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Abstract: Medulloblastoma (MB) is the most common type of malignant pediatric brain tumor.
Neuropilin-1 (NRP1), encoded by the NRP1 gene, is a transmembrane glycoprotein overexpressed in
several types of cancer. Previous studies indicate that NRP1 inhibition displays antitumor effects in
MB models and higher NRP1 levels are associated with poorer prognosis in MB patients. Here, we
used a large MB tumor dataset to examine NRP1 gene expression in different molecular subgroups and
subtypes of MB. We found overall widespread NRP1 expression across MB samples. Tumors in the
sonic hedgehog (SHH) subgroup showed significantly higher NRP1 transcript levels in comparison
with Group 3 and Group 4 tumors, with SHH samples belonging to the α, β, ∆, and γ subtypes.
When all MB subgroups were combined, lower NRP1 expression was associated with significantly
shorter patient overall survival (OS). Further analysis showed that low NRP1 was related to poorer
OS, specifically in MB subgroups SHH and Group 3 MB. Our findings indicate that patients with
SHH and Group 3 tumors that show lower expression of NRP1 in MB have a worse prognosis, which
highlights the need for subgroup-specific investigation of the NRP1 role in MB.

Keywords: neuropilin-1; NRP1; medulloblastoma; pediatric cancer; brain tumor

1. Introduction

Medulloblastoma (MB) is the most frequent type of malignant brain tumor in chil-
dren and is an important cause of cancer-related morbidity and mortality in pediatric
patients. Multimodal treatment with chemotherapy, radiotherapy, and surgery has im-
proved cure rates, but about one-third of patients still relapse, and survivors experience
long-term neurological, cognitive, and endocrinological sequalae [1,2]. Classification into
molecular subgroups has greatly contributed to the advancement of our understanding
of MB biology and clinical prognosis. The four consensus molecular subgroups of MB
are wingless-activated (WNT), sonic hedgehog (SHH), Group 3, and Group 4; patients
bearing Group 3 and Group 4 tumors having a particularly poor prognosis [2–5]. Within
each subgroup, intra- and intertumoral heterogeneity has led to further classification into
twelve subtypes [6,7]. MB arises in the cerebellum, with different molecular subgroups
originating from diverse cells of origin [8,9].
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MB hijacks the biological mechanisms that mediate normal central nervous system
(CNS) development and plasticity [10–12]. Neuropilin-1 (NRP1), a transmembrane glyco-
protein encoded by the NRP1 gene, is found in vertebrates and plays a role in neuronal
development, notably by guiding axons through a mechanism dependent on semaphorine
(SEMA) proteins, particularly Class 3 SEMA [13]. NRP1 also influences cell signaling
and cell function by acting as a co-receptor for vascular endothelial growth factor (VEGF)
and its receptor VEGFR, in addition to interacting with other growth factors including
placental growth factor (PlGF), fibroblast growth factor (FGF), hepatocyte growth factor
(HGF), platelet-derived growth factor (PDGF), and transforming growth factor β (TGF-
β) [14].

NRP1 expression is abnormally increased in various cancer types, including MB [14–17].
Overexpression of NRP1 has been associated with worse prognosis in lung cancer [18],
pancreatic cancer [19], liver cancer [16], breast cancer [20], and glioma [15]. One pre-
vious study indicated that high NRP1 levels are correlated with poor prognosis in MB
patients [21] and that NRP1 inhibition resulted in antitumoral effects in experimental mod-
els of MB [17,21–23]. Given that pediatric brain tumors likely arise from abnormalities in
CNS development during embryogenesis, they may be particularly sensitive to factors that
influence neurodevelopment, such as NRP1. Here, we analyzed NRP1 transcript levels and
their possible association with overall survival (OS) in different molecular subgroups and
subtypes of MB tumors.

2. Results
2.1. NRP1 Transcript Levels in Different MB Molecular Subgroups

There was widespread NRP1 expression across MB tumors. Tumors in the SHH
subgroup (n = 223) showed significantly higher transcript levels of NRP1 in comparison
with Group 3 (n = 144) and Group 4 (n = 326) tumors (ps < 0.001; Figure 1).
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Figure 1. NRP1 gene expression in different molecular subgroups of human MB. Tumors from
the dataset, as described by Cavalli et al. [24], were analyzed with the R2 Genomics Analysis
and Visualization Platform (http://r2.amc.nl). Results are presented in boxplot format as log2-
transformed signal intensity. Bars show data for Group 3 (n = 144), Group 4 (n = 326), SHH (n = 223),
and WNT (n = 70) MB; *** p < 0.001.
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2.2. NRP1 Transcript Levels in Different MB Subtypes

MB tumors belonging to the WNT β, SHH γ, Group 3 α, Group 4 α, and Group 4 γ

subtypes showed apparent lower levels of NRP1 expression compared to other subtypes,
particularly WNT α (Figure 2).
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Figure 2. NRP1 gene expression across different subtypes of human MB. Tumors from the dataset,
described by Cavalli et al. [24], were analyzed with the R2 Genomics Analysis and Visualization
Platform (http://r2.amc.nl). Results are presented in boxplot format as log2-transformed signal
intensity. Bars show data for all 12 MB subtypes.

2.3. Lower NRP1 Expression Is Associated with Shorter OS in Patients with MB

Analysis of MB patient OS in relation to NRP1 tumor transcript levels revealed that,
in the set of tumors combining all MB subgroups (n = 612), lower NRP1 expression was
associated with shorter OS (p < 0.0001). When the molecular subgroups were analyzed
separately, we observed that low NRP1 was related to shorter patient OS specifically in MB
subgroups SHH and Group 3 (both ps < 0.05). In contrast, patients with Group 4 tumors
showed an apparent reduction in OS when NRP1 levels were higher, although this effect
did not reach statistical significance (Figure 3).
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Cavalli et al. [24], were analyzed. Patient OS was measured from the day of diagnosis until death or
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long-rank statistics; p < 0.05.

2.4. NRP1 Transcript Levels in MB Molecular Subgroups in a Second Dataset

Analysis of data in another, smaller MB dataset, namely the Tumor Medulloblastoma–
Pfister (n = 67), originally described in reference [5], confirmed significantly lower NRP1
transcription levels in Group 3 (n = 41, p < 0.001) and Group 4 (n = 64, p < 0.0001) tumors
compared with SHH tumors (n = 46, Figure 4).
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Figure 4. NRP1 gene expression in different molecular subgroups of human MB. Data from the Tumor
Medulloblastoma–Pfister (n = 67) dataset [5] were obtained through R2: Genomics Analysis and
Visualization Platform (https://hgserver1.amc.nl/cgi-bin/r2/main.cgi (accessed on 12 July 2023)),
normalized, and log2 transformed. The “ggplot2”, “ggsignif”, and “tidyverse” packages were used
for analysis and graph plotting. WNT, n = 16, SHH, n = 46, Group 3, n = 41, and Group 4, n = 64; *** p
< 0.001 and **** p < 0.0001.

3. Discussion

Previous evidence has indicated that NRP1 inhibition displays antitumor effects in
experimental MB. Knockdown of NRP1 reduced the growth of orthotopic D283 and D341
MB xenografts and prevented spinal metastasis in mice, resulting in significantly prolonged
survival, without affecting MB cell proliferation per se. In addition, blocking NRP1 with
specific antibodies prevented PlGF-induced activation of protein kinase pathways in human
and murine MB cells [17]. NRP1 inhibition with the peptidomimetic agent MR438 reduced
self-renewal capacity, invasiveness, and stemness markers in MB stem cells obtained from
MB cell line cultures [22]. MR438 also sensitized MB stem cells to radiotherapy in vitro
and improved the efficacy of radiotherapy in vivo in a heterotopic xenograft mouse model
of MB [23]. Transient expression of microRNA MiR-148a in non-WNT medulloblastoma
cell lines resulted in impaired proliferation, survival, invasiveness, and tumorigenicity of
MB cells associated with a reduction in NRP1 expression, whereas restoration of NRP1
rescued the disruption of invasion potential and tumorigenicity [21]. Together, these
findings indicate that NRP1 inhibition displays antitumor effects on MB by influencing cell
survival, invasiveness, and stemness. On the basis of evidence for a stimulating role of the
PlGF/NRP1 pathway in pediatric cancers, a recent open-label Phase I clinical trial aimed to
evaluate TB-403, a monoclonal antibody against PlGF, in pediatric patients with relapsed
or refractory MB, neuroblastoma, Ewing sarcoma, or alveolar rhabdomyosarcoma [25].

Immunohistochemical analyses found NRP1 overexpression in MB (n = 5 samples)
compared to non-tumoral pediatric cerebellar tissue (n = 2). Additionally, over 90% of a set
of 32 MB samples of different molecular subtypes showed strong NRP1 expression [17].
NRP1 levels were also previously studied by immunohistochemistry in 93 formalin fixed
paraffin-embedded MB tumor sample tissues. Around 75% of WNT subgroup tumors
showed no detectable NRP1, whereas 23% of Group 3 tumors lacked NRP1 expression.
Patients bearing tumors with moderate or high NRP1 levels had significantly shorter overall
survival than those with no detectable, or low, NRP1 expression [21]. Another analysis
of a small set of MB samples (34 samples with low NRP1 expression and 8 samples with
high NRP1 expression) found reduced survival in patients with high-expressing MB [17].

https://hgserver1.amc.nl/cgi-bin/r2/main.cgi
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Collectively, these data suggest that one could expect high NRP1 levels to be associated
with a poorer prognosis.

The present findings, obtained from a larger patient cohort, indicate that WNT and
SHH tumors, which present relatively better prognosis, show higher NRP1 expression
compared to Group 3 and Group 4 MB. This pattern was further confirmed in a second
MB tumor dataset. In addition, there is a marked difference between subtypes (α or β)
within the Wnt subgroup, as well as higher expression in α and β subtypes in comparison
with γ tumors within the Group 4 molecular subgroup. Unexpectedly, our present results
indicate that MB patients with SHH and Group 3 tumors that display lower levels of
NRP1 transcription have a worst prognosis. A similar pattern was observed in Wnt tumors,
although the effect did not reach significance, likely because of a smaller number of samples.
In contrast, patients with Group 4 tumors with high NRP1 show an apparent decline in
OS. It is possible that the heterogeneity in NRP1 levels between subtypes within specific
subgroups (such as Wnt) impacts the association of transcript levels and OS when all
tumors belonging to a given subgroup are analyzed together. It should be noted that NRP1
expression may be a minor contributing factor to the already poorer outcome of patients
with Group 3 and Group 4 tumors when compared to other molecular subgroups.

Although most previously published findings indicate that NRP1 promotes tumor
growth and contributes to reducing cancer patient survival [17,21], it might not always
be the case. For instance, the NRP1 ligand PIGF acts as a pro-tumoral factor in some
models but can inhibit tumor growth in others [26]. Moreover, higher NRP1 expression was
reported to be associated with a longer survival time in patients with neuroblastoma (NB),
a pediatric tumor usually arising from the peripheral nervous system. The same study
showed that NRP1 knockdown promoted migration and invasion in NB cells, suggesting
a tumor suppressive role for NRP1, via activation of β1 integrin [27]. Together with the
present results, these findings raise the possibility that the role of NRP1 in MB in different
tumor subtypes is more complex than previously thought and highlight the need for further
experimental studies that explore the role of NRP1 in a subgroup-specific manner.

4. Materials and Methods
4.1. Gene Expression, Tumor and Patient Data

Analyses of NRP1 transcription were first performed in a previously described tran-
scriptome dataset comprising 763 tumor samples from patients with MB (Cavalli cohort,
(GEO: GSE85218)) [24]. Expression levels were normalized using the R2 Genomics Anal-
ysis and Visualization Platform (http://r2.amc.nl). Tumors were classified into different
molecular subgroups and subtypes according to data available in the dataset. A feature
of the R2 platform, namely the Kaplan Scan (KaplanScan algorithm), where an optimum
survival cut-off is established based on statistical testing, was used.

The database Tumor Medulloblastoma-Pfister-167 [5] was downloaded from R2: Ge-
nomics Analysis and Visualization Platform (https://hgserver1.amc.nl/cgi-bin/r2/main.
cgi (accessed on 12 July 2023)). Data were acquired, normalized, and log2 transformed.
The number of samples analyzed per molecular subgroup was WNT, n = 16, SHH, n = 46,
Group 3, n = 41, and Group 4, n = 64 MB tumors. The “ggplot2”, “ggsignif”, and “tidyverse”
packages were used for analysis and graph plotting. The “PMCMRplus” package was used
for statistical analysis. The packages were used in R version 4.3.0.

4.2. Statistical Analysis

Data are presented in box plot format as log2-transformed signal intensity. Com-
parisons in transcript levels were performed using the Welch’s ANOVA through the R2
platform, with p values < 0.01 considered to indicate significant statistical differences.
Results are presented in boxplot format as log2-transformed signal intensity, with data
shown as median and whiskers, minimum to maximum. Patient OS was measured from
the day of diagnosis until death or the date of last follow-up. OS was calculated using
the Kaplan–Meier estimate, with median values and long-rank statistics; p < 0.05 would
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indicate significant differences between groups in OS. Data from the Pfister cohort were
analyzed with the Kruskal–Wallis analyses if variance followed by Dunn’s tests.

5. Conclusions

In summary, the present study is the first to report a subgroup-specific decline in OS
associated with a reduction in NRP1 expression in MB tumors. This finding highlights the
importance of identifying differences among MB groups when characterizing biomarkers
and therapeutic targets. Further experiments should aim to clarify whether NRP1 has
differential effects on MB growth depending on molecular subtype.
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