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Abstract: The monkeypox virus poses a novel public health risk that might quickly escalate into
a worldwide epidemic. Machine learning (ML) has recently shown much promise in diagnosing
diseases like cancer, finding tumor cells, and finding COVID-19 patients. In this study, we have
created a dataset based on the data both collected and published by Global Health and used by
the World Health Organization (WHO). Being entirely textual, this dataset shows the relationship
between the symptoms and the monkeypox disease. The data have been analyzed, using gradient
boosting methods such as Extreme Gradient Boosting (XGBoost), CatBoost, and LightGBM along
with other standard machine learning methods such as Support Vector Machine (SVM) and Random
Forest. All these methods have been compared. The research aims to provide an ML model based on
symptoms for the diagnosis of monkeypox. Previous studies have only examined disease diagnosis
using images. The best performance has belonged to XGBoost, with an accuracy of 1.0 in reviews.
To check the model’s flexibility, k-fold cross-validation is used, reaching an average accuracy of
0.9 in 5 different splits of the test set. In addition, Shapley Additive Explanations (SHAP) helps in
examining and explaining the output of the XGBoost model.

Keywords: monkeypox; XGBoost; SHAP; MPXV; machine learning

1. Introduction

It was in the Democratic Republic of the Congo where the first human cases of
monkeypox were discovered and reported as early as the 1970s [1]. In numerous nations
throughout the world, unprecedented monkeypox outbreaks have been documented since
May 2022 [2–4]. Monkeypox is a viral zoonosis that generates symptoms comparable
to those experienced by people who have smallpox [5]. Infection with the monkeypox
virus and the orthopox DNA virus is the main cause of the disease [6]. The orthopoxvirus
genus employs diverse strategies to evade the host’s defense mechanisms, allowing the
virus to enter undetected or unrecognized by the host’s systems [7]. Two distinct MPXV
(Monkeypox Virus) strains are unique to Africa, with clade I predominating in central
Africa and clade II in western Africa [8]. Unlike smallpox and chickenpox viruses, which
can only spread from person to person through direct intimate contact with an infected
person, MPXV may be spread between animals and people via blood and other body
fluids [5].

Ahsan et al. [9] developed a model, using Generalization and Regularization-based
Transfer Learning approaches (GRA-TLA) for binary and multiclass classification and tested
the model on ten different Convolutional Neural Network (CNN) models in three separate
studies. In the first and second studies, they showed that the proposed model using
Extreme Inception (Xception) can separate individuals with and without monkeypox with
an accuracy of 0.77 to 0.88. In the third study, they used Residual Network (ResNet)-101
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with an accuracy of 0.84 to 0.99. They compared their model with TL approaches and
showed that it was efficient.

MonkeyNet was created by Bala et al. [10], who used a dataset called MSID (Mon-
keypox Skin Images Dataset) accessible from the Mendeley Data database and developed
a modified DenseNet-201 by creating a deep neural network. The accuracy of the model
in the original dataset was 0.98, and in the augmented dataset, 0.98. Jaradat et al. [11]
compared five pre-trained models: VGG19, VGG16, ResNet50, MobileNetV2, and Effi-
cientNetB3. They discovered MobileNetV2 had the best result with an accuracy of 0.98.
The model was tested with a different dataset and managed to achieve an accuracy of
0.94. Altun et al. [12] used the same method. Six deep-learning methods were utilized
for a new problem. Best performance after optimization was reached by a method called
MobileNetV3-s with an accuracy of 0.96. Kundu et al. [13] and many others have done this
work using transfer learning and classifying monkeypox images. Iftikhar et al. [14] pro-
posed a novel technique for accurate short-term forecasting of monkeypox cases. It involves
filtering the time series into trend and residual subseries and utilizing machine learning
(ML) models for prediction. Kumar Mandal et al. [15] proposed ML and PSO (Particle
Swarm Optimization) clustering for monkeypox cases. The method is useful for forecasting
and recognizing its symptoms. PSO is a bio-inspired algorithm, being a computational
method to find an optimal solution [16]. Bhosale et al. [17] have done almost the same
thing. They implemented a method using time-series data analysis and tried to forecast
the outbreak. Khafaga et al. [18] achieved a remarkable accuracy of 0.98 in the detection
of monkeypox by utilizing a deep convolutional neural network. They employed the
AL-Biruni Earth radius stochastic fractal search algorithm, alongside popular deep-learning
models to optimize their classification system. This performance was accomplished by
leveraging an open-source dataset specifically curated for monkeypox image classification.
Ahsan et al. [19] presented a model to diagnose monkeypox with the VGG16 method. They
created their dataset by collecting images published on Google and using transfer learning
to create a model based on VGG16 in two studies. The first study was able to distinguish
monkeypox and chicken pox from each other, and the second study managed to distinguish
monkeypox from other diseases (chicken pox, measles, and normal skin). They managed
to get an accuracy of 0.97 in the first and an accuracy of 0.89 in the second study from their
training data. Ozsahin et al. [20] utilized AlexNet, VGG16, and VGG19 in their detection
process for monkeypox and chickenpox datasets, achieving a top classification accuracy
of 0.99 with their proposed deep-learning model. Sitaula and Shahi [21] focused on the
diagnosis of monkeypox by deep learning. They compared 13 pre-trained deep-learning
models and used the best one to build their model. Their resultant accuracy in diagnosing
the disease was 0.87. Saleh and Rabie [22] presented a strategy called Human Monkeypox
Diagnosis (HMD), which consisted of two main parts: (1) finding the best features, using
Improved Binary Chimp Optimization (IBCO), and (2) diagnosing the disease based on
the found features. Finally, HMD obtained an accuracy of 0.98. Ali et al. [23] compiled
and categorized a database of human monkeypox images. They employed the VGG16,
ResNet50, InceptionV3, and Ensemble techniques for classification. Almufareh et al. [24]
achieved 0.93 accuracy using their proposed model and various deep-learning models
on open-source monkeypox skin image datasets. Sahin et al. [25] have used pre-trained
deep learning using a mobile application to diagnose monkey pox. They were able to
achieve an accuracy of 91.11 in image classification using deep transfer learning. According
to Javelle et al. [26], a review of monkeypox outbreaks defined the disease’s clinical spec-
trum. The authors developed a self-administered questionnaire to track symptoms for case
management, contact surveillance, and clinical studies.

This research focuses on using machine learning algorithms to detect monkeypox
based on symptoms rather than images of the disease. Using images to detect diseases
has limitations of its own and may not be practical in many real-world scenarios. For
example, the co-occurrence of fever and rash in patients who are critically ill poses a
complex diagnostic challenge [27]. Therefore, using symptoms as the basis for detection
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can provide a more functional and efficient solution. To achieve this, a dataset was created
using published data on monkeypox. It included information on monkeypox patients’
symptoms and their diagnoses. All presented models are like a black box, and their output
is not interpreted. Using SHAP, we analyzed the model’s output and solved the problem.
The dataset was then analyzed using various machine learning methods, with the goal of
developing a model that can accurately diagnose monkeypox based on symptoms. XGBoost,
CatBoost, and LightGBM, all gradient-boosting algorithms commonly used in machine
learning, were compared to each other in this study. These algorithms work by training
multiple decision trees and combining their predictions to make a final prediction, a process
known as boosting. Boosting can improve performance compared to using a single decision
tree, making these algorithms suitable for the task. The research also compared these
three algorithms with Random Forest and SVM, popular machine learning algorithms that
are helpful in detecting monkeypox. The study results showed that XGBoost performed
the best in terms of accuracy in diagnosing monkeypox based on symptoms. The final
proposed model in this study is XGBoost, which had the highest accuracy in diagnosing
diseases based on symptoms. The model has been evaluated using k-fold cross-validation
for further investigation, and the model’s flexibility and reliability have been discussed. The
model was also compared with other models using evaluation metrics such as precision,
recall, and F1-Score. It is important to note that the use of machine learning algorithms to
detect monkeypox is still in its early stages of development, and further research is needed
to improve the performance of these algorithms.

Additionally, these algorithms must be accompanied by proper validation and testing
to ensure they are reliable and accurate before they can be used in real-world applications.
The research also suggests that, with the availability of more data, better performance
can be achieved. In conclusion, this research demonstrates the potential of using machine
learning algorithms to detect monkeypox based on symptoms rather than images. The
proposed model, XGBoost, has shown promising results in terms of accuracy and has
the potential to be used in real-world applications to improve the speed and accuracy of
monkeypox diagnosis. However, further research and validation are needed to ensure
the reliability and accuracy of this model before it can be used in practice. To the best of
the author’s knowledge, this is the first symptoms-based model for detecting monkeypox
disease. The major contributions of this study are summarized as follows:

1. Creating a symptom-based dataset using published reports of monkeypox disease;
2. Presenting the first model for diagnosing monkeypox based on symptoms;
3. Using SHAP to interpret the output of the XGBoost model;
4. Evaluation and comparison of ML models, i.e., XGBoost, LightGBM, CatBoost, Ran-

dom Forest, and SVM.

2. Materials and Methods
2.1. Dataset

The dataset used in our work is published on Kaggle by “Larxel”, titled “Global
Monkeypox Cases (daily updated)” [28]. It is collected by “Global Health” and used by
“World Health Organization”. This dataset contains the timeline for confirmed cases with
respect to date. It also contains some other details on every case that is being reported [29].
The dataset contains more than 30 fields, many of them empty. The most important of these
field are Symptoms, Status, Location, City, Age, and Gender. In this dataset, symptoms are
very diverse and do not have a clear structure. Furthermore, cities, and countries, have no
bearing on the disease. So, from all the data, we separated only two columns, “Symptoms”
and “Status”, and eventually, arrived at a new dataset based on the former. This was done
by creating columns of all existing symptoms, wherein in the case of the patient having a
particular symptom, we gave it a value of 1, and otherwise, a value of 0. Because the data
was updated daily and without a specific structure for recording information about patients,
even the same symptoms were recorded differently. For example, “Rash” is registered
with other titles such as “Rashes”, “Rash on the skin”, “skin rashes”, etc., all of which
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are similar, and for this reason, were combined. In the end, there were about 46 columns,
one ID column, 44 columns of symptoms, and a disease status column as the last one.
After cleaning the data according to the mentioned steps, only 211 of them had registered
and identifiable signs to make up our dataset. As mentioned, the final dataset contained
only 0 and 1, and no further pre-processing was needed. The test set in all models was
20 percent.

2.2. Shapley Additive Explanations

The interpretability of models is a constant issue in machine learning. Lundberg and
Lee’s SHapley Additive exPlanation (SHAP) is a technique for deciphering predictions
made by machine learning models utilizing Shapley values [30,31]. The Shapley value for
each feature represents the influence of that element on the result produced [32,33]. The
formulation of the SHAP model (g(z)) is determined by the linear sum of input features,
which is as follows:

f (x) = g
(
z′
)
= φ0 +

M

∑
i=1

φiz′i (1)

where z′ is the simplified input, φ0 is a constant value, M is the quantity of attributes, and
z′i is whether the ith characteristic is noticed or not [34,35].

Given a model f and the Shapley values φi, Equation (2) allows determination of the
value of each input characteristic:

φi = ∑
SεN\{i}

|S|!(M− |S| − 1)!
M!

[ f (S ∪ {i})− f (S)] (2)

where S is a collection of indices in z′, which is not zero, and N denotes the collection of all
input characteristics [32,35,36].

2.3. Extreme Gradient Boosting

XGBoost is an optimized distributed gradient boosting toolkit that has been built
to be effective, adaptive, and portable [36,37]. Chen and Guestrin created the XGBoost
algorithm in 2016 [38]. It offers parallel tree boosting and is an improved variant of the
GBDT (Gradient Boosted Decision Tree) approach (also known as GBM) [39]. The model’s
anticipated output ŷ can be calculated using an input feature vector x = [x1, x2, . . . , xn] T

as follows:

ŷ =
K

∑
k=1

fk(x), fk ∈ Γ (3)

where K stands for how many weak learners there are. The weak learner’s hypothesis
space, Γ, represents the function fk(x), which is a prediction score [40–42].

2.4. Support Vector Machine

The Support Vector Machine (SVM) is a popular statistically based supervised machine
learning technique that is used for classification and regression problems [43]. It was
developed in 1995 by Cortes and Vapnik to improve class separation and reduce prediction
error. The ability of SVM to handle both linear and non-linear data is widely recognized
and is highly good at overcoming dimensionality-related problems [44]. It is especially
effective with high-dimensional feature spaces and limited datasets. SVM separates training
data into discrete groups when working with linear data by locating a hyperplane with
the greatest margin. The n-1-dimensional hyperplane and support vectors, which are
locations that are most closely related to the margin edge, are also measured to calculate
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the most significant distance [45]. The mathematical equation for maximizing the margin is
represented by Equation (4) (weights, input, and bias are denoted by w, x, and b [46]):

minimize =
1
2
||w||2

subject to yi(〈wT . xi〉+ b) > 1 f or all i = 1, 2, . . . , n
(4)

where yi is the label of the i-th data point, xi is the i-th data point, and n is the number
of data points. The constraint ensures that all data points are on the correct side of the
decision boundary [47].

SVM uses the kernel trick and several kernel functions to determine the optimum
hyperplane to linearly divide the data when dealing with non-linear data [48]. Below is a
list of all of the possible kernel functions that were investigated in this study to determine
which ones were the best [46].

Equation (5), where c is a constant integer, represents the Linear Kernel function.

K
(
xi, xj

)
= xT

i xj (5)

Specifically, the Polynomial Kernel function is represented by Equation (6), where d
denotes the polynomial’s degree, γ is its slope, and r represents a constant factor.

K
(
xi, xj

)
=
(

γxT
i xj + r)d, γ > 0 (6)

The RBF Kernel function is represented by Equation (7), where exp
(
−γ ||xi − x2

j ||
)

is
the Euclidean distance between two points xi and xj and γ is the Gamma.

K
(
xi, xj

)
= exp

(
−γ ||xi − x2

j ||
)

, γ > 0 (7)

The Sigmoid Kernel function is represented by Equation (8), where γ is the slope and
r is a constant term.

K
(
xi, xj

)
= tanh

(
γxT

i xj + r
)

(8)

2.5. Random Forest

Random Forest is a machine learning algorithm based on ensemble learning ap-
proaches used for classification and regression [49,50]. The Random Forest with bootstrap
aggregation method is presented by Breiman [51]. Bagging helps reduce the amount of
variation in the estimated predictive function. The bagging method [52] generates many
subsets of the training data set, each of which is then utilized for training a classification tree
on its own. The final result is determined by averaging the predictions of all the trees [53].

The expected output τ̂(x) of the RF model can be calculated formally as follows for
the given input feature vectorx =

[
x1, x2, . . . , xn]T :

τ̂(x) =
1
B

B

∑
b=1

τ̂b (x) (9)

where B is the number of trees and τ̂b(x) indicates the estimation that the bth tree pro-
vides [54–56].

2.6. CatBoost

Engineers at Yandex proposed the gradient boosting decision tree (GBDT)-based
machine learning technique known as CatBoost in 2017 [57,58]. It reduces the over-fitting
of training by optimizing GBDT [59]. GBDT was created by Friedman [60].

The GBDT model uses more trees to make more accurate predictions and uses a loss
function to measure how accurate the predictions are [61].
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Owing to its strong performance, CatBoost has been applied in a variety of sectors,
such as diabetes prediction [62], breast tumor diagnosis [63], and the identification of
driving styles [64]. The category feature is swapped out for the appropriate average label
value in the traditional GBDT method. To create a decision tree, nodes are separated by the
average label value. This approach is known as greedy target-based statistics, and can be
described as follows [57]:

∑P
j=1

[
Xj.k = Xi.k

]
Yi

∑n
j=1

[
Xj.k = Xi.k

] (10)

The information in features, however, is typically more extensive than in the lab.
When features are forcefully represented using the average label value, conditional transfer
takes place.

The supplied observational dataset D = {Xi, Yi}, i = 1, . . . , n, σ = (σ1, . . . , σn)
is assumed to be a permutation, and the variable xσp,k is interchangeable with any other
variable [57].

∑P=1
j=1

[
xσp,k = xσp,k

]
Yσj + aP

∑P=1
j=1

[
xσp,k = xσp,k

]
+ a

(11)

where a > 0 indicates the weight of a priori, with P standing for a priori. The noise derived
from the low-frequency category is lessened by adding an a priori.

2.7. LightGBM

Based on the XGBoost technology, Microsoft published an upgraded version of Light-
GBM in 2017 [65]. Although both LightGBM and XGBoost [38] are capable of doing parallel
arithmetic, LightGBM is superior to XGBoost due to its faster training speed and lower
memory occupation, both of which help lower the communication cost of parallel learn-
ing [66]. The gradient-based one-side sampling (GOSS) decision tree algorithm, exclusive
feature bundling (EFB), depth-limited histogram, and leaf-wise growth approach are the
significant features of LightGBM [67]. GOSS can strike a compromise between the number
of samples and the precision of the LightGBM decision tree. Downsampling will focus
more during training on samples with more significant gradients because they have a more
considerable influence on information gain. When there are many features in a small area,
LightGBM can minimize the size of the features by using EFB to join previously mutually
incompatible features with a new feature [68].

To find the best model for prediction accuracy, we compared the performance of all five
models introduced in the materials and method section: XGBoost, SVM, Random Forest,
CatBoost, and LightGBM. This comparison was made by evaluating the performance
of each model on the same dataset using the same evaluation metrics. The suggested
technique’s process diagram is shown in Figure 1. The link to the repository containing the
source code of this paper is provided in the “Supplementary Materials” section.
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Figure 1. Processes diagram of the proposed method.

3. Results and Discussion
3.1. Performance Comparison

The performance of each model is measured by six key metrics: accuracy, precision,
recall, F1-Score, sensitivity, and specificity, which are defined as follows [9,69]:

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(12)

Precision =
Tp

Tp + Fp
(13)

F1 − Score = 2× Precision× Recall
Precision + Recall

(14)

Sensitivity =
Tp

Tp + Fn
(15)

Speci f icity =
Tn

Tn + Fp
(16)

where (Tp) is true positive; (Tn), true negative; (Fp), false positive; and (Fn), false negative.
These metrics are commonly used in machine learning to evaluate the performance

of classification models. To compare the performance of the models, we calculated the
values of these six metrics for each model, then compare the values to see which model has
the highest performance. The model with the highest performance is considered the best
model for prediction accuracy. In addition to these metrics, we also used other techniques
to evaluate the performance of the models. For example, we used confusion matrices,
which are a way to visualize the number of true positive, true negative, false positive, and
false negative predictions made by the model. Table 1 shows comparison results of five
ML models.

We performed 5-fold cross-validation to confirm the XGBoost outputs. This is a widely
used technique to evaluate the performance of machine learning models, particularly when
the dataset is small. In 5-fold cross-validation, we randomly shuffle the data and then
partition it into five equal-sized folds or subsets. Then, we treat each fold as a separate
validation dataset and use the remaining four folds as training sets. This process is repeated
five times, with each fold being used once as the validation dataset. The final result of the
5-fold cross-validation is produced by calculating the average performance metrics for each
validation (Table 2). This gives us an estimate of the model’s performance on unseen data.
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Five-fold cross-validation is a powerful technique to evaluate machine learning models,
as it allows us to test the model’s performance on different subsets of the data, which
reduces the risk of overfitting and increases the reliability of the results. It also allows us
to estimate the model’s performance on unseen data, which is essential when evaluating
its generalizability.

Table 1. Comparison of five machine learning models.

Model Accuracy F1-Score Precision Sensitivity Specificity

XGBoost 1.0 1.0 1.0 1.0 1.0
SVM 0.953 0.953 0.953 0.953 0.975

Random Forest 0.953 0.960 0.976 0.953 0.951
CatBoost 0.930 0.943 0.972 0.930 0.926

LightGBM 0.953 0.930 0.909 0.953 1.0

Table 2. Five-fold cross-validation for XGBoost.

Performance Metrics Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Accuracy XGBoost
Random Forest

0.906
0.790

0.880
0.880

0.928
0.928

0.928
0.928

0.857
0.857

0.900
0.877

F1-Score XGBoost
Random Forest

0.862
0.800

0.825
0.825

0.908
0.923

0.914
0.914

0.809
0.809

0.864
0.854

Precision XGBoost
Random Forest

0.822
0.811

0.776
0.776

0.933
0.921

0.933
0.933

0.878
0.878

0.868
0.864

Sensitivity XGBoost
Random Forest

0.906
0.790

0.880
0.880

0.928
0.928

0.928
0.928

0.857
0.857

0.900
0.877

Specificity XGBoost
Random Forest

1.0
0.871

1.0
1.0

1.0
0.973

1.0
1.0

1.0
1.0

1.0
0.969

The metrics for XGBoost achieve 1.0 in the same train and test set split, as demonstrated
in Table 1, making them superior to metrics for any other method. This means that the
XGBoost model has the highest performance compared to the other models. To further
visualize the performance of the models, we also present the confusion matrix for each
method in Figure 2. Among all five machine learning approaches, XGBoost outperformed
the rest. This is due to several factors. XGBoost is an ensemble learning method that
combines several decision trees, allowing it to capture more complex patterns in the data.

Additionally, it is easier to adjust the goal function, and less feature analysis is needed
when using XGBoost. This means the model can be fine-tuned to optimize its performance
on the specific problem. Owing to its parallel processing implementation, XGBoost also
has a relatively cheap computational cost. This study used trial and error to discover
the optimal algorithm’s parameters for the used model with Table 3 showing all the
selected parameters.

After XGBoost, Random Forest is the second-best model and has an accurate result.
Therefore, we compared these two. Table 2 shows the 5-fold cross-validation result for
these two models. Both models are based on decision trees, but they differ in how they
combine the decisions made by the individual trees.
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Table 3. Model parameters.

Parameter Value

XGBoost

Base Learner Gradient boosted tree
Tree construction algorithm Exact greedy

Learning rate (η) 0.0991
Lagrange multiplier (γ) 0

Number of gradient boosted trees 80
Maximum depth of a tree 6

Minimum sum of instance weight 1
Subsample ratio of the training instances 1

Sampling method Uniform
L2 regularization term on weights 1

Tree growing policy Depthwise
Evaluation metrics for validation data Negative log likelihood

SVM

Kernel Linear
Degree of the polynomial kernel 3

Kernel coefficient (γ) Scale
Maximum iterations No constraint
Shrinking heuristic True

Probability estimates False
Tolerance for stopping criterion 1 × 10−3

Random forest

Number of trees in the forest 10
Quality of split measure function Entropy

Minimum number of samples to split 2
Minimum number of samples at a leaf node 1

Use bootstrap samples for building trees True
Number of jobs to run in parallel 1

CatBoost

Number of boosting rounds 20
Learning rate 0.44

Maximum depth of a tree 5
Maximum number of trees 1000

Random seed 0
Sample weight frequency Per tree level

Tree growing policy Symmetric tree
Maximum number of leaves 31

LightGBM

Number of decision trees 20
Bagging fraction 1

Number of threads in the physical core 8
Maximum depth of a tree 6

Number of boosting iterations 100
Learning rate 0.1

Maximum number of leaves on one tree Serial
Bagging random seed 3

Dropout rate 0.1

When comparing the performance of XGBoost and Random Forest, we can see that
XGBoost has higher performance on averages in almost all terms. In the first validation,
XGBoost has more than 4 percent, and in 5-fold cross-validation it has more than 3 percent
accuracy. This means that the XGBoost model has a high performance in terms of accuracy,
and also it has a good balance between precision and recall (F1-Score). Additionally, it
has a high specificity, meaning it correctly identifies negative instances most of the time.
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However, it has low sensitivity, and sometimes does not correctly identify positive cases.
The Random Forest model has good performance with high specificity, and a higher
sensitivity than XGBoost, which serves as an advantage for it. In conclusion, XGBoost is a
powerful machine learning method that performs well on the dataset used in this study.

Given the high performance and ease of use, it makes sense to choose XGBoost as a
predictive model to determine SHAP values for additional investigation. SHAP values are
a way to explain the output of any machine learning model, and they can help understand
the contribution of each feature to the model’s prediction.

Some recent monkeypox diagnostic methodologies are presented in Table 4. These
methods, including those mentioned in Section 1, operate on the basis of image data. The
key distinction between these methods and the proposed approach lies in the utilization of
symptoms for the purpose of diagnosis.

Table 4. Monkeypox diagnostic methodologies.

Reference Technique Description

Haque et al. [70] Five deep learning models such as VGG19,
Xception, DenseNet121, etc.

Image-based dataset with an accuracy of 83%
using Xception-CBAM (Convolutional Block

Attention Module)

Sahin et al. [25] Transfer learning methods such as MobileNetv2,
GoogleNet, etc.

Image-based dataset with an accuracy of 91%
using MobileNetv2

Irmak et al. [71] VGGNet, and MobileNetV2 Image-based dataset with an accuracy of 91%
using MobileNetV2

Alcalá-Rmz et al. [72] MiniGoggleNet Image-based dataset with an accuracy of 97%

Jaradat et al. [11] Five pre-trained models: VGG16, ResNet50,
MobileNetV2, etc.

Image-based dataset with an accuracy of 98%
using MobileNetV2

Proposed Method XGBoost Symptom-based dataset with an accuracy of 100%
using XGBoost

3.2. SHAP Value and Pearson Correlation

Figure 3 shows the SHAP beeswarm plot. The results in Figure 3 show that fever, skin
lesions, headache, muscle pain, and rash are the most effective features for predicting the
output of the monkeypox prediction model. These features have the highest importance in
the model’s predictions and likely contribute the most to the model’s overall performance.
The evaluation of the relationship values in the data set used in this research indicates that
almost all the features have had a positive and effective relationship in the monkeypox
prediction model and output production. This suggests that all the features in the data
set are important and contribute meaningfully to the model’s predictions. Figures 4 and 5
provide further insights into the relationships between the features and the model’s output.
Figure 4 shows the mean absolute value of each feature’s SHAP values, and Figure 5 shows
the Pearson correlation diagram of the data set used in the research. The Pearson correlation
coefficient measures the linear relationship between two variables, ranging from −1 to
1, with 1 indicating a perfect positive correlation and −1 indicating a perfect negative
correlation. It can be seen in Figure 5 that there is a significant agreement between the
output of the SHAP algorithm and the Pearson correlation. This implies that the results of
the SHAP analysis are consistent with the linear relationships between the features and
the output. One limitation of this study is the smallness of the data set used. Although the
number of recorded data is large, only a small proportion of them have symptoms that can
be used in the learning model. This might have affected the generalization of the model
and the validity of the results.
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4. Conclusions

This paper proposed an ML model (i.e., XGBoost) for detecting monkeypox cases
based on symptoms. To evaluate the effectiveness of the proposed method, a symptom-
based dataset using published reports of monkeypox disease was created, and various ML
models were compared. The experimental results indicated that XGBoost outperformed
other methods, reaching an accuracy of 1.0 in the general test and 0.9 in 5-fold cross-
validation. Moreover, SHAP was used to interpret the output of the XGBoost model
and determine the most important parameters. The results suggested that fever, skin
lesions, headache, muscle pain, and rash are the most effective features for diagnosing
monkeypox. The proposed method can be easily used in all medical centers. Although the
proposed model obtained promising results, the small size of the dataset is a limitation of
the current study. In future research, we would like to use a larger dataset and incorporate
epidemiological data into the model.

Supplementary Materials: Repository containing source code of this paper is available at https:
//github.com/alirezafarzipour/MonkeyPoxDetection (accessed on 10 June 2023).

Author Contributions: A.F., methodology, software, validation, investigation, writing—original
draft, writing—review and editing, and visualization; R.E., methodology, software, validation,
investigation, writing—original draft, writing—review and editing, and visualization; H.N., concep-
tualization, methodology, validation, writing—review and editing, and supervision. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

https://github.com/alirezafarzipour/MonkeyPoxDetection
https://github.com/alirezafarzipour/MonkeyPoxDetection


Diagnostics 2023, 13, 2391 14 of 16

Data Availability Statement: The dataset used in this study is available at: https://github.com/
alirezafarzipour/MonkeyPoxDetection (accessed on 10 June 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ladnyj, I.D.; Ziegler, P.; Kima, E. A Human Infection Caused by Monkeypox Virus in Basankusu Territory, Democratic Republic

of the Congo. Bull. World Health Organ. 1972, 46, 593–597. [PubMed]
2. Zumla, A.; Valdoleiros, S.R.; Haider, N.; Asogun, D.; Ntoumi, F.; Petersen, E.; Kock, R. Monkeypox Outbreaks Outside Endemic

Regions: Scientific and Social Priorities. Lancet Infect. Dis. 2022, 22, 929–931. [CrossRef] [PubMed]
3. Orviz, E.; Negredo, A.; Ayerdi, O.; Vázquez, A.; Muñoz-Gomez, A.; Monzón, S.; Clavo, P.; Zaballos, A.; Vera, M.; Sánchez, P.; et al.

Monkeypox Outbreak in Madrid (Spain): Clinical and Virological Aspects. J. Infect. 2022, 85, 412–417. [CrossRef] [PubMed]
4. Tarín-Vicente, E.J.; Alemany, A.; Agud-Dios, M.; Ubals, M.; Suñer, C.; Antón, A.; Arando, M.; Arroyo-Andrés, J.; Calderón-Lozano,

L.; Casañ, C.; et al. Clinical Presentation and Virological Assessment of Confirmed Human Monkeypox Virus Cases in Spain: A
Prospective Observational Cohort Study. Lancet 2022, 400, 661–669. [CrossRef] [PubMed]

5. Wei, F.; Peng, Z.; Jin, Z.; Wang, J.; Xu, X.; Zhang, X.; Xu, J.; Ren, Z.; Bai, Y.; Wang, X.; et al. Study and Prediction of the 2022 Global
Monkeypox Epidemic. J. Biosaf. Biosecur. 2022, 4, 158–162. [CrossRef]

6. Huang, Y.; Mu, L.; Wang, W. Monkeypox: Epidemiology, Pathogenesis, Treatment and Prevention. Signal Transduct. Target. Ther.
2022, 7, 373. [CrossRef]

7. Harapan, H.; Ophinni, Y.; Megawati, D.; Frediansyah, A.; Mamada, S.S.; Salampe, M.; Bin Emran, T.; Winardi, W.; Fathima, R.;
Sirinam, S. Monkeypox: A Comprehensive Review. Viruses 2022, 14, 2155. [CrossRef]

8. Fink, D.L.; Callaby, H.; Luintel, A.; Beynon, W.; Bond, H.; Lim, E.Y.; Gkrania-Klotsas, E.; Heskin, J.; Bracchi, M.; Rathish, B.; et al.
Clinical Features and Management of Individuals Admitted to Hospital with Monkeypox and Associated Complications across
the UK: A Retrospective Cohort Study. Lancet. Infect. Dis. 2022, 3099, 6–14. [CrossRef]

9. Ahsan, M.; Ramiz, M.; Ali, S.; Islam, K.; Farjana, M.; Nazmus, A.; Al, K.; Akter, S. Deep Transfer Learning Approaches for
Monkeypox Disease Diagnosis. Expert Syst. Appl. 2023, 216, 119483. [CrossRef]

10. Bala, D.; Hossain, M.S.; Hossain, M.A.; Abdullah, M.I.; Rahman, M.M.; Manavalan, B.; Gu, N.; Islam, M.S.; Huang, Z. MonkeyNet:
A Robust Deep Convolutional Neural Network for Monkeypox Disease Detection and Classification. Neural Netw. 2023,
161, 757–775. [CrossRef]

11. Jaradat, A.S.; Al Mamlook, R.E.; Almakayeel, N.; Alharbe, N.; Almuflih, A.S.; Nasayreh, A.; Gharaibeh, H.; Gharaibeh, M.;
Gharaibeh, A.; Bzizi, H. Automated Monkeypox Skin Lesion Detection Using Deep Learning and Transfer Learning Techniques.
Int. J. Environ. Res. Public Health 2023, 20, 4422. [CrossRef]

12. Altun, M.; Gürüler, H.; Özkaraca, O.; Khan, F.; Khan, J.; Lee, Y. Monkeypox Detection Using CNN with Transfer Learning. Sensors
2023, 23, 1783. [CrossRef]

13. Kundu, D.; Siddiqi, U.R.; Rahman, M.M. Vision Transformer Based Deep Learning Model for Monkeypox Detection. In
Proceedings of the 2022 25th International Conference on Computer and Information Technology (ICCIT), Tabuk, Saudi Arabia,
25–27 January 2022; pp. 1021–1026.

14. Iftikhar, H.; Khan, M.; Khan, M.S.; Khan, M. Short-Term Forecasting of Monkeypox Cases Using a Novel Filtering and Combining
Technique. Diagnostics 2023, 13, 1923. [CrossRef]

15. Mandal, A.K.; Sarma, P.K.D.; Dehuri, S. Machine Learning Approaches and Particle Swarm Optimization Based Clustering
for the Human Monkeypox Viruses: A Study. In Proceedings of the Innovations in Intelligent Computing and Communication: First
International Conference, ICIICC 2022, Bhubaneswar, India, 16–17 December 2022; Springer: Berlin/Heidelberg, Germany, 2023;
pp. 313–332.

16. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

17. Bhosale, Y.H.; Zanwar, S.R.; Jadhav, A.T.; Ahmed, Z.; Gaikwad, V.S.; Gandle, K.S. Human Monkeypox 2022 Virus: Machine
Learning Prediction Model, Outbreak Forecasting, Visualization with Time-Series Exploratory Data Analysis. In Proceedings
of the 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), Virtual,
3–5 October 2022; pp. 1–6.

18. Khafaga, D.S.; Ibrahim, A.; El-Kenawy, E.-S.M.; Abdelhamid, A.A.; Karim, F.K.; Mirjalili, S.; Khodadadi, N.; Lim, W.H.; Eid, M.M.;
Ghoneim, M.E. An Al-Biruni Earth Radius Optimization-Based Deep Convolutional Neural Network for Classifying Monkeypox
Disease. Diagnostics 2022, 12, 2892. [CrossRef]

19. Ahsan, M.M.; Uddin, M.R.; Farjana, M.; Sakib, A.N.; Al Momin, K.; Luna, S.A. Image Data Collection and Implementation of
Deep Learning-Based Model in Detecting Monkeypox Disease Using Modified VGG16. arXiv 2022. [CrossRef]

20. Uzun Ozsahin, D.; Mustapha, M.T.; Uzun, B.; Duwa, B.; Ozsahin, I. Computer-Aided Detection and Classification of Monkeypox
and Chickenpox Lesion in Human Subjects Using Deep Learning Framework. Diagnostics 2023, 13, 292. [CrossRef] [PubMed]

21. Sitaula, C.; Shahi, T.B. Monkeypox Virus Detection Using Pre-Trained Deep Learning-Based Approaches. J. Med. Syst. 2022, 46, 78.
[CrossRef] [PubMed]

https://github.com/alirezafarzipour/MonkeyPoxDetection
https://github.com/alirezafarzipour/MonkeyPoxDetection
https://www.ncbi.nlm.nih.gov/pubmed/4340218
https://doi.org/10.1016/S1473-3099(22)00354-1
https://www.ncbi.nlm.nih.gov/pubmed/35636447
https://doi.org/10.1016/j.jinf.2022.07.005
https://www.ncbi.nlm.nih.gov/pubmed/35830908
https://doi.org/10.1016/S0140-6736(22)01436-2
https://www.ncbi.nlm.nih.gov/pubmed/35952705
https://doi.org/10.1016/j.jobb.2022.12.001
https://doi.org/10.1038/s41392-022-01215-4
https://doi.org/10.3390/v14102155
https://doi.org/10.1016/S1473-3099(22)00806-4
https://doi.org/10.1016/j.eswa.2022.119483
https://doi.org/10.1016/j.neunet.2023.02.022
https://doi.org/10.3390/ijerph20054422
https://doi.org/10.3390/s23041783
https://doi.org/10.3390/diagnostics13111923
https://doi.org/10.3390/diagnostics12112892
https://doi.org/10.48550/arXiv.2206.01862
https://doi.org/10.3390/diagnostics13020292
https://www.ncbi.nlm.nih.gov/pubmed/36673101
https://doi.org/10.1007/s10916-022-01868-2
https://www.ncbi.nlm.nih.gov/pubmed/36201085


Diagnostics 2023, 13, 2391 15 of 16

22. Saleh, A.I.; Rabie, A.H. Human Monkeypox Diagnose (HMD) Strategy Based on Data Mining and Artificial Intelligence
Techniques. Comput. Biol. Med. 2023, 152, 106383. [CrossRef] [PubMed]

23. Ali, S.N.; Ahmed, M.T.; Paul, J.; Jahan, T.; Sani, S.M.S.; Noor, N.; Hasan, T. Monkeypox Skin Lesion Detection Using Deep
Learning Models: A Feasibility Study. arXiv 2022. [CrossRef]

24. Almufareh, M.F.; Tehsin, S.; Humayun, M.; Kausar, S. A Transfer Learning Approach for Clinical Detection Support of Monkeypox
Skin Lesions. Diagnostics 2023, 13, 1503. [CrossRef]

25. Sahin, V.H.; Oztel, I.; Yolcu Oztel, G. Human Monkeypox Classification from Skin Lesion Images with Deep Pre-Trained Network
Using Mobile Application. J. Med. Syst. 2022, 46, 79. [CrossRef]

26. Javelle, E.; Mura, M.; Ferraris, O.; Tournier, J.N. Monkeypox Clinical Disease: Literature Review and a Tool Proposal for the
Monitoring of Cases and Contacts. Travel Med. Infect. Dis. 2023, 52, 19–21. [CrossRef] [PubMed]

27. Engel, L.S.; Sanders, C.V.; Lopez, F.A. Diagnostic Approach to Rash and Fever in the Critical Care Unit. In Infectious Diseases and
Antimicrobial Stewardship in Critical Care Medicine; CRC Press: Boca Raton, FL, USA, 2020; pp. 109–133. ISBN 9781315099538.

28. Maranhão, A. Global Monkeypox Cases (Daily Updated). Available online: https://www.kaggle.com/datasets/andrewmvd/
global-monkeypox-cases (accessed on 29 August 2022).

29. Multi-Country Monkeypox Outbreak in Non-Endemic Countries. Available online: https://www.who.int/emergencies/disease-
outbreak-news/item/2022-DON385 (accessed on 20 August 2022).

30. Wen, X.; Xie, Y.; Wu, L.; Jiang, L. Quantifying and Comparing the Effects of Key Risk Factors on Various Types of Roadway
Segment Crashes with LightGBM and SHAP. Accid. Anal. Prev. 2021, 159, 106261. [CrossRef] [PubMed]

31. Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 2017, 4766–4775.
32. Parsa, A.B.; Movahedi, A.; Taghipour, H.; Derrible, S.; Mohammadian, A.K. Toward Safer Highways, Application of XGBoost and

SHAP for Real-Time Accident Detection and Feature Analysis. Accid. Anal. Prev. 2020, 136, 105405. [CrossRef]
33. Chelgani, S.C.; Nasiri, H.; Alidokht, M. Interpretable Modeling of Metallurgical Responses for an Industrial Coal Column Flotation

Circuit by XGBoost and SHAP-A “Conscious-Lab” Development. Int. J. Min. Sci. Technol. 2021, 31, 1135–1144. [CrossRef]
34. Mangalathu, S.; Shin, H.; Choi, E.; Jeon, J.-S. Explainable Machine Learning Models for Punching Shear Strength Estimation of

Flat Slabs without Transverse Reinforcement. J. Build. Eng. 2021, 39, 102300. [CrossRef]
35. Meng, Y.; Yang, N.; Qian, Z.; Zhang, G. What Makes an Online Review More Helpful: An Interpretation Framework Using

XGBoost and SHAP Values. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 466–490. [CrossRef]
36. Chehreh Chelgani, S.; Nasiri, H.; Tohry, A. Modeling of Particle Sizes for Industrial HPGR Products by a Unique Explainable AI

Tool—A “Conscious Lab” Development. Adv. Powder Technol. 2021, 32, 4141–4148. [CrossRef]
37. Nasiri, H.; Hasani, S. Automated Detection of COVID-19 Cases from Chest X-ray Images Using Deep Neural Network and

XGBoost. Radiography 2022, 28, 732–738. [CrossRef]
38. Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
39. Fatahi, R.; Nasiri, H.; Dadfar, E.; Chehreh Chelgani, S. Modeling of Energy Consumption Factors for an Industrial Cement Vertical

Roller Mill by SHAP-XGBoost: A “Conscious Lab” Approach. Sci. Rep. 2022, 12, 7543. [CrossRef] [PubMed]
40. Song, K.; Yan, F.; Ding, T.; Gao, L.; Lu, S. A Steel Property Optimization Model Based on the XGBoost Algorithm and Improved

PSO. Comput. Mater. Sci. 2020, 174, 109472. [CrossRef]
41. Zhang, W.; Wu, C.; Zhong, H.; Li, Y.; Wang, L. Prediction of Undrained Shear Strength Using Extreme Gradient Boosting and

Random Forest Based on Bayesian Optimization. Geosci. Front. 2021, 12, 469–477. [CrossRef]
42. Nasiri, H.; Alavi, S.A. A Novel Framework Based on Deep Learning and ANOVA Feature Selection Method for Diagnosis of

COVID-19 Cases from Chest X-ray Images. Comput. Intell. Neurosci. 2022, 2022, 4694567. [CrossRef] [PubMed]
43. Satapathy, S.K.; Dehuri, S.; Jagadev, A.K.; Mishra, S. Introduction. In EEG Brain Signal Classification for Epileptic Seizure Disorder

Detection; Academic Press: Cambridge, MA, USA, 2019; pp. 1–25. [CrossRef]
44. Zoppis, I.; Mauri, G.; Dondi, R. Kernel Methods: Support Vector Machines; Elsevier: Amsterdam, The Netherlands, 2018; Volume

1–3; ISBN 9780128114322.
45. Xia, Y. Correlation and Association Analyses in Microbiome Study Integrating Multiomics in Health and Disease, 1st ed.; Elsevier:

Amsterdam, The Netherlands, 2020; Volume 171.
46. Smola, A.J.; Schölkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 199–222. [CrossRef]
47. Fatahi, R.; Nasiri, H.; Homafar, A.; Khosravi, R.; Siavoshi, H.; Chehreh Chelgani, S. Modeling Operational Cement Rotary Kiln

Variables with Explainable Artificial Intelligence Methods—A “Conscious Lab” Development. Part. Sci. Technol. 2023, 41, 715–724.
[CrossRef]

48. Roy, K.; Kar, S.; Das, R.N. Chapter 6—Selected Statistical Methods in QSAR. In Understanding the Basics of QSAR for Applications in
Pharmaceutical Sciences and Risk Assessment; Roy, K., Kar, S., Das, R.N., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 191–229;
ISBN 978-0-12-801505-6.

49. Matin, S.S.; Hower, J.C.; Farahzadi, L.; Chelgani, S.C. Explaining Relationships among Various Coal Analyses with Coal
Grindability Index by Random Forest. Int. J. Miner. Process. 2016, 155, 140–146. [CrossRef]

50. Chelgani, S.C.; Matin, S.S. Study the Relationship between Coal Properties with Gieseler Plasticity Parameters by Random Forest.
Int. J. Oil Gas Coal Technol. 2018, 17, 113–127. [CrossRef]

51. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

https://doi.org/10.1016/j.compbiomed.2022.106383
https://www.ncbi.nlm.nih.gov/pubmed/36481764
https://doi.org/10.48550/arXiv.2207.03342
https://doi.org/10.3390/diagnostics13081503
https://doi.org/10.1007/s10916-022-01863-7
https://doi.org/10.1016/j.tmaid.2023.102559
https://www.ncbi.nlm.nih.gov/pubmed/36809829
https://www.kaggle.com/datasets/andrewmvd/global-monkeypox-cases
https://www.kaggle.com/datasets/andrewmvd/global-monkeypox-cases
https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385
https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385
https://doi.org/10.1016/j.aap.2021.106261
https://www.ncbi.nlm.nih.gov/pubmed/34182322
https://doi.org/10.1016/j.aap.2019.105405
https://doi.org/10.1016/j.ijmst.2021.10.006
https://doi.org/10.1016/j.jobe.2021.102300
https://doi.org/10.3390/jtaer16030029
https://doi.org/10.1016/j.apt.2021.09.020
https://doi.org/10.1016/j.radi.2022.03.011
https://doi.org/10.1038/s41598-022-11429-9
https://www.ncbi.nlm.nih.gov/pubmed/35534588
https://doi.org/10.1016/j.commatsci.2019.109472
https://doi.org/10.1016/j.gsf.2020.03.007
https://doi.org/10.1155/2022/4694567
https://www.ncbi.nlm.nih.gov/pubmed/35013680
https://doi.org/10.1016/b978-0-12-817426-5.00001-6
https://doi.org/10.1023/B:STCO.0000035301.49549.88
https://doi.org/10.1080/02726351.2022.2135470
https://doi.org/10.1016/j.minpro.2016.08.015
https://doi.org/10.1504/IJOGCT.2018.089345
https://doi.org/10.1023/A:1010933404324


Diagnostics 2023, 13, 2391 16 of 16

52. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
53. Amit, Y.; Geman, D. Shape Quantization and Recognition with Randomized Trees. Neural Comput. 1997, 9, 1545–1588. [CrossRef]
54. Wager, S.; Athey, S. Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests. J. Am. Stat. Assoc. 2018,

113, 1228–1242. [CrossRef]
55. Jafrasteh, B.; Fathianpour, N.; Suárez, A. Comparison of Machine Learning Methods for Copper Ore Grade Estimation. Comput.

Geosci. 2018, 22, 1371–1388. [CrossRef]
56. Nasiri, H.; Homafar, A.; Chehreh Chelgani, S. Prediction of Uniaxial Compressive Strength and Modulus of Elasticity for

Travertine Samples Using an Explainable Artificial Intelligence. Results Geophys. Sci. 2021, 8, 100034. [CrossRef]
57. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features.

Adv. Neural Inf. Process. Syst. 2018, 31, 2–11.
58. Dorogush, A.V.; Ershov, V.; Gulin, A. CatBoost: Gradient Boosting with Categorical Features Support. arXiv 2018,

arXiv:1810.11363.
59. Chehreh Chelgani, S.; Nasiri, H.; Tohry, A.; Heidari, H.R. Modeling Industrial Hydrocyclone Operational Variables by SHAP-

CatBoost—A “Conscious Lab” Approach. Powder Technol. 2023, 420, 118416. [CrossRef]
60. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
61. Pham, T.D.; Yokoya, N.; Xia, J.; Ha, N.T.; Le, N.N.; Nguyen, T.T.T.; Dao, T.H.; Vu, T.T.P.; Pham, T.D.; Takeuchi, W. Comparison of

Machine Learning Methods for Estimating Mangrove Above-Ground Biomass Using Multiple Source Remote Sensing Data in the
Red River Delta Biosphere Reserve, Vietnam. Remote Sens. 2020, 12, 1334. [CrossRef]

62. Fengshun, M.; Yan, L.; Cen, G.; Meiji, W.; Dongmei, L. Diabetes Prediction Method Based on CatBoost Algorithm. Comput. Syst.
Appl. 2019, 28, 215–218.

63. Abbasniya, M.R.; Sheikholeslamzadeh, S.A.; Nasiri, H.; Emami, S. Classification of Breast Tumors Based on Histopathology
Images Using Deep Features and Ensemble of Gradient Boosting Methods. Comput. Electr. Eng. 2022, 103, 108382. [CrossRef]

64. Liu, W.; Deng, K.; Zhang, X.; Cheng, Y.; Zheng, Z.; Jiang, F.; Peng, J. A Semi-Supervised Tri-Catboost Method for Driving Style
Recognition. Symmetry 2020, 12, 336. [CrossRef]

65. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A Highly Efficient Gradient Boosting Decision
Tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146–3154.

66. Maleki, A.; Raahemi, M.; Nasiri, H. Breast Cancer Diagnosis from Histopathology Images Using Deep Neural Network and
XGBoost. Biomed. Signal Process. Control 2023, 86, 105152. [CrossRef]

67. Ghaheri, P.; Shateri, A.; Nasiri, H. PD-ADSV: An Automated Diagnosing System Using Voice Signals and Hard Voting Ensemble
Method for Parkinson’s Disease. Softw. Impacts 2023, 16, 100504. [CrossRef]

68. Nasiri, H.; Kheyroddin, G.; Dorrigiv, M.; Esmaeili, M.; Nafchi, A.R.; Ghorbani, M.H.; Zarkesh-Ha, P. Classification of COVID-19 in
Chest X-ray Images Using Fusion of Deep Features and LightGBM. In Proceedings of the 2022 IEEE World AI IoT Congress
(AIIoT), Seattle, WA, USA, 6–9 June 2022; pp. 201–206.

69. Cihan, P.; Ozger, Z.B. A New Approach for Determining SARS-CoV-2 Epitopes Using Machine Learning-Based in Silico Methods.
Comput. Biol. Chem. 2022, 98, 107688. [CrossRef]

70. Haque, M.E.; Ahmed, M.R.; Nila, R.S.; Islam, S. Classification of Human Monkeypox Disease Using Deep Learning Models and
Attention Mechanisms. arXiv 2022, arXiv:2211.15459.
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