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Abstract: Tuberculosis (TB) is a zoonotic infectious disease caused by Mycobacterium tuberculosis (Mtb).
Mtb is a typical intracellular parasite, and macrophages are its main host cells. NLRP3 inflammasome-
mediated pyroptosis is a form of programmed cell death implicated in the clearance of pathogenic
infections. The bidirectional regulatory effect of endoplasmic reticulum stress (ERS) plays a crucial
role in determining cell survival and death. Whether ERS is involved in macrophage pyroptosis with
Mtb infection remains unclear. This article aims to explore the regulation of the NLRP3 inflammasome
and pyroptosis by ERS in THP-1 macrophages infected with Mycobacterium bovis Bacillus Calmette-
Guérin (BCG). The results showed that BCG infection induced THP-1 macrophage ERS, NLRP3
inflammasome activation and pyroptosis, which was inhibited by ERS inhibitor TUDCA. NLRP3
inhibitor MCC950 inhibited THP-1 macrophage NLRP3 inflammasome activation and pyroptosis
caused by BCG infection. Compared with specific Caspase-1 inhibitor VX-765, pan-Caspase inhibitor
Z-VAD-FMK showed a more significant inhibitory effect on BCG infection-induced pyroptosis of THP-
1 macrophages. Taken together, this study demonstrates that ERS mediated NLRP3 inflammasome
activation and pyroptosis after BCG infection of THP-1 macrophages, and that BCG infection of
THP-1 macrophages induces pyroptosis through canonical and noncanonical pathways.

Keywords: endoplasmic reticulum stress; NLRP3 inflammasome; pyroptosis; Bacillus Calmette-Guerin;
THP-1 macrophages

1. Introduction

Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis
(Mtb) infection, and Mtb mainly proliferates within the alveolar macrophages of the infected
host [1]. Macrophages, which are innate immune cells, play a critical role in protecting
the host from a variety of bacterial and other pathogens. Once Mtb enters macrophages, it
resides within the phagosome and subsequently disrupts its normal function. Macrophages
play a crucial role in eliminating Mtb within the phagosome by producing reactive oxygen
and nitrogen. They also initiate a proinflammatory response that recruits immune cells to
the infection site, resulting in the formation of granulomas. These granulomas effectively
prevent bacterial replication and dissemination [2]. In addition, Mtb can also evade host
cell clearance by preventing the maturation process of macrophages [3]. During these
processes, Mtb, Mycobacterium bovis (M. bovis) and Mycobacterium bovis Bacillus Calmette-
Guérin (BCG) have shown variations in virulence, host range and metabolism. BCG is
the only vaccine available for human use against Mtb [4], studying the immunological
effects of BCG’s interaction with infected host cells can enhance our understanding of
tuberculosis pathogenesis.
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The endoplasmic reticulum (ER) is an organelle that plays a crucial role in maintaining
homeostasis in eukaryotic cells. Various pathogens or adverse stimuli can induce endoplas-
mic reticulum stress (ERS) [5–7]. ERS leads to the accumulation of unfolded or misfolded
proteins in the ER, impairing its normal physiological functions. In mild ERS, ER protects
cells from damage by activating unfolded protein response (UPR) to remove misfolded
proteins, and in excessive or persistent ERS, UPR stimulates autophagy, apoptosis and
pyroptosis [8]. Downstream of UPR, there are three receptors: inositol-requiring enzyme 1
(IRE1), double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase
(PERK) and activating transcription factor 6 (ATF6) [9–11]. Studies have shown that Mtb
can induce ERS in infected macrophages, thereby changing the fate of cells and Mtb [7,12].

The NLRP3 inflammasome is a crucial pattern recognition receptor of the innate
immune system, playing a vital role in protecting the host against bacterial, fungal and
viral infections [13,14]. NLRP3 inflammasome activation generally requires two steps:
initiation (signal 1) and activation (signal 2). The initiation process is triggered by pattern
recognition receptor signaling, such as Toll-like receptor (TLR) 4 or tumor necrosis factor
(TNF) signaling, whose subsequent maturation of pro-IL-1β and pro-IL-18 into IL-1β and IL-
18 and release are promoted through a nuclear factor-κB (NF-κB)-dependent pathway. The
activation process (signal 2) is induced by various pathogen-associated molecular patterns
(PAMPs) and damage-associated molecular patterns (DAMPs), including extracellular
ATP, pore-forming toxins, RNA viruses and particulate matter. Mitochondrial dysfunction,
reactive oxygen species (ROS) generation and lysosomal damage are all involved in the
activation of NLRP3 inflammasome assembly [15]. It has been shown that ERS triggers the
UPR, which in turn activates the NLRP3 inflammasome [16].

Pyroptosis is a form of inflammatory cell death that can be triggered by either a canoni-
cal Caspase1-mediated pathway or a noncanonical Caspase4/5/11-mediated pathway [17].
In both of these pathways, the corresponding caspases have the ability to cleave gasdermin-
D (GSDMD) to produce GSDMD-N that can form pores via oligomerization at the plasma
membrane [18]. This process involves the expulsion of cellular contents and the release of
IL-1β and IL-18 [19,20]. Moreover, Caspase3/8 can induce pyroptosis: Caspase3 cleaves
GSDME to generate the pyroptosis mediator GSDME-N, while Caspase8 cleaves GSDMD in
response to TAK1 inhibition [21,22]. Various factors, such as intracellular bacterial infection,
have been shown to stimulate pyroptosis. As a result, immune cells are recruited to the site
of infection to clear the bacteria and fight against further infection [23].

This study investigated whether ERS is involved in NLRP3 inflammasome activation
and pyroptosis after infection of THP-1 macrophages with BCG. Our results showed
that BCG-infected THP-1 macrophages induce ERS, activate the NLRP3 inflammasome
and trigger pyroptosis, and ERS is involved in NLRP3 inflammasome activation and
mediated pyroptosis. These results provide a new molecular mechanism for BCG-induced
macrophage pyroptosis, and provide a new basis for further research on the pathogenesis
of TB and its treatment.

2. Results
2.1. BCG Infection Induced THP-1 Macrophage ERS, NLRP3 Inflammasome Activations
and Pyroptosis

To investigate the effects of BCG infection on THP-1 macrophage ERS, NLRP3 inflam-
masome and pyroptosis, THP-1 macrophages were infected with BCG for 2 h, 6 h, 12 h,
24 h and 48 h. Western blotting showed that BCG infection increased the expression of
ERS-related proteins (IRE1α, PERK, ATF6, GRP78 and CHOP [24]), NLRP3 inflammasome-
related proteins (NLRP3, ASC and Pro-Caspase1) and pyroptosis-related proteins (GSDMD-
N, IL-1β, Cleaved-IL-1β and IL-18) of THP-1 macrophages in a time-dependent manner
(Figure 1A–C). TEM observation of cell morphology indicated that the cell morphology
and structure in the Ctrl group were normal, the organelles in the cytoplasm were clear,
and the cell membrane was intact. In the BCG group, the cell membrane was ruptured, the
cytoplasmic ribosomes were significantly lost, most of the mitochondria had swollen (the
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cristae were broken and dissolved, the matrix was lost, they were in a flocculent structure
and the mitochondria were vacuolated), and the rough endoplasmic reticulum was also
expanded. (Figure 1F). CCK-8 (Figure 1D) and LDH (Figure 1E) showed that cell viability
decreased with the prolongation of BCG infection time. These findings suggested that
BCG infection could induce THP-1 macrophage ERS, NLRP3 inflammasome activation
and pyroptosis.
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Figure 1. BCG infection induced THP-1 macrophage ERS, NLRP3 inflammasome activation and
pyroptosis. (A) The expression of IRE1α, PERK, ATF6 and GRP78 in THP-1 macrophages was
measured at indicated time points after BCG infection by Western blotting. (B) The expression of
NLRP3, ASC and Pro-Caspase1 in THP-1 macrophages was measured at indicated time points after
BCG infection by Western blotting (C) The expression of GSDMD-N, IL-1β, Cleaved-IL-1β and IL-18
in THP-1 macrophages was measured at indicated time points after BCG infection by Western blotting.
(D) Cell viability at indicated time points after BCG infection of THP-1 macrophages was detected
using CCK-8 kit. (E) LDH activity at indicated time points after BCG infection of THP-1 macrophages
was detected using LDH kit. (F) Cell morphology in THP-1 macrophages infection with BCG for 24 h
was observed of TEM. Scale bar: 1 µm. Nucleus (N); mitochondria (Mi); green arrows: cell membrane
intact; red arrow: cell membrane rupture; yellow arrow: ribosome loss; orange arrow: mitochondrial
swelling; blue arrow: rough endoplasmic reticulum expansion; blue circle: chromatin dissolution.
The results of three replicate experiments are presented as means ± SEM. * p < 0.05; ** p < 0.01;
*** p < 0.001.
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2.2. TUDCA Inhibits BCG-Infected THP-1 Macrophage NLRP3 Inflammasome Activity
and Pyroptosis

To explore the regulatory effects of ERS on NLRP3 inflammasome activity and pyrop-
tosis induced by BCG infection, THP-1 macrophages were pretreated with ERS inhibitor
TUDCA, and then infected by BCG. Western blotting showed that the protein expression of
IRE1α, PERK and ATF6 in THP-1 macrophages was significantly increased with BCG infec-
tion (Figure 2A), which was inhibited by TUDCA. The expression of NLRP3, Pro-Caspase1
and ASC proteins showed the same trend (Figure 2B). Immunofluorescence showed that
the expression of NLRP3 of THP-1 macrophages was increased with BCG infection, and
was alleviated by TUDCA (Figure 2C). These results indicated that ERS mediated NLRP3
inflammasome activation in THP-1 macrophages upon BCG infection.
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Figure 2. TUDCA treatment suppressed BCG-infected THP-1 macrophage ERS and NLRP3 inflam-
masome activation. THP-1 macrophages were pretreated for 2 h with TUDCA (5 mM) prior to BCG
infection (MOI = 10) for 24 h (A). The expression of IRE1α, PERK and ATF6 was measured by Western
blotting (B) The expression of NLRP3, Pro-Caspase1 and ASC was measured by western blotting.
(C) Immunofluorescent staining was utilized to detect NLRP3 in these cells. Scale bar: 50 µm. Data
are means ± SEM from triplicate experiments. * p < 0.05; ** p < 0.01; *** p < 0.001.

Similarly, the upregulated expression of pyroptosis-associated proteins Cleaved Cas-
pase1, GSDMD-N, IL-1β, Cleaved-IL-1β and IL-18 in THP-1 macrophages caused by BCG
infection was inhibited by TUDCA (Figure 3A). TEM observation of cell morphology
showed that the cell morphology and structure of the control group were normal, with
intact cell membranes and irregular nucleus. In the BCG group, clear signs of cell py-
roptosis were observed, including cell membrane rupture, significant loss of cytoplasmic
ribosomes, mitochondrial swelling and rough endoplasmic reticulum expansion. After
TUDCA pretreatment, there were a few discontinuous areas in the cell membrane and mild
swelling of the mitochondria, which attenuated the symptoms caused by BCG infection-
induced pyroptosis (Figure 3B). ELISA showed that BCG infection raised the extracellular
release of IL-1β and IL-18 (Figure 3C,D), while TUDCA pretreatment reduced the release
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of these inflammatory cytokines. Cell viability was assessed via CCK-8 (Figure 3E) and
LDH (Figure 3F) assays showed that the cell viability decreased and the activity of LDH
increased significantly in the BCG-infected group compared with the control group, and
TUDCA pretreatment increased the cell viability and reduced the release of LDH. Together,
these data demonstrated that ERS mediated pyroptosis induced by BCG infection.
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Figure 3. TUDCA treatment inhibited BCG-infected THP-1 macrophage pyroptosis. THP-1
macrophages were pretreated for 2 h with TUDCA (5 mM) prior to BCG infection (MOI = 10)
for 24 h. (A) The expression of Cleaved Caspase1, GSDMD-N, IL-1β, Cleaved-IL-1β and IL-18 was
assessed by Western blotting. (B) TEM observation of cell morphology. Scale bar: 1 µm. Nucleus
(N); mitochondria (Mi); green arrows: cell membrane intact; red arrow: cell membrane rupture;
yellow arrow: ribosome loss; orange arrow: mitochondrial swelling; blue arrow: rough endoplasmic
reticulum expansion; blue circle: chromatin dissolution. (C,D) Cell culture supernatant IL-1β and
IL-18 concentrations were detected by ELISA. (E) Cell viability in THP-1 macrophages was detected
using CCK-8 kit. (F) LDH activity in THP-1 macrophages was detected using LDH kit. Data are
means ± SEM from triplicate experiments. * p < 0.05; ** p < 0.01; *** p < 0.001.

2.3. MCC950 Inhibits BCG-Infected THP-1 Macrophage NLRP3 Inflammasome Activation
and Pyroptosis

To verify the regulatory role of the NLRP3 inflammasome on pyroptosis during BCG
infection, THP-1 macrophages were pretreated with NLRP3 inhibitor MCC950 and then
infected by BCG. Western blotting showed that the expressions of NLRP3, Pro-Caspase1
and ASC in THP-1 macrophages were significantly upregulated with BCG infection
(Figure 4A–D), which was inhibited by MCC950. Immunofluorescence analysis revealed
that the expression of NLRP3 in THP-1 macrophages was upregulated upon BCG infection.
However, this upregulation was mitigated by MCC950 treatment (Figure 4E). The upreg-
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ulated expression of Cleaved Caspase1, GSDMD-N, IL-1β, Cleaved-IL-1β and IL-18 in
THP-1 macrophages caused by BCG infection was also inhibited by MCC950 (Figure 5A–F).
TEM observation of cell morphology indicated that the cell morphology and structure of
the control group were normal, with intact cell membranes and clear structure of each
organelle in the cytoplasm. The BCG group exhibited evident characteristics of pyroptosis,
including cell membrane rupture, rough endoplasmic reticulum expansion, cytoplasmic
ribosome loss and mitochondrial swelling. Pretreatment with MCC950 resulted in a slight
loss of cytoplasmic ribosomes and mild mitochondrial swelling, which alleviated the py-
roptosis induced by BCG infection (Figure 5G). ELISA showed that BCG infection raised
the extracellular release of IL-1β and IL-18 (Figure 5H,I), while MCC950 pretreatment
decreased these inflammatory cytokines. Cell viability was assessed via CCK-8 (Figure 5J)
and LDH (Figure 5K) assays showed that compared with the control group, the cell viability
decreased and the activity of LDH increased significantly in the BCG-infected group, while
MCC950 pretreatment increased the cell viability and reduced the release of LDH. Together,
these data suggest that NLRP3 inflammasome activation mediated pyroptosis induced by
BCG infection.
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Figure 4. MCC950 inhibited BCG-infected THP-1 macrophages NLRP3 inflammasome activation.
(A–D) After pretreatment for 2 h with MCC950 (10 µM), THP-1 macrophages were infected for
24 h with BCG (MOI = 10), after which NLRP3, Pro-Caspase1 and ASC protein levels were examined
by Western blotting. (E) Immunofluorescent staining was utilized to detect NLRP3 in these cells.
Scale bar: 50 µm. The data are presented as means ± SEM from triplicate experiments. * p < 0.05;
*** p < 0.001.
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Figure 5. NLRP3 inflammasome-mediated pyroptosis in BCG-infected THP-1 macrophages. THP-1
macrophages were pretreated with MCC950 (10 µM) for 2 h and infected with BCG (MOI = 10)
for 24 h. (A–F) The expression of Cleaved Caspase1, GSDMD-N, IL-1β, Cleaved-IL-1β and IL-18
protein levels were assessed by Western blotting (G) TEM observation of cell morphology. Scale bar:
1 µm. nucleus(N); mitochondria (Mi); green arrows: cell membrane intact; red arrow: cell membrane
rupture; yellow arrow: ribosome loss; orange arrow: mitochondrial swelling; blue arrow: rough
endoplasmic reticulum expansion; green circle: extravasation of cytoplasmic contents. (H,I) Cell
culture supernatant IL-1β and IL-18 concentrations were detected by ELISA. (J) THP-1 macrophage
viability was detected using CCK-8 kit. (K) LDH activity in THP-1 macrophages was detected using
LDH kit. Data are means (±SEM) of three independent experiments. * p < 0.05; *** p < 0.001.

2.4. BCG-Infected THP-1 Macrophage Trigger Pyroptosis via Canonical and Noncanonical Pathways

To clarify the pathway of pyroptosis in THP-1 macrophages infected with BCG, THP-1
macrophages were pretreated with the Caspase1-specific inhibitor VX-765 and the pan-
Caspase inhibitor Z-VAD-FMK prior to BCG infection. Western blotting showed that
GSDMD-N, IL-1β, Cleaved-IL-1β and IL-18 expression were significantly upregulated
upon BCG infection, and pretreatment THP-1 macrophages with VX-765 and Z-VAD-FMK
prior to BCG infection effectively suppressed pyroptosis, with Z-VAD-FMK exhibiting a
greater inhibitory effect (Figure 6A–E). ELISA showed that the concentration of IL-1β and
IL-18 in the cell culture supernatant was consistent with the previously mentioned findings
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(Figure 6F,G), and BCG-induced increases in LDH released from THP-1 macrophages were
reduced in the context of such pretreatment (Figure 6H). These results suggested that BCG
induces pyroptosis in THP-1 cells through canonical and noncanonical pathways.
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cal pathways. Cells were pretreated with 50 µM of VX-765 or 50 µM of Z-VAD-FMK for 2 h; they were
then infected with BCG (MOI = 10) for 24 h. (A–E) The expression of GSDMD-N, IL-1β, Cleaved-
IL-1β and IL-18 was measured by Western blotting. (F,G) Cell culture supernatant IL-1β and IL-18
concentrations were detected by ELISA. (H) LDH activity in THP-1 macrophages was detected using
LDH kit. The data are presented as means ± SEM from triplicate experiments. * p < 0.05; *** p < 0.001.

3. Discussion

Tuberculosis remains a significant global public health concern. The Mtb responsible
for TB initially infects the distal airways and then spreads to the interstitium of the lung.
Macrophages are the primary target cells for Mtb, as they possess the ability to phagocytose
these bacteria. However, Mtb can thrive and multiply in macrophages due to its ability
to interfere with phagolysosome formation [25,26]. Thus, the form of death of infected
macrophages plays a pivotal role in the outcome of Mtb infection. Gaining a better un-
derstanding of the process of macrophage death triggered by Mtb infection will help in
identifying new targets for host-directed therapy (HDT) of tuberculosis.

Pyroptosis is a form of cell death that is mediated by the GSDM family of pro-
teins, including GSDMD and GSDME. Studies have shown that Mtb infection can trigger
macrophage pyroptosis, leading to the release of proinflammatory factors and exacerbating
tissue damage [27]. Our current study confirmed this finding: this study found that BCG
infection caused the upregulation of pyroptosis-related molecules GSDMD-N, Cleaved
Caspase1, IL-1β, Cleaved-IL-1β and IL-18 in macrophages, the cell membrane rupture, the
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loss of cytoplasmic ribosomes and mitochondrial swelling, supporting the ability of BCG
to induce macrophage pyroptosis.

Previous studies demonstrated that various diseases, including I/R injury [28] and
Periodontitis [29], are associated with both canonical and noncanonical pathways of py-
roptosis. Therefore, we explored the pathway of pyroptosis after BCG-infected THP-1
macrophages. In this study, we pretreated cells with the VX-765 and Z-VAD-FMK, to
investigate their effects on pyroptosis. Our results showed that both inhibitors effec-
tively inhibited pyroptosis. However, Z-VAD-FMK exhibited a greater downregulation of
pyroptosis-related proteins compared to VX-765. These findings suggest that the pathways
of pyroptosis induced by BCG infection of THP-1 macrophages involve both canonical and
noncanonical pathways.

Pyroptosis is a unique form of cell death that involves the activation of the NLRP3 in-
flammasome [30]. The NLRP3 inflammasome consists of the NLRP3 receptor, the ASC adap-
tor protein and the caspase-1 effector protein, which can be activated by a range of stimuli.
Studies have shown that NLRP3 inflammasome/pyroptosis is related to various diseases,
including diabetic retinopathy [31] and Parkinson’s disease [32]. However, the relationship
between the NLRP3 inflammasome and pyroptosis in BCG-infected THP-1 macrophages
remains unclear. This study provided evidence that BCG infection can activate the NLRP3
inflammasome in THP-1 macrophages by upregulating NLRP3 inflammasome-related
molecules NLRP3, Pro-Caspase1 and ASC. Additionally, the results suggest that NLRP3
inhibitor MCC950 may inhibit pyroptosis following BCG infection, which is consistent with
past findings [13].

The ER plays a vital role in eukaryotic cells, being responsible for secretory protein
synthesis, folding and modification, regulation of lipid synthesis, maintenance of intracel-
lular calcium ion homeostasis, etc. [33,34] Both pathological and physiological conditions
can contribute to protein misfolding and the consequent induction of ERS, which has been
found to be significant in the development of tuberculosis [12,34]. Previous studies have
demonstrated that ERS is involved in the activation of the NLRP3 inflammasome and the
induction of pyroptosis in macrophages infected with Mtb and M. bovis [34–36]. However,
the relationship between ERS, the NLRP3 inflammasome and pyroptosis after BCG-infected
macrophages remains unclear. Therefore, we investigated the potential involvement of
ERS in the activation of NLRP3 inflammasome and pyroptosis in macrophages infected
with BCG. This study has confirmed that BCG infection can cause ERS by increasing
ERS-related proteins IRE1α, PERK and ATF6 in THP-1 macrophages. Additionally, ERS
inhibitor TUDCA infection can prevent NLRP3 inflammasome activation and pyroptosis
in BCG-infected THP-1 macrophages. These results suggest that ERS mediates NLRP3
inflammasome activation and pyroptosis in THP-1 macrophages infected with BCG.

This study employed utilized corresponding inhibitors to investigate the correlation
between ERS, the NLRP3 inflammasome and pyroptosis in THP-1 macrophages infected
with BCG. Ultimately, these data demonstrated BCG infection to induce ERS, which in
turn mediated NLRP3 inflammasome activation and pyroptosis. Additionally, the study
revealed that BCG infection of THP-1 cells can trigger pyroptosis through both canonical
and noncanonical pathways.

4. Materials and Methods
4.1. Antibodies and Reagents

Key reagents used included Fetal Bovine Serum (FBS, 10099141C, Gibco, Carlsbad,
CA, USA); RPMI-1640 (C11875500BT, Gibco, Carlsbad, CA, USA); β-mercaptoethanol
(M8211, Solarbio, Beijing, China); PMA (P1585, Sigma-Aldrich, St. Louis, MO, USA);
Middlebrook 7H9 Broth (M1315, BD, San Jose, CA, USA); Middlebrook ADC Enrichment
(211887, BD, San Jose, CA, USA); M-PER (78501, Thermo Fisher Scientific, Waltham, MA,
USA); Protease inhibitor Cocktail (78442, Sigma-Aldrich, St. Louis, MO, USA); BCA Protein
Content Detection Kit (KGP902, KGI, Nanjing, China); anti-β-actin (20536-1-AP, Protein-
tech, Wuhan, China); anti-PREK (24390-1-AP, Proteintech, Wuhan, China); anti-GRP78
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(11587-1-AP, Proteintech, Wuhan, China), HRP-labeled goat anti-rabbit IgG (SA00001-2,
Proteintech, Wuhan, China); Fluorescein conjugated goat anti-rabbit IgG (SA00003-2, Pro-
teintech, Wuhan, China); anti-IRE1α (3294S, Cell Signaling Technology, Danvers, MA,
USA); anti-GSDMD-N (39754S, Cell Signaling Technology, Danvers, MA, USA); anti-Pro-
Caspase1 (3866S, Cell Signaling Technology, Danvers, MA, USA); anti-ASC (13833S, Cell
Signaling Technology, Danvers, MA, USA); anti-NLRP3 (15101S, Cell Signaling Technol-
ogy, Danvers, MA, USA); anti-IL-1β (12703S, Cell Signaling Technology, Danvers, MA,
USA); anti-Cleaved-IL-1β (83186S, Cell Signaling Technology, Danvers, MA, USA); anti-IL-
18 (54943S, Cell Signaling Technology, Danvers, MA, USA); anti-ATF6 (DF6009, Affinity,
Changzhou, China); anti-Cleaved Caspase1 (AF4005, Affinity, Changzhou, China); Normal
Donkey Serum (SL050, Solarbio, Beijing, China); Hoechst 33,342 (C1028, Beyotime, Shang-
hai, China); Human IL-1 beta PicoKine ELISA Kit (EK0392, Boster, Wuhan, China); Human
IL-18 PicoKine ELISA Kit (EK0864, Boster, Wuhan, China); CCK-8 Kit (abs50003, Absin,
Shanghai, China); LDH Assay Kit (ab102526, Abcam, Cambridge, UK); TUDCA sodium
(HY-19696A, MedChemExpress, Monmouth Junction, NJ, USA); MCC950 (HY-12815, Med-
ChemExpress, Monmouth Junction, NJ, USA); Z-VAD-FMK (HY-16658B, MedChemExpress,
Monmouth Junction, NJ, USA); VX-765 (S2228, Selleckchem, Houston, TX, USA).

4.2. BCG Culture

BCG was purchased from Chengdu Institute of Biological Products, China. To culture
these bacteria, Middlebrook 7H9 medium containing 0.2% Tween-80, autoclaved and mixed
with 10% ADC Enrichment medium, was used. BCG was then inoculated in this culture
media and grown via static culture at 37 ◦C in a 5% CO2 cell incubator, with bacteria being
harvested and aliquoted as reported in our prior manuscript [37].

4.3. Cell Culture and Infection

THP-1 cells were acquired from the Chinese Academy of Sciences Cell Bank and
grown in RPMI-1640 medium with 10% FBS and 0.05 mmol·L−1 β-mercaptoethanol at
37 ◦C and 5% CO2 in a cell incubator, subcultured when the cell density reached 80–90%.
To differentiate THP-1 monocytes into macrophages, the cells were cultured in 6-well plates
(2 × 106/well) containing PMA (50 ng/mL) for 48 h, after which they were cultured in
fresh media for 24 h. Adherent cells were then infected with BCG (MOI = 10) following
pretreatment for 2 h with appropriate inhibitors. After pretreatment with TUDCA (5 mM),
MCC950 (10 µM), VX-765 (50 µM) or Z-VAD-FMK (50 µM) for 2 h, THP-1 macrophages
were infected with BCG (MOI = 10) for subsequent testing.

4.4. Western Blotting

Prior to lysis, cells were washed thrice with chilled PBS. The resulting lysate was
centrifuged at 12,000 rpm for 15 min. Protein concentration in the supernatant was de-
termined using the BCA Protein Assay Kit. Subsequently, SDS-PAGE separation was
performed and the separated proteins were transferred to activated PVDF membranes.
Blots were blocked with 5% skimmed milk in TBS for 1 h at room temperature, followed by
overnight incubation with antibodies specific for β-actin (1:3000), IRE1α (1:1000), PERK
(1:1000), ATF6 (1:1000), GRP78(1:4000), GSDMD-N (1:1000), Pro-Caspase1 (1:1000), Cleaved
Caspase1 (1:1000), NLRP3 (1:1000), ASC(1:1000), IL-1β (1:1000), Cleaved-IL-1β (1:1000) or
IL-18 (1:1000). Blots were then rinsed 6 times with TBST (5 min/wash), probed for 1 h with
HRP-labeled goat anti-rabbit IgG (1:3000) at room temperature and rinsed 4 times with
TBST and 2 times with TBS (5 min/wash), then immunoreactive bands were visualized
using an ECL kit from Abclonal (Wuhan, China). Protein bands were scanned with an
Amersham Imager 6000 (GE Healthcare, Fairfield, CT, USA).
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4.5. ELISA

The supernatants from cells in the appropriate treatment groups were collected and
analyzed according to the instructions provided using ELISA kits.

4.6. CCK-8 Assay

Cells were plated in 96-well plates (1 × 104/well). After treatment, as discussed above
(See Section 2.3), 10 µL CCK-8 reagent was added per well. After a duration of 3 h, the
absorbance was measured at 450 nm utilizing a fluorescent microplate reader, and the
resulting data were recorded.

4.7. LDH Activity Assay

Cell culture supernatants were collected from appropriate treatment groups, and
processed as per the kit instructions. Once completed, a microplate reader was used to
measure the absorbance value (OD) at 450 nm every 5 min at 37 ◦C in the dark. The
obtained data were recorded.

4.8. Immunofluorescent Detection of NLRP3

Cells were added to 12-well plates (3 × 105/well) on coverslips. Appropriate inhibitors
were used to pretreat these cells, after which they were infected using BCG (MOI = 10).
At appropriate time points, the medium was removed and the cells were twice washed
in PBS (3 min per wash), followed by fixation with paraformaldehyde (4%) for 20 min.
Following three more PBS washes (3 min per wash), the cells were permeabilized in PBS
containing Triton X-100 (0.5%) at room temperature for 20 min, washed again (3 × 3 min
in PBS), blocked for 30 min with 10% Normal Donkey Serum, and probed overnight at
4 ◦C for NLRP3 expression. After that, the cells were rinsed with PBS (3 × 5 min), then
probed with fluorescent secondary antibody at 37 ◦C for 1 h while being kept away from
light, using Hoechst 33,342 as a nuclear counterstain, then washed with PBS (3 × 5 min)
and observed under a microscope.

4.9. Transmission Electron Microscopy (TEM)

Cells were prefixed with a 3% glutaraldehyde, then postfixed in 1% osmium tetroxide,
dehydrated in series acetone, infiltrated in Epox 812 for a longer time and embedded. The
semithin sections were stained with methylene blue and ultrathin sections were cut with
diamond knife, stained with uranyl acetate and lead citrate. Sections were examined with
JEM-1400-FLASH transmission electron microscope.

4.10. Statistical Analysis

Experiments were completed in triplicate, and data were analyzed via t-tests or one-
way ANOVAs using GraphPad Prism 9.0. The Tukey–Kramer multiple comparisons test
was used for post hoc comparisons. * p < 0.05; ** p < 0.01; *** p < 0.001.

5. Conclusions

These results suggest that BCG infection can induce ERS activity within THP-1
macrophages, ERS regulates NLRP3 inflammasome activity and pyroptosis (Figure 7).
Together, these results offer a robust foundation for future research aimed at exploring the
etiology and treatment of TB.
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