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Abstract

Background: Therapeutic drug monitoring (TDM) and model-informed precision dosing 

(MIPD) have greatly benefitted from computational and mathematical advances over the past 60 

years. Furthermore, the use of artificial intelligence (AI) and machine learning (ML) approaches 

for supporting clinical research and support is increasing. However, AI and ML applications 

for precision dosing have been evaluated only recently. Given the capability of ML to handle 

multidimensional data, such as from electronic health records, opportunities for AI and ML 

applications to facilitate TDM and MIPD may be advantageous.

Methods: This review summarizes relevant AI and ML approaches to support TDM and MIPD, 

with a specific focus on recent applications. The opportunities and challenges associated with this 

integration are also discussed.

Results: Various AI and ML applications have been evaluated for precision dosing, 

including those related to concentration or exposure prediction, dose optimization, population 

pharmacokinetics and pharmacodynamics, quantitative systems pharmacology, and MIPD system 

development and support. These applications provide an opportunity for ML and pharmacometrics 

to operate in an integrated manner to provide clinical decision support for precision dosing.

Conclusions: Although the integration of AI with precision dosing is still in its early stages 

and is evolving, AI and ML have the potential to work harmoniously and synergistically with 

pharmacometric approaches to support TDM and MIPD. Because data are increasingly shared 

between institutions and clinical networks and aggregated into large databases, these applications 
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will continue to grow. The successful implementation of these approaches will depend on cross-

field collaborations among clinicians and experts in informatics, ML, pharmacometrics, clinical 

pharmacology, and TDM.
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INTRODUCTION

Since the inception of therapeutic drug monitoring (TDM) in the 1960s with the first 

description of pharmacokinetics (PK),1 the first PK study,2 and the first review of drug 

monitoring,3 TDM has established itself as a cornerstone of the precision medicine 

paradigm.4 Throughout the 1970s and 1980s, early innovators helped establish the field 

of TDM, which is known today as therapeutic drug “management.” These developments 

included advanced drug quantification technologies such as liquid chromatography-mass 

spectrometry assays to measure drug concentrations,5,6 as well as defining mathematical 

models to describe the PK and pharmacodynamics (PD) of drugs.7–10 These mathematical 

equations served as the foundation for population PK/PD modeling approaches using 

nonlinear mixed effects modeling, which is still used today throughout the entire drug 

development process.11–13 Furthermore, these population PK models are commonly used 

for model-informed precision dosing (MIPD) to provide clinical decision support (CDS) 

for clinicians. Today, the goal of MIPD, as part of TDM, is to leverage computational and 

mathematical models to predict the concentration (exposure) of and response to a given 

drug. In addition, it aims to tailor or optimize the dose relative to a drug’s therapeutic target 

concentration associated with adequate efficacy and safety for each individual patient.14,15

TDM has benefitted from large efforts in developing cutting-edge in silico approaches over 

the past 60 years. In 1984, Pippenger and Lesser stated, “The clinical utility of TDM in 

managing patients is firmly established. The number of drugs routinely monitored will 

continue to grow, and the success of this expansion will depend on the development 

and application of current technologies as well as on the growth of new ones.”16 With 

advancements in computer science and informatics approaches in clinical research and 

precision medicine, TDM is experiencing a convergence of artificial intelligence (AI) with 

traditional precision dosing methodologies to improve patient care.17–21

Given the potential of AI to assist TDM and MIPD ideologies and processes, embracing 

these novel applications may prove advantageous for advancing the goals of precision 

dosing. Therefore, in this review, we (1) summarize the application of AI in precision 

dosing, (2) provide an overview of relevant case examples of AI models in TDM, (3) outline 

a structure for an electronic health record (EHR)–integrated MIPD tool, and (4) discuss the 

opportunities and challenges associated with the adoption of AI and informatics approaches 

for TDM and MIPD.
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Artificial Intelligence

AI is a branch of computer science that focuses on the development of computational 

systems that can mimic human intelligence. Interestingly, AI in health care first emerged 

during the 1970s and the 1980s,22,23 coinciding with the advent of PK modeling and 

simulation approaches.7 Its applications in medicine have concentrated on analyzing and 

processing complex and multimodal health care data, such as from EHR.

Machine learning (ML), a subset of AI, has led to the development of mathematical 

and statistical algorithms that efficiently learn from data to provide predictions and 

knowledge.24,25 Machine learning can be stratified into three types: supervised learning, 

unsupervised learning, and reinforcement learning. Supervised learning uses data with 

labeled outcomes to train algorithms to make predictions or classifications based on a 

selection of features that serve as an input for the model. Typically, this approach uses 

a data set to train the model (eg, training set) and then evaluates the ability of the 

model to make predictions using a data set that has not been used in the learning phase 

of model development (eg, testing set). Common supervised learning algorithms include 

regression (eg, linear, logistic, lasso,26 ridge,27,28 and elastic net29), random forest,30 support 

vector machines,31 k-nearest neighbor,32 and gradient boosting algorithms.33 Comparatively, 

unsupervised learning does not use data with labeled outcomes but rather discovers hidden 

patterns in data that can serve as exploratory analyses for generating hypotheses to inform 

downstream processes. Common unsupervised learning algorithms include hierarchical 

clustering,34,35 k-mean clustering,36,37 and principal component analysis.38 Reinforcement 

learning uses a dynamic trial-and-error process (ie, positive and negative feedback) to 

decisively learn how to approach and solve problems. An even further subset of ML is 

deep learning (DL), which uses multilayered neural networks to learn from large amounts 

of data. A DL model consists of an input layer, at least one hidden layer that performs 

a nonlinear feature transformation, and an output layer. Collectively, the ability of these 

algorithms to mine and learn abstract patterns from data has provided insights that have 

improved processes related to diagnosis prediction and prognosis classification, in addition 

to tailoring treatments to improve individual patient outcomes.39–41

Pharmacometrics and Artificial Intelligence

The goal of pharmacometrics, particularly in the TDM field, is to quantitatively describe 

and predict drug and disease behavior and progression to inform optimal therapeutic 

strategies. Population PK/PD modeling, the central methodology of pharmacometrics, 

estimates drug exposure and efficacy over time in patients at the population level, or 

rather how the average patient responds to the drug. This approach allows for parameters 

associated with a drug to be quantified (eg, clearance and volume of distribution), describes 

interindividual variability in drug PK/PD, and identifies predictive covariates.11,12 Another 

component of the pharmacometrics paradigm includes performing simulations to evaluate 

target attainment at given doses. Comparatively, ML focuses on making the most accurate 

predictions of outcomes. Although population PK/PD modeling can be considered a form 

of ML, a distinction between the two lies in the types of models used. The population 

PK/PD modeling approach commonly relies on developing structural models based on 

PK/PD concepts to provide pharmacologically and physiologically reasonable parameter 
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estimations, whereas ML focuses on minimizing the prediction error using the most 

applicable model.

Although the integration of pharmacometrics and AI approaches has only recently gained 

traction, applications intersecting these two approaches actually date back to the 1990s, 

with several studies applying neural networks to PK/PD analyses and systems.42–44 Because 

these applications are increasing, it is important to note that ML will not replace, but 

rather complement, traditional pharmacometric approaches to achieve the goals of precision 

dosing, as previously stated.17–21 Understanding the research question and determining what 

tools are needed to address that question are important in determining when to use ML, 

traditional pharmacometric approaches, or a combination of both.

METHODS

In the following section, we outline examples of AI and ML applications for TDM. 

Although this review does not encompass all ML applications related to precision dosing, 

it attempts to provide a summary of relevant approaches and possibilities for integrating AI 

and TDM (Fig. 1).

CASE EXAMPLES OF AI AND ML IN TDM AND MIPD

Concentration and Exposure Prediction

One approach for integrating AI into TDM is to apply ML to construct concentration and 

exposure prediction models. In their pioneering work, Woillard et al45 used extreme gradient 

boosting (XGBoost) models to predict tacrolimus and mycophenolic acid46 exposure 

and compared them with a maximum a posteriori Bayesian estimation approach. The 

performances of the ML models developed using two and three concentrations were also 

compared. These studies used large data sets with concentrations collected at predefined 

optimal sampling time points accumulated through the Immunosuppressant Bayesian Dose 

Adjustment expert system (ISBA) (https://abis.chu-limoges.fr/).47 The results from these 

studies showed that the ML models outperformed the Bayesian estimation approach based 

on the residual mean squared error, mean prediction error, and proportion of mean prediction 

error values outside of ±10% and ±20% intervals. For the tacrolimus ML model, the 

results when developed with two or three concentrations were better than the standard 

Bayesian estimation with three concentrations for the indications (eg, kidney, liver, and 

heart transplants) and dosing regimens assessed. Comparatively, the mycophenolic acid ML 

model with three concentrations outperformed the Bayesian estimation approach, whereas 

the ML model with two concentrations exhibited some performance bias but still provided 

relatively comparable performance. This indicates that an ML approach for exposure 

prediction could be useful for reducing the number of samples needed for TDM, although 

large training data sets are required. The authors plan to incorporate these models into the 

ISBA as an alternative to Bayesian estimation approaches. Temporary R Shiny applications 

have been developed for tacrolimus (https://jbwoillard.shinyapps.io/App-6_tacro_ml/) and 

mycophenolic acid (https://jbwoillard.shinyapps.io/App-7_mmf_ml/) to demonstrate these 

ML models for research purposes.45,46 In a subsequent study, the same authors trained an 

XGBoost model on concentration–time profiles that were simulated based on a tacrolimus 
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population PK study.48 The ML model again outperformed the maximum a posteriori 
Bayesian estimation procedure but exhibited decreased performance in liver and heart 

transplant recipients compared with kidney transplant recipients, as defined by the residual 

mean squared error, mean prediction error, and proportion of mean prediction error values 

outside of ±10% and ±20% intervals. However, the authors state that this was likely due 

to the population PK model used to simulate the data being based on data from patients 

with renal transplants only. In another study, the performance of XGBoost models to predict 

everolimus exposure when trained on only patient data, only simulated data, and a mix 

of patient and simulated data were compared.49 Interestingly, the model trained on only 

simulated data performed the best and marginally outperformed the Bayesian estimation 

approach. The authors are pursuing the integration of this model into the ISBA, similar 

to their previous tacrolimus and mycophenolic acid ML models. In a more recent study, 

this simulation approach was expanded upon by comparing an XGBoost model to predict 

interdose vancomycin exposure with a model averaging approach and model selection 

algorithm, which demonstrated comparable exposure estimation.50,51 Altogether, this novel 

approach of using simulated PK data as a training set could be used to facilitate ML model 

development when concentration data are sparse and could support MIPD applications in 

special populations (eg, pediatrics).

Another study developed an artificial neural network to predict concentration–time profiles 

and compared this with a physiologically based population PK model simulation.52 This 

preliminary approach provided comparable PK profile predictions using simulated data; 

however, their model may underestimate the clearance when extrapolating predictions to 

multiple time steps. Furthermore, through transfer learning, this model could predict on a 

small set of patient data, but there was still variability in the predictions. In addition, a study 

by Janssen et al53 proposed a deep compartment model architecture that combines neural 

networks and ordinary differential equations to predict concentrations in simulated patients 

and validated it using clinical trial data. The results on simulated patients demonstrated 

good accuracies, with some bias in performance depending on the sampling strategy and 

sample size used, whereas the results using clinical trial data provided comparable accuracy 

to standard PK modeling. With further research, both these approaches could be leveraged 

during the early stages of drug development when data are limited.

Furthermore, Huang et al54 developed an ensemble ML model to predict vancomycin 

trough concentrations in pediatric patients. Ensemble algorithms are a combination of ML 

algorithms typically used to improve predictive performance. The results of the model were 

modest, potentially due to the small training data set, but still had higher accuracy in 

predicted trough concentrations within ±30% and ±50% of the actual trough concentrations 

compared with the population PK with Bayesian estimation method. An additional study 

used a long short-term memory neural network, a type of artificial neural network, to predict 

plasma concentrations of valproic acid in older adults and compared this with predicted 

concentrations from a previously published population PK model.55 Model performance 

was assessed by comparing the proportion of individuals with at least one predicted 

concentration within ±20 mg/L of the observed concentrations between the two models. 

The results showed that the DL model outperformed the population PK model, but further 

work to improve the predictive performance of this approach was noted.
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Dose Prediction

Another approach is to leverage ML to make predictions related to dose optimization. 

Several applications for vancomycin, which has a narrow therapeutic index, have been 

assessed. One study developed a classification and regression tree to determine initial 

vancomycin dosage regimens in adult patients.56 The model moderately predicted initial 

vancomycin dose settings using pharmacokinetically relevant covariates (eg, age, BMI, 

and estimated glomerular filtration rate) and performed better than other MIPD methods 

in attaining therapeutic ranges of 10–5 mg/L, 10–20 mg/L, and ≥20 mg/L. It is of note 

that classification and regression trees are often prone to overfitting; therefore, external 

validation is required to ascertain the generalizability of this approach. However, a 

positive aspect of this approach is that they are easily interpretable. An additional study 

used a random forest algorithm, which uses an ensemble of decision trees, to predict 

vancomycin loading and maintenance doses in adult patients, both of which yielded 

moderate performance in accuracy, likely due to the small training data set.57 However, 

similar trough concentration and exposure attainment rates between the ML model and TDM 

experts were observed. This model also provided performance comparable to that of Imai 

et al56 in terms of target attainment rates. Finally, a study evaluated an XGBoost model for 

vancomycin dose prediction in adolescents and adults using clinical data obtained from the 

EHR, which provided reliable estimates in predicting the therapeutic dose.58

Similar applications for other medications that require dose optimization have been 

developed. Zhu et al59 found that an extra trees regressor algorithm, compared with other 

evaluated ML models, performed best in predicting lamotrigine concentration:dose ratios in 

adult patients. This model performed generally well in the higher concentration:dose ratio 

ranges compared with lower ranges. The authors also proposed a web-based application 

linked to an EHR system to provide personalized dose adjustments based on clinician-

inputted patient demographic and clinical characteristics (eg, age, sex, body weight, current 

daily dosage, and concomitant inducers) and the desired lamotrigine concentration. Another 

study applied numerous ML algorithms to predict warfarin doses in Caribbean Hispanic 

patients using clinical data, including pharmacogenetic and ancestral gene information. They 

determined that a random forest classifier performed the best, although the performances of 

other algorithms were better when stratifying patients according to dose requirements.60

ML Applications to Support MIPD Systems

Several developments have been made in informatics tools, models, and techniques that 

can support and improve MIPD systems. For instance, Hughes and Keizer61 designed a 

combined ML and PK approach to predict when to use a flattened priors approach for 

Bayesian estimation. The rationale for this approach comes from the fact that certain 

patients may not be described adequately by the Bayesian estimation using population 

PK parameters; therefore, reducing the weight or influence of the Bayesian priors will 

provide more flexibility for the model to estimate the drug concentration(s) in a given 

patient. Treating this decision as a binary classification problem (ie, use a flattened priors 

or maximum a posteriori Bayesian approach), an XGBoost model was identified as the 

best model, and these ML predictions were applied in an MIPD software, InsightRx Nova. 

Comparing the performance of this approach for three vancomycin population PK models, 
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the results suggest that the ML/PK approach can reduce the mean percentage error and 

prediction errors compared with using only the maximum a posteriori method. The ML/PK 

approach also outperformed the maximum a posteriori approach when training a penalized 

logistic regression with only the top two predictors (ie, cumulative bias in maximum a 
posteriori residual and the last maximum a posteriori residual), which is important regarding 

the clinical utility and generalizability of this approach. Overall, the findings from this 

study are promising and illustrate the ability of ML to benefit MIPD without limiting the 

interpretability of PK models.

Another approach is to apply ML to population PK model development. Part of population 

PK model development includes covariate modeling to understand how patient-specific 

factors influence PK parameters and explain their interindividual variability. This process is 

commonly performed through stepwise selection, but it can be time consuming, particularly 

if the data set is large or the model is complex. To address this, Sibieude et al62 

tested an ML framework to assist in screening covariates for inclusion in population 

PK models. Several ML models (eg, linear and radial support vector machines, random 

forest, and neural networks) were investigated to predict clearance estimates for virtually 

generated populations. Based on the feature importance from these models, three covariate 

selection approaches (eg, top-M selection, order of importance, and minimum degree 

of importance) were evaluated for each ML model and were compared with traditional 

pharmacometric selection methods (eg, stepwise covariate selection, least absolute shrinkage 

and selection operator, and conditional sampling for stepwise approach based on correlation 

tests). The study showed that the ML approach provided comparable results, but it was 

significantly faster than the traditional covariate selection approaches. This approach was 

further validated using a published data set to predict cetuximab clearance and volume 

of distribution from 30 covariates, reiterating the computational efficiency of ML for this 

application. Therefore, this method could be used to optimize covariate modeling when 

developing a final population PK model. A subsequent study expanded upon this using 

SHapley Additive exPlanations (SHAP),63 a method to explain how features influence ML 

predictions, to illustrate how covariates affect PK parameters for factor VIII concentrate 

in patients with hemophilia A.64 A random forest model was identified as the best 

model and was used to predict Bayesian estimated clearance and volume of distribution 

parameters. The relationships between individual PK parameters and SHAP values for 

individual covariates, as well as the interactive effects between covariates, were evaluated. 

The analyses captured covariate effects that have been previously reported in PK studies and 

could serve as a supplementary technique for covariate selection.

A further ML application for supporting MIPD systems is assisting with model selection. 

There are numerous considerations when determining what population PK model should 

be for implementation into an MIPD program, especially because using different a priori 
models for Bayesian estimation can provide different PK estimations for the same patient. 

To help in the process of selecting an appropriate PK model, Lee et al65 evaluated an ML 

method to determine the best vancomycin PK model using virtually generated patients based 

on representative demographic and clinical data from the Kyuang Hee University Hospital 

Clinical Trial Center. Three ML algorithms—decision tree, random forest, and XGBoost—

were evaluated, and XGBoost was selected as the best model. The performance of the 
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XGBoost model had a wide range of accuracies varying from poor to good depending on 

the concentration sampling scenario (eg, trough or one-hour interval) and dose model (eg, 

single dose or steady state), yet provided more consistent performance across simulation 

scenarios compared with individual models without using the classifier. In addition, the 

model performance improved as the number of concentrations increased. This indicates a 

potential application to aid in the model selection process, although further studies using 

large real-world data sets are needed for validation.

ML Approaches for Quantitative Systems Pharmacology

Quantitative systems pharmacology (QSP) is another area of study that could benefit 

from ML approaches. This discipline intersects systems biology and pharmacometrics 

methodologies that use mechanism-based mathematical models to quantitatively describe 

dynamic interactions among multiple elements, including drug, physiology, and disease 

systems. These approaches have been increasingly applied in the drug development 

process to inform optimal therapeutic strategies or identify novel therapeutic targets.66–68 

Aghamiri et al69 provided an excellent overview of applications integrating ML and QSP. 

As highlighted in this review, ML algorithms possess the capability to handle big data 

from disparate sources, which is promising for supporting complex QSP platforms in 

being computationally efficient while making accurate predictions related to disease and 

drug mechanisms and response. Furthermore, a recent white paper from the QSP + ML 

working group from the International Society of Pharmacometrics QSP Special Interest 

Group outlined four categories encompassing recent research applications for integrating 

QSP and ML: (1) parameter estimation and extraction, (2) model structure, (3) dimension 

reduction, and (4) stochasticity and virtual populations.70 Furthermore, a review article 

from Ribba et al20 summarized reinforcement learning methods toward precision dosing 

and QSP. Although still in its early phases, the authors state that reinforcement learning 

and mechanistic modeling methodologies will enhance each other. It also has the potential 

to benefit the drug development process, although further research is needed, especially 

regarding its applicability during the early stages of drug development.

Applications to Support EHR Systems and Data Collection

Electronic health record systems contain vast amounts of clinical and patient data that can be 

leveraged to support TDM and MIPD. Data from EHRs can be grouped into structured data, 

which are formatted as prespecified fields (eg, demographics and laboratory results), and 

unstructured data, which do not follow a structured format (eg, free-text clinical notes and 

images). Although these data can usually be obtained through manual chart review or with 

the help of dedicated informatics teams, data extraction, processing, and preparation for PK 

analyses can be a tedious and time-consuming process, especially for unstructured data.71 A 

recent study sought to address these challenges by developing a system to abstract EHR data 

for PK/PD analyses,72 including medication, concentration, laboratory, and demographic 

data kept as structured data, as well as medication and dosing information from unstructured 

data using natural language processing.73 Notably, this system is able to format these EHR 

data as a data file for use in NONMEM, thereby reducing the time needed for an individual 

to prepare the specifically formatted file for population PK analysis. In addition, the authors 
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note that they are working to expand this system to enable extraction of phenotypic data, 

which could facilitate PK/PD and exposure–response analyses.

Another promising application inherent to the goals of MIPD is the development of 

CDS tools. Several applications have already been created or theorized as either free-

standing web-based tools or EHR-integrated systems.59,74–77 An approach that could further 

these CDS systems is to provide a continuous or self-learning process to automate or 

semiautomate model refinement as new data becomes available.59,78,79 This type of system 

could extract data directly from the EHR or a database/network and could even be set 

up across institutions.79 In addition, with advances in mobile and wearable biosensor 

technologies and devices, data could be collected in real time and provide feedback to 

patients and clinicians, as well as be connected to CDS systems.17,75

Figure 2 illustrates a potential EHR-integrated CDS system for MIPD. To ensure and 

facilitate interoperability of EHR data, standards such as Fast Healthcare Interoperability 

Resources (FHIR) should be used (https://www.hl7.org/fhir/index.html). FHIR is a 

representational state transfer (RESTful) application programming interface (API) that 

defines how EHR data should be exchanged. To develop CDS applications, the Substitutable 

Medical Applications and Reusable Technologies (SMART) platform, which uses FHIR 

as its API, allows for the creation of applications that read and write data from EHRs.80 

In addition, the SMART on FHIR platform provides authorization and authentication 

permissions as security measures to access these applications. Major EHR vendors (eg, 

Epic and Cerner) now offer web-based resources for the development of SMART on FHIR 

applications, as well as support for integration into EHRs. Our group recently published 

an EHR-integrated CDS tool for morphine precision dosing in neonates using Epic FHIR 

web services for authentication support,76 as well as an EHR-integrated PK dashboard for 

infliximab precision dosing in children with Crohn disease.77

DISCUSSION, GAP ANALYSIS, AND OUTLOOK

A recently published landscape analysis of regulatory submissions of AI and ML 

applications to the US Food and Drug Administration (FDA) has shown a rapid increase 

in the number of applications since 2016 across domains, with a significant increase in just 

2021.81 To ensure proper guidance and implementation of these applications, standards and 

best practices are needed. The FDA, Health Canada, and the United Kingdom’s Medicines 

and Healthcare Products Regulatory Agency jointly published guiding principles for “Good 

Machine Learning Practice” for medical device development, although the authors noted 

that these principles are also applicable to aspects of drug development.81,82 In addition, 

the International Coalition of Medicines Regulatory Authorities published a report outlining 

recommendations for stakeholders on the uses and challenges of AI to develop drugs, which 

was endorsed by the European Medicines Agency.83,84 As new applications and approaches 

are envisioned and evaluated, these guidelines will continue to evolve.

Although AI and ML approaches to support traditional precision dosing methodologies are 

promising, they are not without limitations and challenges. First, ML algorithms generally 

require large sample sizes (eg, n > 1000), which is more than what is typically needed for 
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population PK models. Furthermore, there are often deficiencies in the quality and quantity 

of labeled data sets, which can limit clinical applications.85 The development of databases 

across clinical research institutions or collaborations with large network groups is needed 

to support ML applications and MIPD systems. For example, the adoption of learning 

health systems, such as the ImproveCareNow Network, could facilitate the aggregation of 

data for precision medicine research.86,87 Interoperability standards to provide secure and 

scalable data transfer are also needed. In addition, approaches such as transfer learning 

in DL offer another viable solution when only sparse data sets are available, but further 

research is needed.52 Second, there is potential for ML algorithms to incorporate inherent 

biases in their predictions. Understanding these biases and assessing the generalizability 

of the modeling results should be an integral component of ML and MIPD development, 

especially if a model is clinically implemented as a CDS system. Third, population PK/PD 

and MIPD approaches allow for simulations to be performed, whereas ML is unable to 

perform simulations. This is a key limitation of ML approaches considering that simulations 

are often relied upon to ensure that the target concentration or efficacy is attained. Although 

ML may provide better predictive performance compared with population PK/PD analysis, 

as shown by the studies outlined in this review, population PK/PD or an integrated ML/PK 

approach will still be needed to ensure target attainment and to determine optimal dosing 

regimens in clinical settings. Finally, complex ML models, especially DL models, can be 

“black boxes” because their results are difficult to interpret. This may hinder the adoption 

of ML applications in clinical practice, especially because results from PK/PD analyses 

are more readily interpretable. Approaches to explain ML model outputs include SHAP 

and Local Interpretable Model-Agnostic Explanations,88 although these are not without 

limitations.89,90 To this end, collaboration across fields between pharmacometricians, 

informaticians, clinicians, clinical pharmacologists, and disease and domain experts is 

imperative for understanding and deciphering model results and predictions, as well as to 

ensure the correct implementation of AI into precision dosing.

CONCLUSION

Although AI and ML approaches for TDM and precision dosing are still in their 

infancy, there are already a burgeoning number of applications that show promise in 

advancing the field. Machine learning methodologies seem to act as counterparts to current 

pharmacometric techniques, with opportunities to enhance or support the goals of precision 

dosing. We expect these applications to continue to grow, especially as interoperability and 

data sharing continue to expand between institutions.
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FIGURE 1. 
Artificial intelligence, ML, and DL approaches in supporting TDM and MiPD applications.
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FIGURE 2. 
Diagram of an EHR-integrated CDS system for precision dosing. Patient data (eg, 

demographics, dosing history, laboratory results, physiological measurements, etc.) can be 

extracted from EHRs, which could additionally collect data from a smart device/biosensor 

and concentration measurements determined through liquid chromatography with tandem 

mass spectrometry (LC/MS/MS). These data can then be processed for use by an AI/ML 

model, PK model with Bayesian estimation, or hybrid ML/PK model. Implementation of a 

continuous learning mechanism could support automated or semi-automated refinement of 

model parameters and predictions as new patient data are added to the EHR. The results 

from the model would be displayed as a CDS application, which could be developed using 

the SMART on FHIR platform and would be accessible to clinicians to provide clinical 

guidance related to dose optimization for individual patients.

Poweleit et al. Page 17

Ther Drug Monit. Author manuscript; available in PMC 2023 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	Artificial Intelligence
	Pharmacometrics and Artificial Intelligence

	METHODS
	CASE EXAMPLES OF AI AND ML IN TDM AND MIPD
	Concentration and Exposure Prediction
	Dose Prediction
	ML Applications to Support MIPD Systems
	ML Approaches for Quantitative Systems Pharmacology
	Applications to Support EHR Systems and Data Collection

	DISCUSSION, GAP ANALYSIS, AND OUTLOOK
	CONCLUSION
	References
	FIGURE 1.
	FIGURE 2.

