF1) via the type-I IGF receptor (IGF1R), indicating that the IGF1-regulation of the
PI3K/Akt pathway activity plays role in the control of cell cycle progression as well as in
the promotion of GCs survival [70,71]. The IGF1-activated PI3K/Akt pathway protects
GCs from apoptosis, and this protective effect can only occur when progression from the
G1 to S phase of the cell cycle, regulated by the PI3K/Akt pathway, is not disrupted [72].
Mechanisms leading to the regulation of Akt phosphorylation induce changes in the prolif-
eration and differentiation of MGCs cells during the growth of ovarian follicles [64]. The
promoting effect of the PI3K/Akt signaling pathway activity on cell survival within the
granulosa layer is important for the development of the preovulatory ovarian follicle [73].

4.3. Activity of Akt in CCs

In mammals, CCs surrounding the oocyte play an important role in oocyte growth,
meiotic maturation, ovulation and fertilization [74]. The inner layer of CCs known as the
corona radiata, and the oocyte together with the surrounding CCs form the COC [75]. The
activity of the PI3k/Akt pathway in CCs has at least two important roles during the meiotic
maturation of oocytes [76]. Firstly, the low level of Akt activity in CCs is essential for
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the establishment of meiotic arrest. And secondly, Akt activation in CCs is linked to the
induction of gonadotropin-stimulated meiotic resumption.

CCs regulate oocyte development and meiotic maturation by generating paracrine
factors and, moreover, CCs control the resumption of meiosis and formation of the oocyte
cytoskeleton [77]. Activated PI3K/Akt in CCs ensures the transduction of pro-survival
signals essential for oocyte development [63]. Specific CCs genes strictly associated with
the oocyte developmental competence are regulated by the PI3K/Akt pathway [78].

4.4. Akt Regulates Signaling between CCs and Oocytes

In developing mammalian follicles, CCs transport nutrients such as amino acids and
substrates for energy production to the oocytes via cytoplasmic processes known as tran-
szonal projections (TZPs), which originate from CCs and penetrate the zona pellucida, the
outer layer of the oocyte [79–81]. Terminally, TZPs form heterologous gap junctions with
cytoplasmic membrane of oocyte. Gap junctions are intercellular channels that permit the
direct transfer of ions and small molecules (<1 kDa) between adjacent cells [82]. The close
relationship of oocytes and CCs is crucial for the regulation of oocyte growth and develop-
ment. The bidirectional communication between the oocyte and CCs via heterologous gap
junctions is essential for the formation of a developmentally competent oocyte, which can
be fertilized, and which is also able to support subsequent embryonic development [83].
The PI3K/Akt pathway plays an essential role in the communication between the devel-
oping oocyte and CCs [84]. Gap junction channels are composed of connexins (Cx), and
Cx proteins enable the communication between the oocyte and accompanying CCs [85].
In somatic cells, Akt mediates the phosphorylation of Cx43 in gap junctions itself [86].
In COCs, the activity of the PI3K/Akt signaling pathway is closely associated with the
progression of meiosis via the regulation of CX43 phosphorylation in CCs [87,88].

4.5. Role of Akt in Expansion of CCs

The PI3K/Akt pathway not only promotes the nuclear maturation of oocytes, but
also supports expansion of the oocyte cumulus layer, a process that is important for the
maturation and fertilization of oocytes [75]. In response to LH surge, CCs surrounding the
oocyte synthesize a large amount of high molecular weight glycosaminoglycan hyaluronan
(HA), a major component of the extracellular matrix (ECM) that plays multiple roles
during and after fertilization [89]. The cross linking of HA with tumor necrosis alpha-
induced protein 6 (TNFAIP6), inter-alpha-trypsin inhibitors (IαI), and pentraxin 3 (PTX3) is
a pre-requisite for the appropriate formation of ECM, essential for oocyte ovulation and
fertilization [89–91]. HA synthesis in the FSH-stimulated COCs and retention of HA in
the cumulus ECM are PI3K/Akt dependent [92]. Inhibition of the PI3K/Akt pathway
dramatically reduced the expression levels of hyaluronan synthase 2 (HAS2) and TNFAIP6,
the key enzymes involved in the production and stabilization of HA in the expanding
cumulus, indicating that the activity of Akt is essential for the expression of genes involved
in the expansion of the oocyte cumulus [93,94]. It has been proposed that activation of
a downstream Akt effector, the mammalian target of rapamycin (mTOR), in the oocyte
cumulus cells is essential for the production of functionally competent matured oocytes [95].

5. The Role of Akt in mRNA Translation
5.1. Akt Regulates mTOR Activity during Mitosis

One of the key downstream targets of Akt is the mTOR pathway, which plays a critical
role in the regulation of mRNA translation, and the link between the PI3K/AKT and mTOR
pathway is essential for oocyte meiotic maturation [61]. The mTOR pathway is activated
by a variety of signals, including growth factors, nutrients, and energy status. MTOR, a
serine-threonine kinase, is a component of mTOR complex 1 (mTORC1) and mTORC2,
two cellular complexes that have distinct functions and regulation [96,97]. MTORC1
controls the translation of several proteins that are important for growth and cell cycle
progression [98,99]. Akt directly phosphorylates and activates mTORC1, which in turn stim-
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ulates the phosphorylation of key downstream targets, including the mTORC1 effectors p70
ribosomal protein S6 kinase (p70S6K), which phosphorylates the eukaryotic translation ini-
tiation factor 4B (eIF4B) and is essential for the translation of 40s ribosomal S6 protein, and
4E-BP1, which regulates cell proliferation via the control of the cap-dependent translation
and acts as a translational repressor [100–102]. The phosphorylation of p70S6K and 4E-BP1
mediates the transduction of mitogen and nutrient signals to stimulate translation [103].

Akt-activated mTORC1 pathway promotes the translation of mRNAs involved in cell
cycle progression, such as cyclins and CDKs [61]. Hypophosphorylated 4E-BP1 prevents
eIF4E from associating with eIF4G. Upon phosphorylation by Akt and mTORC1, 4E-BP1
dissociates from eIF4E, and this event enables assembly of the eIF4F complex [104,105]. The
deregulation of protein synthesis downstream of mTORC1 at the level of 4E-BP1/eIF4E
plays a central role in tumor formation, and 4E-BP1/eIF4E transfers the effect of oncogenic
Akt signaling on mRNA translation, cell growth, and tumor progression [106]. Akt directly
activates mTORC1 by phosphorylating the proline-rich Akt substrate 40 kDa (PRAS40),
a protein that associates with mTORC1 and regulates mTORC1 kinase activity by the
direct inhibition of substrate binding [107,108]. Akt also activates mTORC1 indirectly
by phosphorylating and inactivating two tumor suppressor proteins, tuberous sclerosis
complex 1 (TSC1), also known as tuberin, and tuberous sclerosis complex 2 (TCS2), also
known as hamartin [109,110]. TSC2 has a role as a GTPase-activating protein (GAP) which
inactivates an essential mTORC1 activator, the RAS homologue enriched in the brain
(Rheb) [111]. TSC1 and TSC2 form a functional complex that acts as a key upstream
negative regulator of mTORC1 kinase activity and exerts its effects through mTORC1 to
regulate the activity of p70S6K and 4E-BP1 [110] (Figure 2).
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a protein that is associated with mTORC1. Further, Akt also activates mTORC1 indirectly by phos-
phorylating and inactivating the tuberous sclerosis complex 1 (TSC1) and tuberous sclerosis complex
2 (TCS2). TSC1/TSC2 functional complex acts as a key upstream negative regulator of mTORC1
activity. TSC2 has a role as a GTPase-activating protein (GAP) which inactivates an essential mTORC1
activator, the RAS homologue enriched in brain (Rheb). MTORC1 phosphorylates and activates
the 70-kDa ribosomal protein S6 kinase (p70S6K), which phosphorylates the eukaryotic translation
initiation factor 4B (eIF4B). The eukaryotic translation initiation factor 4E (eIF4E)-binding protein
1 (4E-BP1), phosphorylated and activated by mTORC1, is released from eIF4E and the assembly of
the eIF4F complex is enabled. Factors involved in cap-dependent translation initiation are depicted
in green, the upstream factors in red. Stimulatory modification is depicted as an arrow, inhibitory
modification as a blunt end line.

Additionally, Akt can indirectly regulate mRNA translation by affecting the activity
of other translation factors, such as eukaryotic initiation factor 2B (eIF2B) and eukaryotic
elongation factor 2 (eEF2), which are involved in the initiation and elongation phases of
mRNA translation, respectively [112,113].

5.2. Akt Affects mTORC1 Activity during Oocyte Meiosis

MTORC1 is expressed in all stages of oocytes development, suggesting its fundamental
role in regulation of oocyte meiosis and early embryonic development [114]. In oocytes,
mTORC1 acts as a downstream Akt effector, and mTORC1 activation in CCs is essential for
the production of functionally competent mature oocytes [95].

In mammalian oocytes, the temporal and spatial control of translation is regulated via
an mTORC1-eIF4F pathway [115]. The incorporation of eIF4E into the pathway required
for the initiation of translation is regulated by its phosphorylation in oocytes as well as
through binding of inhibitory proteins [116]. In GV stage oocytes, mTORC1 is localized
to the cytoplasm, at GVBD it is distributed around chromosomes, and at M-phase it is
localized on the meiotic spindles in the vicinity of the chromosomes [117]. During meiotic
maturation of mouse oocytes phosphorylated Akt localizes to meiotic spindle, and this
localization overlaps with mTORC1 localization [43,48]. It is tempting to speculate that Akt
regulates a localized translation of specific mRNAs, necessary for spindle assembly, via
co-localization with mTORC1 on the spindle (Figure 3).

Although phosphorylated Akt is an upstream activator of mTORC1 in somatic cells, it
has been suggested that during the meiosis of mammalian oocytes, the Akt pathway is not
sufficient for full mTORC1 activation, which is likely to be mediated by CDK1 instead [118].
However, downregulation of the AKT/mTORC1 pathway and its downstream signaling
cascades during IVM reduces the quality and developmental potential of porcine and
bovine oocytes [58,119]. In MII oocytes, phosphorylated Akt is localized to the MII spindle
along with ribosomal protein S6 (RPS6) and 4E-BP1 [48,118]. This suggests that Akt,
localized to the MII spindle, regulates the activity of the mTORC1 pathway components.
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6. Akt in Zygotic Transition and Early Embryo Development

After fertilization, the PI3K/AKT pathway becomes activated by autocrine trophic lig-
ands, and the activity of this pathway is essential for early embryo development [120,121].
In the 2-cell mouse embryo, active mTORC1 is required for 4E-BP1 phosphorylation and
eIF4E activation, a prerequisite for the initiation of mRNA translation [122]. The maternally
provided eIF4E is able to support mouse embryo up to the two- to four-cell stage, after
which a newly expressed eIF4E from the embryonic genome is required, marking the impor-
tant switch from maternal to embryonic control of translation during development [122].

MTORC1 is activated under favorable conditions such as the availability of amino
acids (AAs), growth factors, and intracellular ATP. The importance of the mTORC1 pathway
for promoting normal preimplantation development can be demonstrated on embryos
cultured in vitro. Although in mouse the simple culture media without amino acids are
able to support embryo development to the blastocyst stage, the preimplantation embryo
viability and developmental potential could be improved by supplementing the culture
media with essential and nonessential amino acids [123,124]. In the bovine and human
embryos cultured in the absence of AAs, the phosphorylation of Akt on Ser473 is decreased,
together with declined of mTORC1 signaling, resulting in compromised preimplantation
development, partially restorable by addition of AAs [125]. The PI3K/Akt signaling
pathway is also important for the normal development of the early embryo to the blastocyst
stage [126] (Table 3).
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Table 3. Role of Akt in the early embryo development.

Stage of Early Embryo Role of Akt in the Early Embryo Development References

1-cell Akt is essential for the entry of 1-cell mouse embryos into the first mitosis [127,128]

2-cell, ZGA pSer473-Akt is localized to the nuclei of 2-cell embryos, Akt is possibly
involved in the major ZGA of 2-cell mouse embryos [129,130]

8- to 16-cell Akt is important for mouse embryo development to the 8- to 16-cells [131]

Blastocyst Akt is necessary for embryo development to the blastocyst stage [120,126,128,131,132]

Early embryo
In the early Drosophila melanogaster embryo, Akt regulates centrosome
migration, promotes mitotic spindle orientation and proper
spindle morphology

[133]

In the early drosophila embryos, Akt regulates centrosome migration, mitotic spindle
orientation, and promotes proper spindle morphology [133]. In zygote, pSer473-Akt local-
izes to both male and female pronuclei and similarly to somatic cells plays important role
during the mitotic entry [127,128]. In 2-cell embryos, the pSer473-Akt also shows nuclear
localization [129]. The nuclear localization of pSer473-Akt during major zygotic genome
activation (ZGA), and the 2-cell embryos arrest induced by the specific Akt inhibition
indicate that Akt is possibly involved in the major ZGA in 2-cell mouse embryos [130].
Moreover, the inhibition of Akt compromised the development of mouse embryos to the
blastocyst stage, suggesting that Akt activity has a significant effect on normal blastocyst
development [120,132]. It has been proposed that the regulation of blastomere prolifera-
tion in preimplantation mouse embryos is based on Akt activity [128]. Activated Akt is
essential for mouse blastocyst formation and for expression of the trophectoderm marker
Cdx2, indicating that Akt may be indispensable for the first cell lineage differentiation in
the mouse early embryo [134]. The importance of Akt signaling for the developmental
competence of the early embryo was revealed by Akt inhibition that resulted in a reduction
of early embryo cleavage and compromised embryo development to the 8- to 16-cell and
blastocyst stages [131]. The data from Xenopus and starfish early embryos suggest that Akt
is involved in the regulation of the mitotic G2 to M phase transition through the activation
of M-phase promoting factor (MPF) [36,46]. In summary, Akt plays a critical role in regulat-
ing mRNA translation, embryonic development, and cell survival during the early stages
of embryogenesis.

7. Conclusions

Akt plays an important role in regulating various aspects of cell cycle, it is involved in
the control of key points in meiosis and mitosis. In oocytes, Akt supports the entry into
meiosis and transition from meiosis I to meiosis II. Akt is also essential for embryonic de-
velopment after fertilization. Dysregulation of Akt activity during the meiotic maturation
of oocytes can lead to defects in meiosis and impair preimplantation development resulting
in infertility or birth defects. The summarized data indicate that the gene expression and
activity of the PI3K/AKT pathway can be possibly used as a predictive marker for the
developmental competence of oocytes and successful embryo implantation. Detailed identi-
fication of PI3K/Akt/mTOR downstream factors that promote developmental competence
of oocytes could be of importance for assisted reproduction.
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14. Ebner, M.; Lučić, I.; Leonard, T.A.; Yudushkin, I. PI(3,4,5)P3 Engagement Restricts Akt Activity to Cellular Membranes. Mol. Cell

2017, 65, 416–431.e6. [CrossRef]
15. Calleja, V.; Alcor, D.; Laguerre, M.; Park, J.; Vojnovic, B.; Hemmings, B.A.; Downward, J.; Parker, P.J.; Larijani, B. Intramolecular

and Intermolecular Interactions of Protein Kinase B Define Its Activation In Vivo. PLoS Biol. 2007, 5, e95. [CrossRef]
16. Hers, I.; Vincent, E.E.; Tavaré, J.M. Akt signalling in health and disease. Cell. Signal. 2011, 23, 1515–1527. [CrossRef]
17. Lietzke, S.E.; Bose, S.; Cronin, T.; Klarlund, J.; Chawla, A.; Czech, M.P.; Lambright, D.G. Structural Basis of 3-Phosphoinositide

Recognition by Pleckstrin Homology Domains. Mol. Cell 2000, 6, 385–394. [CrossRef]
18. Bu, L.; Wang, H.; Pan, J.; Chen, L.; Xing, F.; Wu, J.; Li, S.; Guo, D. PTEN suppresses tumorigenesis by directly dephosphorylating

Akt. Signal Transduct. Target. Ther. 2021, 6, 262. [CrossRef]
19. Maehama, T.; Dixon, J.E. The Tumor Suppressor, PTEN/MMAC1, Dephosphorylates the Lipid Second Messenger, Phosphatidyli-

nositol 3,4,5-Trisphosphate. J. Biol. Chem. 1998, 273, 13375–13378. [CrossRef]
20. Gao, T.; Furnari, F.; Newton, A.C. PHLPP: A Phosphatase that Directly Dephosphorylates Akt, Promotes Apoptosis, and

Suppresses Tumor Growth. Mol. Cell 2005, 18, 13–24. [CrossRef]
21. Brognard, J.; Sierecki, E.; Gao, T.; Newton, A.C. PHLPP and a Second Isoform, PHLPP2, Differentially Attenuate the Amplitude

of Akt Signaling by Regulating Distinct Akt Isoforms. Mol. Cell 2007, 25, 917–931. [CrossRef] [PubMed]
22. Martelli, A.M.; Tabellini, G.; Bressanin, D.; Ognibene, A.; Goto, K.; Cocco, L.; Evangelisti, C. The emerging multiple roles of

nuclear Akt. Biochim. Biophys. Acta-Mol. Cell Res. 2012, 1823, 2168–2178. [CrossRef] [PubMed]
23. Cheung, M.; Testa, J.R. Diverse Mechanisms of AKT Pathway Activation in Human Malignancy. Curr. Cancer Drug Targets 2013,

13, 234–244. [CrossRef] [PubMed]
24. Baldin, V.; Theis-Febvre, N.; Benne, C.; Froment, C.; Cazales, M.; Burlet-Schiltz, O.; Ducommun, B. PKB/Akt phosphorylates the

CDC25B phosphatase and regulates its intracellular localisation. Biol. Cell 2003, 95, 547–554. [CrossRef]
25. Ornelas, I.M.; Silva, T.M.; Fragel-Madeira, L.; Ventura, A.L.M. Inhibition of PI3K/Akt Pathway Impairs G2/M Transition of Cell

Cycle in Late Developing Progenitors of the Avian Embryo Retina. PLoS ONE 2013, 8, e53517. [CrossRef] [PubMed]
26. Gao, N.; Flynn, D.C.; Zhang, Z.; Zhong, X.-S.; Walker, V.; Liu, K.J.; Shi, X.; Jiang, B.-H. G1 cell cycle progression and the expression

of G 1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am. J. Physiol. Cell Physiol.
2004, 287, C281–C291. [CrossRef]

27. Liang, J.; Slingerland, J.M. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2003, 2, 339–345.
[CrossRef]

28. Maddika, S.; Ande, S.R.; Wiechec, E.; Hansen, L.L.; Wesselborg, S.; Los, M. Akt-mediated phosphorylation of CDK2 regulates its
dual role in cell cycle progression and apoptosis. J. Cell Sci. 2008, 121, 979–988. [CrossRef]

https://doi.org/10.1095/biolreprod.104.032474
https://www.ncbi.nlm.nih.gov/pubmed/15371275
https://doi.org/10.1002/mrd.20340
https://www.ncbi.nlm.nih.gov/pubmed/16094646
https://doi.org/10.1101/cshperspect.a002758
https://www.ncbi.nlm.nih.gov/pubmed/21690213
https://doi.org/10.3390/genes2020345
https://doi.org/10.1016/j.cell.2007.06.009
https://doi.org/10.1101/sqb.2011.76.010785
https://doi.org/10.1128/MCB.22.22.7831-7841.2002
https://doi.org/10.1158/1078-0432.CCR-12-1424
https://doi.org/10.1016/j.bbapap.2003.11.009
https://doi.org/10.1038/onc.2010.556
https://doi.org/10.1016/j.cell.2017.04.001
https://doi.org/10.1016/S0955-0674(98)80149-X
https://doi.org/10.1016/j.ceb.2005.02.010
https://doi.org/10.1016/j.molcel.2016.12.028
https://doi.org/10.1371/journal.pbio.0050095
https://doi.org/10.1016/j.cellsig.2011.05.004
https://doi.org/10.1016/S1097-2765(00)00038-1
https://doi.org/10.1038/s41392-021-00571-x
https://doi.org/10.1074/jbc.273.22.13375
https://doi.org/10.1016/j.molcel.2005.03.008
https://doi.org/10.1016/j.molcel.2007.02.017
https://www.ncbi.nlm.nih.gov/pubmed/17386267
https://doi.org/10.1016/j.bbamcr.2012.08.017
https://www.ncbi.nlm.nih.gov/pubmed/22960641
https://doi.org/10.2174/1568009611313030002
https://www.ncbi.nlm.nih.gov/pubmed/23297823
https://doi.org/10.1016/j.biolcel.2003.08.001
https://doi.org/10.1371/journal.pone.0053517
https://www.ncbi.nlm.nih.gov/pubmed/23301080
https://doi.org/10.1152/ajpcell.00422.2003
https://doi.org/10.4161/cc.2.4.433
https://doi.org/10.1242/jcs.009530


Cells 2023, 12, 1830 12 of 16

29. Stern, A.D.; Smith, G.R.; Santos, L.C.; Sarmah, D.; Zhang, X.; Lu, X.; Iuricich, F.; Pandey, G.; Iyengar, R.; Birtwistle, M.R. Relating
individual cell division events to single-cell ERK and Akt activity time courses. Sci. Rep. 2022, 12, 18077. [CrossRef]

30. Rashid, M.S.; Mazur, T.; Ji, W.; Liu, S.T.; Taylor, W.R. Analysis of the role of GSK3 in the mitotic checkpoint. Sci. Rep. 2018, 8,
14259. [CrossRef]

31. Leonard, M.; Hill, N.; Bubulya, P.; Kadakia, M. The PTEN-Akt pathway impacts the integrity and composition of mitotic
centrosomes. Cell Cycle 2013, 12, 1406–1415. [CrossRef]

32. Takegahara, N.; Kim, H.; Mizuno, H.; Sakaue-Sawano, A.; Miyawaki, A.; Tomura, M.; Kanagawa, O.; Ishii, M.; Choi, Y.
Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization
of Osteoclasts. J. Biol. Chem. 2016, 291, 3439–3454. [CrossRef]

33. Maryu, G.; Matsuda, M.; Aoki, K. Multiplexed Fluorescence Imaging of ERK and Akt Activities and Cell-cycle Progression.
Cell Struct. Funct. 2016, 41, 81–92. [CrossRef]

34. Adhikari, D.; Zheng, W.; Shen, Y.; Gorre, N.; Ning, Y.; Halet, G.; Kaldis, P.; Liu, K. Cdk1, but not Cdk2, is the sole Cdk that is
essential and sufficient to drive resumption of meiosis in mouse oocytes. Hum. Mol. Genet. 2012, 21, 2476–2484. [CrossRef]

35. Diril, M.K.; Ratnacaram, C.K.; Padmakumar, V.C.; Du, T.; Wasser, M.; Coppola, V.; Tessarollo, L.; Kaldis, P. Cyclin-dependent
kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc. Natl. Acad.
Sci. USA 2012, 109, 3826–3831. [CrossRef]

36. Katayama, K.; Fujita, N.; Tsuruo, T. Akt/Protein Kinase B-Dependent Phosphorylation and Inactivation of WEE1Hu Promote Cell
Cycle Progression at G2/M Transition. Mol. Cell. Biol. 2005, 25, 5725–5737. [CrossRef]

37. Wakefield, J.G.; Stephens, D.J.; Tavaré, J.M. A role for glycogen synthase kinase-3 in mitotic spindle dynamics and chromosome
alignment. J. Cell Sci. 2003, 116, 637–646. [CrossRef]

38. Kimura, T.; Tomooka, M.; Yamano, N.; Murayama, K.; Matoba, S.; Umehara, H.; Kanai, Y.; Nakano, T. AKT signaling promotes
derivation of embryonic germ cells from primordial germ cells. Development 2008, 135, 869–879. [CrossRef]

39. Tomek, W.; Smiljakovic, T. Activation of Akt (protein kinase B) stimulates metaphase I to metaphase II transition in bovine
oocytes. Reproduction 2005, 130, 423–430. [CrossRef]

40. Kalous, J.; Kubelka, M.; Šolc, P.; Šušor, A.; Motlík, J. AKT (protein kinase B) is implicated in meiotic maturation of porcine oocytes.
Reproduction 2009, 138, 645–654. [CrossRef]

41. Reddy, P.; Adhikari, D.; Zheng, W.; Liang, S.; Hämäläinen, T.; Tohonen, V.; Ogawa, W.; Noda, T.; Volarevic, S.; Huhtaniemi, I.; et al.
PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum.
Mol. Genet. 2009, 18, 2813–2824. [CrossRef] [PubMed]

42. Han, S.J.; Vaccari, S.; Nedachi, T.; Andersen, C.B.; Kovacina, K.S.; Roth, R.A.; Conti, M. Protein kinase B/Akt phosphorylation of
PDE3A and its role in mammalian oocyte maturation. EMBO J. 2006, 25, 5716–5725. [CrossRef] [PubMed]

43. Kalous, J.; Solc, P.; Baran, V.; Kubelka, M.; Schultz, R.M.; Motlik, J. PKB/AKT is involved in resumption of meiosis in mouse
oocytes. Biol. Cell 2006, 98, 111–123. [CrossRef] [PubMed]

44. Newhall, K.J.; Criniti, A.R.; Cheah, C.S.; Smith, K.C.; Kafer, K.E.; Burkart, A.D.; McKnight, G.S. Dynamic Anchoring of PKA Is
Essential during Oocyte Maturation. Curr. Biol. 2006, 16, 321–327. [CrossRef] [PubMed]

45. Hiraoka, D.; Aono, R.; Hanada, S.; Okumura, E.; Kishimoto, T. Two novel competing pathways establish the threshold for cyclin
B-Cdk1 activation at the meiotic G2/M transition. J. Cell Sci. 2016, 129, 3153–3166. [CrossRef] [PubMed]

46. Okumura, E.; Fukuhara, T.; Yoshida, H.; Hanada, S.; Kozutsumi, R.; Mori, M.; Tachibana, K.; Kishimoto, T. Akt inhibits Myt1 in
the signalling pathway that leads to meiotic G2/M-phase transition. Nat. Cell Biol. 2002, 4, 111–116. [CrossRef]

47. Alcaráz, L.P.; Prellwitz, L.; Alves, G.; Souza-Fabjan, J.M.G.; Dias, A.J.B. Role of phosphoinositide 3-kinase/ protein kinase B/
phosphatase and tensin homologue (PI3K/AKT/PTEN) pathway inhibitors during in vitro maturation of mammalian oocytes on
in vitro embryo production: A systematic review. Theriogenology 2022, 189, 42–52. [CrossRef]

48. Hoshino, Y.; Sato, E. Protein kinase B (PKB/Akt) is required for the completion of meiosis in mouse oocytes. Dev. Biol. 2008, 314,
215–223. [CrossRef]

49. Andersen, C.B.; Roth, R.A.; Conti, M. Protein Kinase B/Akt Induces Resumption of Meiosis in Xenopus Oocytes. J. Biol. Chem.
1998, 273, 18705–18708. [CrossRef]

50. Cecconi, S.; Rossi, G.; Santilli, A.; Di Stefano, L.; Hoshino, Y.; Sato, E.; Palmerini, M.G.; Macchiarelli, G. Akt expression in mouse
oocytes matured in vivo and in vitro. Reprod. Biomed. Online 2010, 20, 35–41. [CrossRef]
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