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Abstract: The aim of this review article is to collate recent contributions of proteomic studies to cystic
fibrosis transmembrane conductance regulator (CFTR) biology. We summarize advances from these
studies and create an accessible resource for future CFTR proteomic efforts. We focus our attention
on the CFTR interaction network at the cell surface, thus generating a CFTR ‘surfaceome’. We review
the main findings about CFTR interactions and highlight several functional categories amongst these
that could lead to the discovery of potential biomarkers and drug targets for CF.
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1. Introduction

The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-
regulated anion channel that is not that widely expressed in human tissues and shows a
tissue-specific expression pattern [1]. CFTR regulates numerous physiological pathways,
such as the transport of Cl− and HCO3

−, glutathione and thiocyanate, immune cells, and
the metabolism of lipids [2]. CFTR gene mutations are the cause for the fatal disease known
as cystic fibrosis (CF) and CFTR-related disorders (e.g., recurrent idiopathic pancreatitis,
congenital absence of the vas deferens) [3–6]. In the airways, CF is characterized by
dehydration of the airway surface liquid, mucus plugging, and a vicious cycle of recurrent
bacterial infections and inflammation [7]. CF lung inflammation is associated with an
excessive neutrophilic response and lung tissue destruction [8]. To date, over 2000 CF
variants have been reported, with ~90% of the CF population presenting with at least
one copy of the most common mutation, a deletion of the phenylalanine in position 508
(∆F508) [9,10]. ∆F508-CFTR is characterized by its misfolding, retention in the endoplasmic
reticulum and propensity for degradation [11,12]. Small-molecule correctors (i.e., VX-809
and VX-661) are partially effective in the rescue of defective processing and trafficking
defects such as those exhibited in ∆F508-CFTR [13–15]. Ivacaftor (VX-770), a small molecule
potentiator, increases channel open probability and restores channel activity at the cell
surface [11–14], and has been approved for use in patients with gating defects (e.g., G551D-
CFTR, and 97 other mutations) [16,17].

In 2019, Trikafta (VX445-VX661-VX770) was approved for use in over 90% of people
with CF and is recognized as the most advanced approved therapy to treat patients [18,19].
Despite this advancement, current treatments are accompanied by comorbidities, and issues
persist for the remaining patients with rare mutations that are currently not approved
for Trikafta use [16,19]. This highlights the need to further our theratyping efforts and
discover new drug co-targets for rare patient mutations. Furthermore, there are currently
no treatment options for patients with nonsense mutations (e.g., W1282X and G542X) that
result in large deletions of the CFTR gene [20,21].

CFTR function relies on the network of interacting proteins involved at every step of its
synthesis and trafficking [11,22–24]. Several recent studies have utilized different proteomic
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techniques to generate broad datasets of the CFTR interaction network (interactome), and
some have also investigated changes in the interactome due to mutations and after exposure
to front-line therapies [9,11,12,23,25–29]. The aim of this review is to highlight connections
between the different studies and consolidate the datasets with a focus on cell–surface
interactions of CFTR. Despite recent advances in CF treatment, our knowledge of how
CFTR is organized at the cell surface remains incomplete [9,23]. It is predicted that over half
of the variation observed in CF lung function is likely to due to CFTR modifier genes (genes
identified as associated with CF variability, severity, and/or treatment efficacy) [30–33].
However, these genes have been identified primarily via genome-wide association studies
and transcriptomics [30–33], and may function at a different level of the CFTR interaction
network. Furthermore, CFTR has understudied molecular functions in addition to Cl−

transport in different cell types, and the impact of this missing knowledge on the success of
current CF therapies is unresolved [2]. This review hopes to support future functional CFTR
studies, as parallel efforts to discover personalized therapies for rare patient mutations
continue [9,34].

2. CFTR Interactomic Studies

There are currently three main proteomic techniques that have been utilized to study
CFTR interactions (Figures 1 and 2): (1) Co-purifying Protein Identification Technology
(2) Mammalian Membrane Two-Hybrid; and (3) Proximity-Dependent Biotinylation.
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Figure 1. Schematic of different proteomic approaches used to investigate the CFTR interactome.
Schematic for the workflow of the different proteomic approaches discussed in this review: Co-PIT,
MaMTH-HTS, and proximity-dependent biotinylation methods (BioID and TurboID). Co-purifying
Protein Identification Technology (Co-PIT).
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The Co-Purifying Protein Identification Technology (CoPIT) is an immuno-precipitation
(IP)-based proteomic-profiling approach of protein–protein interactions (PPIs) across dif-
ferent sample conditions [12]. It is a modification of a common method to study protein-
complex-immunoprecipitation (IP), followed by mass spectrometry (MS) [35,36]. The
Co-PIT methodology utilizes a solid support (i.e., sepharose beads) coupled to a highly
specific antibody directed against a “bait” protein, in this case being CFTR [12]. The bait pro-
tein is used to precipitate protein complexes, and any captured proteins are subsequently
digested into peptides before MS analysis [35]. Several factors can influence detectability in
CoPIT/IP-MS methods, including the efficiency of solubilization of membrane-inserted
proteins or the degree of stability of the interaction in post-cell-lysis steps [37,38].
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CoPIT was used to study changes between the wild-type (WT) and ∆F508-CFTR
interactomes and the effect of temperature-rescue (26–30 ◦C) in immortalized bronchial
epithelial cell lines expressing WT-CFTR and ∆F508-CFTR [12,29]. WT and ∆F508-CFTR
datasets constituted 504 and 506 interactors with 322 and 324 unique to WT and ∆F508-
CFTR, respectively. This study noted CFTR associations to members of the mTORC2
complex, MAPKAP1 and RICTOR, amongst the ∆F508-specific interactors. These asso-
ciations became attenuated in temperature-shift conditions, suggesting that inhibiting
the PI3K/Akt/mTOR pathway may be important for the correction of ∆F508-CFTR [29].
Additionally, ∆F508-CFTR exhibited an association with Bcl2-associated athanogene (BAG)
proteins 1–3. BAG3 was explored further due to the role it plays as a co-chaperone of
Hsp70/Hsc70 for targeting misfolded/aggregated proteins for autophagic degradation.
Inhibition of the PI3K/Akt/mTOR pathway with small-molecule inhibitor, MK-220641,
resulted in an increase in CFTR stability, decrease in BAG3 levels, and decrease in ∆F508-
CFTR aggregates (Figure 2) [29].

More recently, CoPIT was used in human embryonic kidney (HEK293) cells coupled
with isobaric tandem mass tags to identify interaction network differences in CFTR mu-
tants that are non-responsive (G85E), moderately responsive (∆F508), and hyper-responsive
(P67L and L206W) to VX-809 treatment [28]. As in the Pankow study, ∆F508 was found to
interact substantially more with components of the proteostatic and endoplasmic reticulum
(ER) quality control machinery compared to WT-CFTR [28]. Moreover, the hyper-responsive
P67L mutant had markedly lower associations with such components after VX-809 cor-
rection. This pathway restoration following VX-809 correction was replicated in L206W,
another hyper-responsive mutant, and indicates that proteasomal degradation and au-
tophagy interactions are associated with mutant responsiveness. Correspondingly, in a
non-responsive mutant, G85E, treatment with VX-809 did not alter the mutant interactome
in any quantifiable manner. This study suggested that VX-809 corrector binding may pro-
duce an inflection point in early biogenesis before the checkpoint to route for proteasomal
degradation [28]. However, it is not apparent from an interaction(s) perspective why this
does not occur in non-responsive mutants like G85E, and whether VX-809 fails to bind the
G85E mutant.

2.1. Mammalian Membrane Two-Hybrid (MaMTH-HTS)

The Mammalian Membrane Two-Hybrid (MaMTH) involves the use of inactive frag-
ments of ubiquitin, termed Cub and Nub, as sensors of PPIs [39,40]. These fragments
remain inactive unless fused to two interacting proteins, whose proximity upon association
drives reconstitution of the Cub and Nub into an active pseudo-ubiquitin molecule [39].
This newly reconstituted ubiquitin is then targeted by human-ubiquitin-specific proteases
(DUBs) that cleave at the C-terminus of the Cub, releasing an artificial transcription factor
(TF), which can then enter the nucleus and activate reporter gene transcription [39]. In an
effort to map out the WT and ∆F508-CFTR, Lim et al. modified this previously described
technique with a high-throughput screening (HTS) variant, now called MaMTH-HTS [27].
To generate the CFTR interactome, “bait” (CFTR and its variants) constructs were prepared
by cloning the full-length proteins as fusions to a C-terminal bait tag consisting of the
C-terminus of ubiquitin (Cub) and a GAL4 transcription factor linked by a P2A sequence
to tag BFP [27]. The “preys” were 12,000 human open reading frames [41] cloned at their
N-terminus to the N-terminal fragment of ubiquitin (Nub) and at their C-terminus to a P2A-
mCherry tag. These were introduced via CRISPR into host HEK293 cells expressing GFP
under the control of a GAL4-UAS reporter system. All constructs allowed for the titratable
expression of heterologous proteins [27]. Host cells were systematically transfected with
bait constructs, and interacting bait/prey pairs were detected via induced GFP expression.
These were subsequently sorted by flow cytometry and identified by deep sequencing [27].

MaMTH-HTS revealed 224 and 269 candidate CFTR interactors for WT and ∆F508-
CFTR interactomes, respectively. Functional characterization was performed for several
PPIs (ZNF22, ST6GALNAC1, FKBP6, CAPZB, VAPA, XAGE3, FGL2) to assess the impact on
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CFTR trafficking and channel activity. FGL2 was the most important functional interactor
uncovered from this and was orthogonally validated using co-IP. FGL2 is a secreted protein
that is overexpressed in CFTR-knockout mice and may play a role in lung fibrosis [42].
Overexpression of FGL2 enhanced the functional output of both WT and ∆F508-CFTR
channels. The siRNA knockdown of this gene resulted in a decreased trafficking of solely
WT-CFTR. The results of this study indicate that the CFTR-FGL2 interaction could be
important for CFTR function (Figure 2) [27].

2.2. Proximity-Dependent Biotinylation (PDB)

Proximity-dependent biotinylation (PDB) coupled to MS has been developed to label
proximal proteins with biotin [35,36,43]. Proximity-dependent biotin identification (BioID),
APEX, and their derivatives have been widely used to define a protein of interest’s (bait)
interactome [35,36]. Both BioID and APEX are based on the genetic fusion of a PDB enzyme
to a bait and this induces the covalent tagging of proteins in the bait’s vicinity [35,36].
Tagged proteins are subsequently captured after cell lysis and identified by MS, negating
the need to maintain intact structures during lysis and purification [35,36]. The BioID
technique fuses a mutant form of an E. coli biotin conjugating enzyme, BirA R118G (BirA*),
to a protein of interest (bait). BirA* allows for the permanent tagging of the lysine residue
on proximal proteins within a ~10 nm radius of the bait [36,43,44]. BioID is distinguishable
from techniques like MaMTH because it detects endogenously expressed preys and is
also distinguishable from co-IP techniques because it reports interactions occurring in
living cells. Two variants of BioID, miniTurbo and TurboID, have been developed to have
higher catalytic affinity and allow for biotin labelling to occur over the span of minutes
instead of several hours [35,45]. APEX can covalently biotinylate proximal proteins on
tyrosine residues by using modified ascorbate peroxidases to oxidize biotin-phenol to
produce highly reactive phenoxyl radicals [35]. Both BioID and APEX can undergo harsh
lysis conditions and generate an interactome in the context of a living cell; however,
APEX requires hydrogen peroxide treatment, which can have important unwanted cellular
effects [35].

BioID was recently used to characterize the interactomes of WT and ∆F508-CFTR in re-
sponse to treatment with Orkambi (3 µM VX-809 + 1 µM VX-770) and proteasome inhibitor,
MG132 [11]. MG132 was used to reduce the premature degradation of ∆F508-CFTR by
inhibiting the proteasome [11,46]. The group used the standard form of BioID, which allows
for the labelling of proximity interactors over the span of 16 h, approximately the length of a
cell cycle [36]. The study focused on HEK293 cells stably expressing a CFTR construct with
an N-terminus BirA* tag [11]. The WT and ∆F508-CFTR constituted 474 and 626 interactors,
respectively [11]. Similar to the trend seen with Co-PIT studies [12,26], and the MaMTH
study [27], off-pathway ∆F508 interactions consisted primarily of protein folding and
degradation components, and these were attenuated upon VX-770 + VX-809 addition [11].
Two candidate membrane traffic interactors, VAPB and NOS1AP, were identified, and their
impact on WT-CFTR trafficking and functional activity was characterized [11]. Notably, the
BioID approach revealed that WT CFTR was extensively associated with vesicle trafficking
machinery. While some of these were also identified with other proteomic approaches (Sup-
plementary Dataset S7), we suggest that differences in the interactomes may relate to the
detectability or preservation of transient interactions during membrane trafficking steps.

Using BirA* tags at opposite ends of a protein can sometimes provide additional
interaction information about the bait protein, depending on the accessibility of its various
interactors to the biotinylating enzyme [47]. We compared unpublished N-terminally
(N-CFTR) and C-terminally (C-CFTR) tagged FLAG-BirA* datasets that were generated
in HEK293 Flp-In T-REx cells as part of an earlier study (Supplementary Figure S2A) [11].
HEK293 cells have been utilized extensively for CFTR interactomics since they express little
to no endogenous CFTR [11,25,27,28]. N-CFTR and C-CFTR generated 297 and 70 candidate
interactors, respectively (Supplementary Dataset S1 and S2), and those corresponding to
the plasma membrane (PM) Gene Ontology (GO) category made up nearly half of the
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combined interactomes (~43%) (Supplementary Figure S2B). Fourteen previously validated
interactors were also identified (BioGRID database). [48] The N- and C- interactomes shared
50 common interactors (Supplementary Figure S2). The C-terminal fusion may impede
binding sites for several well-characterized CFTR interactors that affect its trafficking and
organization at the cell surface [23,49]. Consistent with this, several known PDZ-containing
proteins are present in the N-terminally tagged CFTR BioID dataset, while these interactions
are absent in the C-terminally tagged dataset (Supplementary Figure S2C).

More recently, another proximity biotin labeling study utilized TurboID and APEX2
on WT-CFTR and compared the interactome to a structurally unrelated potassium channel,
KCNK3, and to two known mutants, G551D and W1282X, in HEK293 cells [25]. The
major difference between the different techniques is the labelling time between traditional
BioID (12–24 h) to TurboID and APEX2 (minutes) [36,50]. The interactomes generated 1002
and 965 high-confidence interactors using the APEX2 or TurboID approach, respectively,
and exhibited a prey overlap of approximately 50% [25]. The use of proximity labelling
identified a greater proportion of SLC transporters than reported in previous co-IP-based
methods, and this is likely due to the permanent labelling of proximal proteins at the PM
that otherwise would not survive harsh lysis conditions. APEX2 and TurboID were also
used to determine differences in enriched proteins in the interactomes for CFTR mutants,
G551D (22 and 9) and W1282X (101 and 280), when compared to WT-CFTR [25]. Notably,
very few differences were observed between WT and G551D interactomes. However, the
latter did exhibit a higher affinity for the actin network, which is consistent with previous
reports [51]. The W1282X-CFTR interactome showed more differences when compared to
WT-CFTR, including the expected loss of PDZ binding proteins due to the truncation of the
NBD2 and the C-terminal domains (Figure 2).

3. Mapping the CFTR Surfaceome

The surfaceome is a broad term that represents the interactome of cell-surface proteins.
Proteomic approaches aim to characterize the network of interacting proteins in a cell in the
context of a protein of interest. The WT-CFTR surfaceome can create a specific signature
of interacting proteins and represents a foundational dataset for hypothesis generation
and comparative testing [34,52]. If we consider all interacting proteins that were identi-
fied in the proteomic studies outlined here, we obtain 924 total overlapping interactors
for WT-CFTR (present in at least 2 of the reviewed proteomic studies) (Supplementary
Dataset S3) [11,12,25,27–29] and 10 (all Co-PIT; Supplementary Figure S1A) and 105 (all
proximity-based) overlapping interactors (Supplementary Figure S1B). Of the 924 inter-
actors, 315 correspond to the PM GO category [53]. We define the latter as the “CFTR
Surfaceome” (Supplementary Dataset S4). A higher confidence dataset that comprises
preys found in at least three of the reported interactomes totals 113 interactors (Figure 3;
Supplementary Dataset S5) [11,12,25,27–29].

3.1. CFTR Surface Organization and PDZ Domain Effectors

PDZ (PSD95, Dlg1, ZO-1 binding motif) domains act as protein-interaction domains
that are specialized for binding short peptide motifs located at the extreme carboxy (C)
termini of proteins [54]. There are typically multiple PDZ domains located on a single
protein, enabling it to behave as a scaffold for other PDZ-domain containing proteins [55].
The C-terminus of CFTR contains the PDZ interaction domain (Figure 4) [56] and many of
these interactions are lost if the C-terminal end of CFTR is modified (see Supplementary
Figure S2). CFTR is tethered to the actin cytoskeleton at the apical PM in epithelial cells
through its interaction with NHERF1/2 through its PDZ domain [57] and the actin-binding
protein ezrin [57,58]. Furthermore, the first 20 N-terminal amino acids of CFTR are known
to interact with FLNA/B, an interaction known to stabilize CFTR at the PM by anchoring to
the actin cytoskeleton [59–62]. FLNA and FLNB are both found in the consensus surfaceome
(Supplementary Dataset S3).
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Known C-terminal end CFTR interactors include proteins with PDZ domains—NHERF1,
NHERF2, EZR, STX6, and CAL (GOPC)—and are present in the CFTR surfaceome
(Figure 4) [23,63]. It must be noted that Shank2, NHERF3 (PDZK1), and NHERF4 (PDZK2)
are also well characterized [23,49] in terms of their interactions with the C-terminal end
of CFTR but are not detected in these studies. Golgi Reassembly Stacking Protein 2
(GORASP2 or GRASP55) is known to interact with core glycosylated CFTR via its PDZ
domain and mediates unconventional CFTR trafficking [64,65]. The transgenic expression
of GRASP in ∆F508-CFTR expressing mice has been shown to restore channel function
with no observable toxicity [24]. The previously mentioned GOPC protein contains two
coiled-coil domains and one PDZ domain that are known to interact with the C-terminus
of CFTR [66,67]. The interaction between GOPC:CFTR reduces surface CFTR through its
endocytic recycling by targeting it for lysosomal degradation, and inhibiting this inter-
action helps stabilize CFTR at the PM [67]. Inhibiting GOPC was also reported to have
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an additive increase in the surface quantity of CFTR in the presence of front-line small
molecular correctors, VX445/VX-809 [67]. The Scribble cell polarity module, comprising
Scribbled (Scrib), Discs-large (Dlg), and Lethal-2-giant larvae (Lgl), has a tumor suppres-
sive role in mammalian epithelial cancers [68]. SCRIB, DLG1, and Afadin are novel PDZ
effectors for CFTR, as predicted by the surfaceome. The scribble module protein is involved
in cellular processes including cell adhesion, membrane trafficking, cell migration, and
cellular signalling [68]. Furthermore, Afadin (AFDN) is a third novel PDZ effector for
CFTR (Figure 4). AFDN plays a role in the establishment and maintenance of cell–cell
contact sites and is a unique RAS GTPase effector [69]. The latter may be important for
the correctional rescue of ∆F508-CFTR [29]. A number of studies using image correlation
spectroscopy and single-molecule tracking, combined with molecular or cytoskeletal per-
turbations, have yielded key insights on the nanoscale organization of CFTR at the cell
surface [70–74]. The current view is that CFTR is localized in at least two populations, one
that is in nanoscale clusters and another that is diffusely distributed [75]. Clustered CFTR
channels have relatively slow, confined movements over a small spatial scale, consistent
with their localization in lipid microdomains, whereas the diffusely distributed population
has transport dynamics on larger spatial scales that reflect CFTR movements both inside
and outside microdomains [76]. Importantly, clustering occurs not because of the afore-
mentioned CFTR interactions with PDZ domain proteins or actin and filamin A, but is
primarily lipid-interaction-driven. It remains to be seen how the CFTR surfaceome could
be involved in or affected by this dynamic nanoscale organization, and this interplay of
lipids and CFTR (and presumably its interactors) promises to be an exciting area of future
study. In the context of ceramide-rich domains [76], SMPD4, a neutral sphingomyelinase,
that generates ceramide from sphingomyelin, was detected in two CFTR interactomes
(Supplementary Dataset S3).

3.2. The CFTR Surfaceome Includes a Diverse Set of Membrane Transporter Interactions

ABC transporters are multi-domain membrane-spanning proteins responsible for the
transport of substrates across the membrane, regulated by ATP hydrolysis, and essential
for homeostasis [77,78]. CFTR (ABCC7) is one of the most recent evolutionary members
of the ABC superfamily and is unique in its functioning as a chloride channel [79]. The
CFTR channel has been shown to functionally interact with and regulate the epithelial
sodium channel (ENaC) [80,81], the outwardly rectifying Cl− channel, and the renal outer
medullary potassium channel, thereby contributing to cellular ion homeostasis [82]. Also,
CFTR HCO3

− secretion in the airways, pancreas, salivary gland, intestine, and reproduc-
tive organs is also associated with the activity of the anion exchanger 2 (SLC4A2) and
electrogenic Na+/HCO3

− cotransporter (SLC4A4) [2]. However, the exact mechanism of
CFTR interdependency of these channels is still not fully understood, and various hypothe-
ses including the direct or indirect interaction of channels, or co-regulation via adapter
proteins have been proposed [83]. Unfortunately, HEK293 cells do not express most of these
channels at levels that are easily detectable in interactomes. The Cl−/HCO3

− exchanger
SLC4A2 is an exception to the latter trend, and is detectable in two interactomes, while
another HCO3

− transporter, SLC4A7, is present in three interactomes (Figure 5). The
dataset presented here should provide a starting point for further investigations into the
role of these CFTR- membrane transporter interactions.

In general, PDB methods have identified a larger cohort of solute carrier (SLC) trans-
porters [11,25]. Of the 54 SLC transporters reported, 30 were statistically enriched at the
PM and 27 are present in the CFTR surfaceome (Supplementary Dataset S6). Some SLCs
have been associated with phenotypic diversity in patients with CF [84] but are unfortu-
nately not expressed well enough in HEK293 cells to be detectable. SLC9A3R1 (NHERF-1)
and SLC9A3R2 (NHERF-2) are well-characterized interactors of CFTR and are present in
four of the reported datasets [23,49]. Seven SLC interactors with uncharacterized roles in
CFTR function were reported in three proteomic studies (SLC39A14, SLC39A10, SLC38A2,
SLC1A3, SLC6A15, SLC4A7, SLC1A4) (Figure 5; Supplementary Dataset S6) [11]. SLC39A14
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is a manganese influx transporter that is highly expressed in the liver and small intestines
and its loss of function is associated with the childhood-onset of dystonia-parkinsonism [85].
SLC39A10 (ZIP10) is identified as a key zinc transporter in hematopoiesis and its inhibition
has been linked to treating STAT-3-activated cancers [86,87]. SLC38A2 is a neutral amino
acid transporter and its expression is needed in both osteoblast differentiation and bone
formation in mice [88].
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Two additional channel proteins were present in the CFTR surfaceome (Figure 5).
Anoctamin 6 (ANO6 or TMEM16F) is a Ca2+-activated chloride channel and phospholipid
scramblase [89]. The expression of ANO6—and its more characterized family member
ANO1—induces increased membrane trafficking and exocytosis of volume-activated chlo-
ride channels, such as CFTR [90]. CFTR is known for its proapoptotic effects and growing
evidence is linking ANO6 to be a regulator of cell death [89,90]. Similarly, VDAC1 (Voltage-
dependent anion-selective channel 1) is associated with mitochondrial dynamics including
regulating apoptosis and autophagy [91]. It has been speculated that VDAC1 could be
regulated and closely related to CFTR function as CFTR inhibitors have been reported to
decrease VDAC1 expression [91]. Lastly, six members of the ABC transporter superfam-
ily were found in the surfaceome (ABCB10, ABCB7, ABCC1, ABCC11, ABCD3, ABCE1)
(Figure 5). Multidrug resistance ABC transporter (ABCC1 or MRP1) has the ability to
translocate substrates such as tobacco-specific carcinogens that can compete with cAMP
translocation and in turn is speculated to modulate CFTR channel activation [92]. ABCC11
(or MRP8) was previously used as a clinical marker for CF and termed the “CF antigen”
due to its elevated concentrations in CF patients’ serum [93].

3.3. The ∆F508-CFTR Interactome

In most cell types, CFTR folding is inefficient [94]. Depending on the cell type, up to ap-
proximately 30% of wild-type protein and 99% of the most common inherited ∆F508 mutant
are degraded via the endoplasmic-reticulum-associated degradation pathway (ERAD) [95–97].
During early synthesis steps, CFTR is recognized by the Hsc70 chaperone and this step
commits CFTR to the PM or for lysosomal degradation [98]. When mining the proteomic
studies outlined here for the ∆F508-CFTR interactome, we obtain a total of 90 consensus
preys (Supplementary Dataset S3) [11,27–29]. Of these, 46 correspond to protein folding
(7; GO:0006457), the cellular response to stress (4; GO:0033554), proteosome degradation
(14; WP183), and the endoplasmic reticulum (21; GO:0005783) [53] (Figure 6). Interestingly,
several studies note a subset of ∆F508-CFTR-specific interactors that persist upon VX-809
correction [11]. These include proteasome and co-chaperone subunits: PSMC1, PSMD11,
PSMB8, BAG3, DNAJB2, SURF4, and ERH [12]. The mutant CFTR interaction with BAG
proteins, in particular, appears to correlate with folding correction [26,28,29,99]. BAG2 as-
sociates with folding mutants of CFTR (∆F508, P67L, L206W) and VX-809 hyper-responsive
mutants such as P67L are less likely than moderately responsive mutants (∆F508) to have
this interaction persist post correction [28]. BAG5 and BAG6 exhibit a preferential binding
to ∆F508-CFTR; however, these interactions persist post-VX-770 + VX-809 treatment [11].

J proteins and Hsp40 co-chaperones interact with CFTR during the initial translation
stages [100], and members, such as DNAJB12, have been shown to triage ∆F508-CFTR
through proteasomal degradation [101]. DNAJB12 associates preferentially with ∆F508
and P67L-CFTR, and this association is attenuated upon VX-809 treatment [28]. Similarly,
DNAJA3 and DNAJA4 exhibit preferential binding to ∆F508-CFTR that becomes attenuated
when treated with VX-770 + VX-809 [11]. An excellent review describes recent progress in
discovering CFTR proteostasis regulators [102].

3.4. CFTR Surfaceome and Peripheral Quality Control

Partially unfolded CFTR at the PM (e.g., corrected ∆F508-CFTR) is subjected to ubiqui-
tination in post-Golgi compartments and recognized by ubiquitin-dependent endosomal
sorting machinery to reroute the channel from the recycling pathway toward lysosomal
degradation [98,103]. While chaperone machinery (i.e., Hsc70/Hsp90) functions to main-
tain the properly folded CFTR conformation at the PM, structurally unstable CFTR (such as
of misfolded and/or rescued mutant CFTR protein) has a reduced half-life [104,105]. This
is due to modifications caused by members of the chaperone-dependent ubiquitination ma-
chinery in a process referred to as the peripheral quality control (PeriQC) system [104–106].
The PeriQC system removes non-native proteins from the PM for lysosomal degradation
by ubiquitination to preserve the cell permeability barrier [106].
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The chaperone-dependent ubiquitin ligase CHIP (carboxy terminus of HSP70-interacting
protein) is the first E3 Ub ligase identified in the PeriQC mechanism of CFTR [105].
The prolonged association of corrected CFTR with the Hsc70/Hsp90 chaperone com-
plex is thought to recruit CHIP and result in the ubiquitination of CFTR [105]. Two ad-
ditional PeriQC members were recently identified as well: RFFL (CARP2) and RNF34
(CARP1) [104–106]. Amongst all overlapping WT-CFTR interactors, 56 were statisti-
cally enriched in the GO category for ubiquitin-like protein ligase binding (GO:0044389)
(Supplementary Dataset S7). Previously characterized CFTR chaperones are present in this
dataset (i.e., DNAJA1, BAG2). However, the only known PeriQC component identified in
this dataset is CHIP.

Additionally, the role of deubiquitinating enzymes (DUBs) is emerging as an important
process for the regulation of CFTR stability beyond the Golgi apparatus [105]. USP19 is
a DUB acting on ∆F508-CFTR, allowing it to bypass ERAD [105,107,108]. Furthermore,
USP10 has been reported to reverse the ubiquitination of WT-CFTR, enabling CFTR to
bypass lysosomal degradation and return to the PM [105,107,109]. The role of DUBs and
their potential to stabilize CFTR at the PM are not fully understood and the mechanism
of PeriQC is still unclear. Interestingly, USP19 is found in the WT-CFTR surfaceome, and
several other DUBs (USP5, USP7, USP9X, USP14, and USP19; Supplementary Dataset S7)
are also present but have not been characterized.

3.5. CFTR Surfaceome and Vesicle Trafficking

A total of 87 of the 315 surfaceome members were statistically enriched in the GO
category for vesicle-mediated transport (GO:0016192) (Supplementary Dataset S7). Some
known vesicle trafficking interactors are present in at least three of the datasets: VAMP8,
SNAP23, and STX7 [110,111]. It has been previously reported that there is a marked
reduction in preys annotated in this category in the ∆F508 mutant [11], consistent with
its failure to enter the CFTR-PM pathway. Interestingly, VAPA and VAPB were the only
interactors to appear in all six of the interactome datasets examined (Figure 3). VAPs are
generally ER and Golgi-localized membrane-anchored proteins that participate in vesicle
trafficking and control ER-PM contact sites [112,113]. VAPs have also been proposed to
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regulate CFTR biogenesis and inhibit the degradation of mutant CFTR [112]. Two studies
have identified this interaction in their proteomic datasets and further characterized its
importance on CFTR trafficking and function [11,27]. Interestingly, VAPA and VAPB
interactions with ∆F508-CFTR are attenuated compared to WT-CFTR but restored upon
treatment with VX-770 + VX-809. Knockdown of VAPA/B resulted in a significant decrease
in WT-CFTR trafficking and was important for CFTR channel activity [11,27].

Additionally, COPB2 (COPI Coat Complex Subunit Beta 2) and EHD1 (Eps15 homol-
ogy domain 1) are PM-associated preys that appeared in five of the interactome datasets
(Figure 3). COPB2 has been implicated to play a critical role in CFTR trafficking to the
PM [114]. WT-CFTR has been shown to accumulate in endosomal recycling compartments
marked by EHD1 and become redistributed onto the cell surface upon phosphorylation by
protein kinase A (PKA) [115].

3.6. CFTR Surfaceome and Clathrin Endocytic Machinery

The surfaceome contains 30 proteins that correspond to the GO category for clathrin-
dependent endocytosis (GO:0072583) (Supplementary Dataset S7). It has been long rec-
ognized that clathrin-dependent internalization of WT-CFTR is the main pathway for
CFTR recycling at the PM [103]. The carboxy-terminal tail of CFTR contains conserved
tyrosine-based (YXXφ motif) signals that regulate its entry into clathrin-coated pits (CCPs)
via the adaptor AP2 complex [103]. The internalization of mature CFTR through clathrin-
mediated endocytosis (CME) acts as a quality control mechanism [98]. Considering the
rapid internalization in some cell types (up to 10%/minute) and slow translational rate,
a focus on re-targeting endocytosed CFTR back to the cell surface is of utmost impor-
tance [103,116,117].

Remarkably, the curated list of WT-CFTR interactors show an extensive association
with different steps of CME, from CCP initiation to clathrin-coated vesicle (CCV) budding
and scission. This is probably due to the high recycling rate and retention in endosomal
routes [118]. Here, we briefly survey the list of interactors and their roles in CME, as rela-
tively sparse information exists on their individual effect on CFTR function. The assembly
of CCPs is an intricate process that begins with clathrin triskelions being recruited to the
PM by the AP2 complex and PIP2 (PtdIns(4,5)P2) to initiate pit assembly (Figure 7) [119].
AP2 A1/A2/B2 subunits were readily detected in the surfaceome, and experimental ev-
idence exists for CFTR interacting with the alpha AP2 subunit in intestinal cells [120].
FCH/F-BAR and Double SH3 Domain-Containing Protein (FCHSD2) is a member of the
mild curvature-generating F-BAR family of proteins, whose prototypical members of FCH
And Mu Domain Containing Endocytic Adaptor proteins (FCHO1/2) have been shown to
function in the early stages of CCP initiation and stabilization [121,122]. Clathrin assembly
lymphoid myeloid leukemia (CALM/PICALM) is also necessary for clathrin assembly at
the PM by binding to AP2 and clathrin [123]. Epsin (EPS15) and intersectin (ITSN) are
initiator proteins that form a complex with FCHO to recruit AP2 and other adaptor proteins
that in turn recruit clathrin subunits (CLT A/B/C) [119]. Furthermore, Dynamin-2 (DYN2
or DNM2) is one of three isoforms and is the only one that is ubiquitously expressed in cells
and functions as a fission apparatus at the necks of invaginated CCPs, and regulates early
steps of CCP maturation [119,124]. Loss of DNM2 inhibits endocytosis and enhances the
surface expression of CFTR [66]. Actin polymerization during the late steps of CME help
release CCVs from the PM and into the cytoplasm [125]. HIP1R links the CME machinery
to the actin skeleton [119], while WASL (WASP Like Actin Nucleation Promoting Factor)
is essential for the formation of CCVs [125]. More peripheral CME regulators include
SCYL2, which phosphorylates AP2 and target membrane receptors for lysosomal degrada-
tion [126,127]. Lastly, Ubiquilin (UBQLN) is known to increase the cell surface expression
of receptors (e.g., G-protein-coupled receptors) and has been suggested to be a negative
regulator of endocytosis [128].
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Figure 7. WT-CFTR surfaceome reveals subunits of the clathrin-mediated endocytic pathway. De-
piction of steps involved in clathrin-mediated endocytosis from clathrin-coated pit assembly to
clathrin-coated vesicle scission, overlaid with candidate interactors generated from the different
proteomic approaches. Locations are approximated based on where these proteins are predicted to
be involved in clathrin-coated vesicle formation. Created using BioRender.com.

It is important to understand how mutations in CFTR affect its endocytosis. To date,
three CF patient mutations (N287Y, R31C, R31L) have been identified as having endocytic
defects, and all are associated with a mild clinical phenotype. Interestingly, all three result
in an enhanced CME of CFTR, leading to lower PM CFTR levels, but the precise mechanism
is unclear [117]. While several other CF mutations have been associated with a lower
steady-state CFTR level at the PM, endocytic rates of these mutants are rarely established,
so it is difficult to distinguish between forward trafficking, recycling, and endocytic defects
that result in this phenotype. Complicating this further, most non-polarized cellular models
do not recapitulate the basal–apical transcytosis of CFTR in secretory epithelia [129]. The
extensive association of the surfaceome with CME machinery suggests that this is a direction
worthy of further, more careful investigation.

3.7. The CFTR Surfaceome and Innate Immunity

The CFTR protein is also expressed by immune cells, and the loss of functional CFTR
in CF may result in dysregulation of their functions [2]. These include an impaired bacterial
killing and degranulation response in neutrophils, defective phagocytosis in macrophages,
a disruption in T- and B-lymphocyte response, and an intrinsic hyperinflammatory phe-
notype [130]. Though controversial, there is growing evidence that inflammation is a
primary consequence of the CFTR defect, rather than purely a response to airway in-
fection [82,130,131]. A survey of the CFTR surfaceome indicates a significant overlap
with components of innate immunity, although a large portion of the overlap constitutes
membrane trafficking regulators (Supplementary Dataset S7). Specifically, ANXA1 and
ATP6AP2 stand out as direct regulators of the immune response and are also interesting
because they were identified in a proteomic study as differentially expressed in CFTR
−/− neutrophils from newborn piglets [131]. ANXA1 (Annexin A1) is a well-described
effector of anti-inflammatory processes [132] and is downregulated in CF mice and CF
human patients [131,133]. By contrast, ATP6AP2 is upregulated in CF piglets [131] and
is frequently associated with markers of lung inflammation [134]. ATP6AP2 is a renin
receptor that activates the renin–angiotensin system and intracellular signal transduction,
thereby enhancing inflammation. It also functions in lysosomal acidification and affects
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neutrophil degranulation [134]. The presence of these innate immune modulators in the
CFTR surfaceome suggests a more direct relationship and crosstalk that warrants further
investigation.

4. Future Perspectives and Closing Remarks

The success of current small-molecule drugs in correcting CFTR folding, trafficking,
and membrane localization is proof of the power of gene-function studies, and the value of
elucidating protein interactions. Reliable interaction data can help distinguish between pri-
mary and secondary defects arising from CFTR mutations in the numerous cellular contexts
where this protein functions, and lead to the discovery of important gene modifiers for CF.
We note that four genes highlighted (SLC9A3, HLA, IGF2BP2, CDKAL1) in a recent review
on CF modifiers [33] are present in the CFTR surfaceome presented here. Additionally,
the development of next-generation compounds targeting molecular components of the
CFTR interaction landscape could be a useful strategy to optimize combination therapies
for those patients with mutations that are poorly responsive to current treatments. Notably,
proteomic and functional genomic studies have uncovered proteostasis regulators such
as DUBs, ubiquitin ligases, and folding chaperones that may hold significant promise as
targets of ‘∆F508 amplifier’ drugs [102]. Another class of CFTR interactors, the SLC trans-
porters, plays a crucial role in controlling the transport and net flux of drug absorption into
cells [135]. The idea of targeting SLC transporters in combination therapy modalities has
been gaining traction and there are drugs already available [136]. Yet, other classes of CFTR
interactors such as those corresponding to membrane trafficking and innate immunity
await further characterization and mechanistic investigation.

The approaches used in CFTR interactomic studies that have been profiled here have
their own distinct advantages (e.g., detection of endogenous interactions, detection in a
living cell, scalability) and limitations (e.g., size of probes, overexpression of bait protein,
lack of a catalytic step) [11,25,27–29,36]. Unsurprisingly, there is a low degree of overlap
when comparing data between individual studies (Supplementary Figure S1A,B) [11,27,137].
Variances almost certainly arise from the different interaction sensors employed and the
use of different cell types. Therefore, the interactomes generated using different proteomic
approaches are best viewed as complementary data, which, in some specific cases, can
provide meaningful overlap, and, in many cases, have the power to generate insight into
CFTR protein interactions in their own contexts. Interactomic studies, regardless of the
approach used, are shifting toward using these data as intra-comparative tools to generate
broad molecular fingerprints of the drug response in CFTR mutants. This facet of CFTR
investigations, which has become increasingly accessible in modern laboratories, will
accelerate the discovery of more personalized treatment options in the CF population.
Furthermore, in the near term, applying interaction biosensors and interactome technology
to discover key interactions in diverse physiological settings where CFTR is expressed, as
well as in stem-cell-derived tissue models of CF, is certainly a worthwhile and achievable
milestone.
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