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Abstract: Compound K (CK) is one of the major metabolites found in mammalian blood and organs
following oral administration of Panax plants. CK, also known as minor ginsenoside, can be absorbed
in the systemic circulation. It has garnered significant attention in healthcare and medical products
due to its pharmacological activities, such as antioxidation, anticancer, antiproliferation, antidiabetics,
neuroprotection, and anti-atherogenic activities. However, CK is not found in natural ginseng
plants but in traditional chemical synthesis, which uses toxic solvents and leads to environmental
pollution during the harvest process. Moreover, enzymatic reactions are impractical for industrial CK
production due to low yield and high costs. Although CK could be generated from major ginsenosides,
most ginsenosides, including protopanaxatriol-oleanane and ocotillol-type, are not converted into CK
by catalyzing β-glucosidase. Therefore, microbial cell systems have been used as a promising solution,
providing a safe and efficient approach to CK production. This review provides a summary of various
approaches for the production of CK, including chemical and enzymatic reactions, biotransformation
by the human intestinal bacteria and endophytes as well as engineered microbes. Moreover, the
approaches for CK production have been discussed to improve the productivity of target compounds.
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1. Introduction

The genus Panax, belonging to the family Araliaceae, is known as one of the most
popular herbal medicines in East Asia and North America. Panax plants, including Panax
ginseng C.A. Meyer (Korean ginseng), Panax japonicus C.A (Japanese ginseng), Panax quin-
quefolius L. (America ginseng), Panax notoginseng (Burkill) F.H. Chen (Sanchi ginseng),
have been widely used as dietary supplements in recent years [1,2]. There are various
chemical components in ginseng, such as ginsenosides, polysaccharides, polyacetylenes,
glycoconjugate compounds, and amino acids. Among these, ginsenosides play a role as
a major constituent and are responsible for the diverse biological and pharmacological
activities of ginseng [3,4]. To date, more than 150 different types of ginsenoside have
been isolated and identified from the roots, fruits, flower buds, and leaves of ginseng,
and other medicinal plants. Ginsenosides, also known as triterpene saponins, are rep-
resented by Rx. While the “R” is expressed for the root, the “X” is determined by the
chromatographic polarity in alphabetical order: the most polar is determined by A, and
the least polar is marked by H. In general, a chemical component of most ginsenosides
contains a dammarane skeleton (17 carbons in a four-ring structure) and a sugar moiety
attached to the C-20 and C-3 positions (arabinose, glucose, rhamnose, and xylose) [5,6].
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According to their backbone skeletons, ginsenosides can be categorized into four groups:
protopanaxadiol (PPD), protopanaxatriol (PPT), oleanolic acid (OA), and ocotillol-type.
PPD has only a dammarane backbone (for example, Ra1-3, Rb1-3, Rc, Rd, Rg3, Rh2, and
Rs1), while PPT has an additional hydroxyl group at the C-6 position (for example, Re,
Rf, Rg1-2, and Rh1). Moreover, the pentacyclic triterpenoid base is a characterization of
OA type (Ro) whereas ocotillol-type ginsenosides possess a five-membered epoxy ring
at the C-20 position (Pseudoginesnoside F11 and Majonoside R1-2) (Table 1) [7,8]. Along
with the isolation and identification of ginsenosides from plants, extensive research has
been conducted to investigate and understand the biological mechanisms of ginsenosides.
Ginsenosides exhibit various beneficial effects on human health, including antimicrobial,
antioxidant, anticancer, antitumor, and anti-proliferative activities [9,10]. Furthermore,
ginsenosides have been demonstrated to enhance the central nervous system and protect
the blood vessels from cardiovascular disease [11,12]. Recently, ginsenosides and their
derivatives have been used as cosmetic and dietary supplements [2,13]. Interestingly, gin-
senosides have shown potential as promising medicines for the treatment and prevention
of SARS-CoV-2 [14].

Table 1. Classification of four types of ginsenosides.

Structure Name R1 R2 R3 R4

Protopanaxadiol (PPD) Type
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Table 1. Cont.

Structure Name R1 R2 R3 R4
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Compound K is one PPD type of ginsenoside for application to human health. CK has
a molecular weight of 622.86 g mol−1 and the chemical formula C36H62O8. The IUPAC name of
CK is (2S,3R,4S,5S,6R)-2-[(2S)-2-[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-4,4,8,10,14-
pentame-thyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]-6-
methylhept-5-en-2-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol. CK is also known as 20-O-β-D-
glucopyranosyl-20(S)-protopanaxadiol, compound M1-O, ginsenoside M1, and GM1 saponin [15].
CK is rarely found in natural ginseng but through the transformation of major ginsenosides.
Bioconversion of CK products has been reported through deglycosylated reactions by human
intestinal bacteria and endophytes [16]. Enzymatically synthesized and metabolically engineered
yeasts have emerged as alternative approaches to producing CK in recent years [17,18]. Impor-
tantly, CK exhibits significant biological and pharmaceutical properties in different aspects, such
as antioxidation, antiproliferation, protecting organs, cognitive, central nervous systems, and
anticancer activities, which have been reported over the decades. In addition, CK also plays
a significant role in hepatic function and antidiabetic disease (Figure 1) [19,20]. Furthermore,
while a small quantity of CK is adequate for therapeutic applications, it is insufficient for the
development of novel drugs for the management of a variety of diseases. As a result, in order to
create medicine, a sizable amount of CK must be used. In this review, we summarize the research
progress on the biological effects of CK and provide an update on the biosynthesis of CK from
microbial biotransformation, enzymatic synthesis, and metabolically engineered microbes over
the past decade. The advantages and disadvantages of each approach have been discussed for
future perspectives in CK production.
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2. Biological Significance in Humans

CK is known as a minor ginsenoside. Compared to other ginsenosides, CK has higher
and more diverse pharmacological applications in some respects. There are numerous stud-
ies on the pharmaceutical properties of CK in different aspects, such as protecting organs,
cognitive and central nervous systems, antioxidation, anticancer, antiproliferation, and
antidiabetics (Figure 1) [21,22]. Among these pharmaceutical activities, anticancer agents
have been the most important aspect of CK. According to the Global Cancer Observatory
(GLOBOCAN), there were an estimated 19.3 million cancer cases worldwide in the year
2020. It is projected that the global burden of cancer cases will be 29.4 million in the year
2040, based on the aging and growing population. Therefore, recently, there have been
more studies about the discovery of new drugs for cancer treatments. The demonstration
of the cell’s biological mechanism is necessary to develop novel drugs for the treatment of
cancer cell lines. According to recent research, CK exhibits anticancer activity via multiple
molecular mechanisms, such as apoptosis, inhibitory apoptotic proteins, regulation of cell
growth, impact on cell invasion and metastatic activity, and autophagy. It is reported
that the effect of CK on cancer cells is related to the AMPK-mTOR/JNK pathway, the
PI3K/Akt/mTOR pathway, and reactive oxygen species (ROS) (Figure 2) [19]. For exam-
ple, CK has been shown to inhibit NF-κB by hindering Annexin A2, a protein associated
with cancer, from binding to the NF-κB p50 subunit. NF-κB acts as a crucial regulator in
the development of human astroglial cells and liver cancer cells, primarily by inhibiting
apoptosis proteins [23]. Furthermore, CRISPR/cas technology has been applied to inhibit
p-STAT3 in human liver cancer cells. As a result, apoptosis of liver cancer in HepG2 cells
is activated when CK is present. In another example, the anticancer ability of CK was
examined in the HER2-positive breast cancer cell line (SKBR3) and HER2-negative breast
cancer cell line (MDA-MB-231) via 3-(4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium
bromide assays, propidium iodide, annexin V staining, and morphological changes. The
results indicated that CK, by controlling protein kinase B or Akt activity, could exert an-
ticancer effects and be employed as a medicinal component for breast cancer [24]. It is
reported that CK induces apoptosis in lung cancer cell lines via the AMPK-mTOR and
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JNK pathways. In the case of colon cancer, CK induced autophagy and apoptosis through
the generation of reactive oxygen species and the activation of JNK. In another study of
glioblastoma cells, CK significantly inhibited the growth and metastasis of these cells via
the PI3K/Akt/mTOR pathway. It can be seen that CK inhibits different cancer cell lines
through various pathways (Figure 2) [19].
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Several studies have shown the positive impacts of CK on hepatic function, such as sup-
pressing liver damage by preventing c-Jun N-terminal kinase signaling in HepG2 cells and
also protecting the liver from sodium valproate-induced hepatotoxicity [25]. Furthermore,
CK has shown a significant decrease in nitric oxide levels, which play an important role in
the pathophysiological alterations of inflammatory disorders, at concentrations higher than
10 µg mL−1. CK has also been proven to have a better ability to prevent inflammation com-
pared to other ginsenosides. CK reduces inflammation in lipopolysaccharide-treated RAW
264.7 cells by lowering the production of proinflammatory cytokines such as tumor necrosis
factor-α, Interleukine (IL)-1β, and IL-6 [26]. In other research, a CK-rich fraction was devel-
oped and demonstrated to suppress nitric oxide production on lipopolysaccharide-treated
RAW 264.7 cells, lower mRNA levels of inducible nitric oxide synthase and interferon-β,
and inhibit nuclear factor-kappa B (NF-κB) transcriptional progress [27].

In anti-diabetic research, CK has also shown remarkable activity. It has been demon-
strated to improve insulin secretion triggered by glucose. In a different study, a rat model
of type 2 diabetes mellitus with insulin resistance was used to test the anti-diabetic ef-
fects of CK, and the results showed that CK could increase food intake, body weight,
insulin sensitivity, and fasting serum insulin level in diabetic rats [28]. Another notable
pharmaceutical application of CK is neuroprotection. CK has shown considerable phar-
macological effects on the central nervous system. Studies have explored the application
of CK in the treatment of neurological disorders such as depression, Alzheimer’s disease,
Parkinson’s disease, and more [29]. In the prefrontal cortex and hippocampus of chronic
unpredictable mild stress rats, CK boosted levels of 5-hydroxytryptamine, dopamine,
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and their metabolites, enhanced the activity of glutathione and glutathione peroxidase,
and also counteracted MAO-B overexpression in these regions. Therefore, CK treatment
led to increased brain-derived neurotrophic factor and nerve growth factor expression,
demonstrating its antidepressant properties in rodents [30]. CK has also shown positive
effects on vascular dementia by reducing the Amyloid β1-42 deposition caused by chronic
cerebral hypoperfusion and improving cognitive impairment through the upregulation
of pSer9-Glycogen synthase kinase 3β (pSer9-GSK3β) and the insulin degrading enzyme
(IDE) [31].

CK has been linked to anti-atherogenic activities. CK and its derivatives have shown
the ability to activate the liver X receptor alpha (LXRα) and attenuate the development of
atherosclerosis in ApoE-/-mice [32]. CK also regulates the reverse transport of cholesterol
and promotes the ATP-binding cassette transporter A1 (ABCA1), resulting in a reduction
in total cholesterol in the blood, blood viscosity, and relieving atherosclerosis [15]. In terms
of anti-aging, CK has been used as a cosmetic ingredient. It enhances the production of
hyaluronic acid by activating Src (tyrosine kinase)-dependent Akt and extracellular signal-
regulated kinase (ERK). Furthermore, CK reduces the production of cyclooxygenase-2
and matrix metalloproteinase-1 in ultraviolet B irradiated NIH-3T3 skin fibroblast cells
or tumor necrosis factor-alpha-stimulated cells and restores the expression level of type
I collagen [33]. This research indicates that CK plays an important role in anti-aging
activities. Interestingly, it is predicted that CK or/and another ginsenoside might inhibit
myocardial injury by SARS-CoV-2 [34].

3. Biosynthesis Approaches for Compound K
3.1. Ginseng Extraction and Chemical Synthesis

Extraction from ginseng and chemical synthesis are two traditional approaches for the
synthesis of various ginsenosides [35–37]. While the major ginsenosides, such as Rb1, Rb2, Rb3,
Rc, and Rd, are present in different parts of ginseng plants at different ages, CK is not naturally
present in ginseng [38]. Although the cultivated areas of ginseng are expanding around
the world, low productivity is still the major challenge in extraction for CK production [39].
Production of minor ginsenosides has been obtained through mild acid hydrolysis and alkaline
cleavage, but the chemical synthesis of CK is rare [40,41]. The disadvantage of chemical
synthesis approaches is the requirement for multiple components with low yields. Moreover,
these chemical synthesis methods generate non-selectively hydrolyze sugar moieties and
produce by-products, resulting in a decrease in the amount of ginsenosides. Furthermore, one
of the major shortcomings of these chemical processes is their contribution to environmental
pollution through the emission of carbon dioxide [42,43].

3.2. Enzymatically Synthesized CK

Enzymatic synthetic methods are conventional approaches to produce CK. Enzymatic
synthesis displays higher region-specific activity in comparison with chemical synthesis. In
these methods, the major ginsenosides, including Rb1, Rb2, Rb3, and Rd, are converted to
CK using crude enzymes or purified enzymes [44].

3.2.1. Enzyme from Native Microbes

Various types of glucosidases (EC 3.2.1), consisting of β-D-glucosidase (3.2.1.2), β-
D-xylosidase (EC 3.2.1.37), α-L-rhamnosidase (EC 3.2.1.40), β-galactosidase (EC 3.2.1.23;
lactase), and glycoside hydrolases, are responsible for the hydrolytic reaction [45]. Due to its
easy preparation under mild conditions, crude enzyme is the general trend for ginsenoside
conversion. For example, crude enzymes can be prepared from Lactobacillus sp. [46–48],
Penicillium sp. [49], medicinal mushroom Stereum hirsutum [50], Aspergillus sp. [51,52], or
Fomitella fraxinea [53]. Three β-glucosidase active bacterial strains isolated from traditional
Korean fermented food (Kim Chi) were used for the conversion of Rb1 or Rd to CK. The
optimal time for an enzymatic reaction was 72 h at a pH of 6.0 to 8.0 and a temperature
of 30 ◦C. The conversion percentages from Rb1 to CK were around 99%, and 97% of Rd
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was decomposed to CK under optimal conditions [46–48]. Notably, the hydrolysis of
the PPD-type saponin mixture showed the ability to form CK by using crude glycoside
hydrolase. A crude preparation of β-galactosidase from Aspergillus oryzae was found to
produce CK, whereas crude lactase from Penicillium sp. showed activity for conversion
to CK from a PPD-type saponin mixture [49]. Similarly, A. niger XD101, which produces
the ginsenoside-hydrolyzing β-glucosidase, transformed Rb1 via the following pathways:
Rb1→ Rd→ F2→ CK at pH 4–5 and a temperature of 50–60 ◦C in 72 h, and resulting in
a high conversion yield of 94.4% [51]. β-glucosidase-producing Stereum hirsutum JE0512,
sourced from wild ginseng, was used to produce CK from ginseng extracts in solid-state
fermentation using 20 g of corn bran as a substrate. Various biotransformation approaches
were identified to produce CK from major ginsenosides, such as Rb1→ Rd→ F2→ CK,
Rc→ Gyp XVII→ Gyp LXXV→ CK, Rb2→ CO→ CY→ CK, and Rb3→ CMx1→ CMx
→ CK (Figure 3; Table 2) [50]. Although the conversion yield of CK is high, crude enzymes
require a large quantity of saponin mixture and exhibit low productivity.
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Recently, enzymatic catalysis has focused on using purified enzymes to produce
CK from major ginsenosides [54]. Purified and characterized enzymes not only provide
extremely selective reactions under very mild conditions but also efficiently remove by-
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products. Purified enzymes can be obtained from hydrolase-producing microorganisms or
recombinant microbes. In the former approach, filamentous fungi are known as one of the
most widely produced species of cellulolytic enzymes [55]. For example, ginsenoside type
I and β-glucosidase were isolated and purified from Aspergillus sp. g48p and Paecilomyces
Bainier. The β-glucosidase from Paecilomyces Bainier shows only the ability to convert Rb1
to CK at pH 3.5 and 60 ◦C. By contrast, ginsenoside type I from Aspergillus sp. g48p can
hydrolyze multi-glycosides of PPD to produce F2, CK, and Rh2. It can hydrolyze Rb1, Rb2,
Rb3, Rc, and Rd at β-glucoside of C-3; hydrolyze Rb1 at β-glucoside of C-20; hydrolyze Rb2
at α-arabinoside of C-20; hydrolyze Rb3 at β-xyloside; and hydrolyze Rc at α-arabinoside
(Figure 3; Table 2) [56,57]. In another case, enzyme preparation from cultured mycelia of
Armillaria mellea can convert Rb1 and Rb2 to CK with high yields and without food safety
issues [17,33]. Interestingly, there are several commercial glycoside hydrolases available
on the market. Almost all of these enzymes are isolated from fungi, which are used to
hydrolyze Korean red ginseng. For example, β-glucanase in Ultraflo L is isolated from
Humicolar insolens. Moreover, cellulase, xylanase, hemicellulose, and β-glucanase were
mixed in Viscozyme, which is sourced from Aspergillus sp. In another case, pectinase,
hemicellulose, and cellulase isolated from A. niger and Trichoderma longibrachiatum are
packaged in rapidase [49,58]. Naringinase (flavonoid β-D-glucosidase) can be used to
hydrolyze ginsenoside to generate CK from G-IV, G-IV → G-VIII → G-XII → CK [59].
The use of commercial enzymes has resulted in an increased rate of bioconversion and
extraction.

3.2.2. Recombinant Enzymes

Because recombinant enzymes are expressed under controlled conditions, host microbes
can produce the highest concentration of enzymes. Moreover, recombinant microorganisms
easily address several environmental effects. As a result, microbes harboring recombinant
enzymes not only exhibit the significant efficiency of biotransformation to CK but also reduce
costs and processing time. Escherichia coli (E. coli) is known as a ubiquitous microbial host for
heterologous gene expression due to its favorable growth conditions and well-characterized
genetics and physiology [60]. Therefore, alternative sources of recombinant β-glucosidase
have been considerably overexpressed in E. coli for the production of CK. The recombinant
β-glucosidase can be isolated from bacteria, fungi, and archaea. For example, a recombinant
β-glucosidase cloned from Fusobacterium K-60 showed conversion of ginsenoside Rb1 into
CK [61]. In 2010, a novel β-glucosidase from a new strain of Terrabacter ginsenosidimutants
(Gsoil 3082T) was also applied to produce CK. This enzyme showed its function in the trans-
formation pathway as Rb1→ GypXVII→ GypLXXV→ CK [62]. Interestingly, β-glucosidase
derived from Microbacterium esteraromaticum was found in two different transformation path-
ways for the production of CK from ginsenosides: Rb1→ Rd→ CK and Rb2→ CY→ CK
(Figure 3; Table 2) [63,64]. In another case, a novel β-glucosidase from Bifidobacterium breve
ATCC 15700 was able to produce CK from Rd via F2 [65]. Theoretically, these enzymes exhibit
high selectivity and efficiency in hydrolyzing the outer glucose moiety attached to the C-20
position and/or the inner glucose moiety attached to the C-3 position of ginsenosides. While
ginsenoside Rb1 and Rb2 were converted to CK by hydrolyzing glucose at both C-3 and C-20
positions, ginsenoside Rd was converted to F2 through the hydrolysis of glucose at the C-3
position. Then, hydrolysis of the C-3 glycoside of F2 produced CK [63,64]. Notably, E. coli
is also used as a microbial platform for the overexpression of β-glucosidase from Archaea.
β-glucosidases show a board specificity as they can catalyze the hydrolysis of glycosidic
bonds between two and digest glycoside linkages between a sugar and the aglycone.

A thermostable recombinant β-glucosidase from Sulfolobus solfataricus exhibited
ginsenoside-hydrolyzing activity. It was demonstrated that this enzyme has concomi-
tant β-glucosidase, β-galactosidase, and β-xylosidase activities. Its catalysis converts
ginseng root extract to CK through two transformation pathways, namely Rb1 or Rb2→
Rd→ F2→ CK and Rc→ Mc→ CK [66]. In another case, thermostable β-glucosidase
from Sulfolobus acidocaldarius was found to have the ability to convert major ginsenosides
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to CK via two pathways (Rb1→ Rd→ CK and Rb2→ CY→ CK), while β-glucosidase
from Pyrococcus furiosus showed the hydrolyzing of Rb1, Rb2, and Rc to CK via Rd [66,67].
These enzymes, being found in hyperthermophilic bacteria, exhibited optimal hydrolyzing
activity at pHs from 5.0 to 6.0 and temperatures over 80 ◦C. Interestingly, the combina-
tion of two or three sugar hydrolyzing enzymes showed the ability to completely convert
ginsenosides Rc, Rb2, and major protopanaxadiol ginsenosides to CK. In particular, the α-
L-arabinofuranosidase and β-galactosidase isolated from Caldicellulosiruptor saccharolyticus
could hydrolyze α-L-arabinofuranoside and β-D-arabiopyranoside, respectively. Moreover,
β-glucosidase isolated from Sulfolobus acidocaldarius showed the ability to hydrolyze β-D-
glucopyranoside. The combination of α-L-arabinofuranosidase and/or β-galactosidase
with β-glucosidase results in the production of CK with productivities of 388, 328, and
144 mg L−1 h−1 from Rc, Rb2, and major protopanaxadiol ginsenosides in ginseng root
extract, respectively [68]. Similarly, the combination of α-L-arabinofuranosidase and/or
β-galactosidase with β-glucosidase from Aspergillus tubingensis KCTC 14166 produced
2.47 g L−1 of CK from American ginseng extract [69]. These findings suggest that the com-
bination of several enzymes provides a promising approach to improving the productivity
of CK.

Table 2. Summary of CK production enzymatic reaction and microbes.

Strains Transformation
Pathway/Products

Buffer/
Medium

Temperature
(Degree, ◦C) pH Time

(Hours, h) Titer/Efficiency Ref.

β-glucosidase from native microbes

Armillaria mellea Rb1→ XVII/ Rd→ F2→ CK SA 45–55 4.0–4.5 72–96 0.42
(mg mL−1) [17]

Armillaria mellea
KACC 50013

Rb2→ Rd→ F2→ C-K,
Rb2→ CO→ CY→ CK SA 45 4.5 96 N/A [38]

Talaromyces purpureogenus Rb1→ Rd→ F2→ CK MDES 60 4.5 48 80.60% [44]

Lactobacillus pentosus DC10 Rd→ F2→ CK SD 30 7 72 97% [46]

Leuconostoc mesenteroides
DC102 Rb1→ XVII/Rd→ F2→ CK SD 30 6.0–8.0 72 99% [47]

Leuconostoc citreum LH1 Rb1→ Rd→ F2→ CK SD 30 6 72 99% [48]

Stereum hirsutum JE0512

Rb 1→ Rd→ F2→ CK,
Rc→ Gyp XVII→ Gyp LXXV
→ CK,
Rb 2→ CO→ CY→ CK,
Rb 3→ CMx1→ CMx→ CK

PDA 25 6.8 10 days 54.48
(mg g−1) [50]

Aspergillus niger XD101 Rb1→ Rd→ F2→ CK AB 50-60 4–5 72 94.4% [51]

Aspergillus tubingensis
KCTC 14166

Rc→Mc1→Mc→ CK
Rb1→ Rd→ F2→ CK
Rb2→ CO→ CY→ CK

CB/PB 55 4.0 20 418
(mg L−1 h−1) [52]

Fomitella fraxinea
Rb1→ Rd→ F2→ CK
Rc→ Rd→ F2→ CK
Rc→ CMc1→ CMc→ CK

AB 45 4.5 8 N/A [53]

Paecilomyces Bainier sp. 229 Rb1→ Rd→ F2→ CK FB 45 3.5 24 84.30% [56]

Aspergillus niger g.848 Rb1→ Rd→ F2→ CK AB 45 5 18 69.5% [57]

Naringinase

Gynostemma pentaphyllum G-IV→ G-VIII→ G-XII
→ CK (theory) AB 50 4.1 71 65.44% [59]

α-L-arabinofuranosidase and/or β-galactosidase with β-glucosidase

α-L-arabinofuranosidase
and β-galactosidase from
Caldicellulosiruptor
saccharolyticus;
β-glucosidase from
Sulfolobus acidocaldarius

Rc→Mc/Rd→ CK
Rb1→ Rd→ CK
Rb2→ Rd/CY→ CK

CB/PB 75 6.0

12 388
(mg L−1 h−1)

[68]14 328
(mg L−1 h−1)

20 144
(mg L−1 h−1)
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Table 2. Cont.

Strains Transformation
Pathway/Products

Buffer/
Medium

Temperature
(Degree, ◦C) pH Time

(Hours, h) Titer/Efficiency Ref.

Aspergillus tubingensis
KCTC 14166

Rb1→ Rd→ F2→ CK,
Rb2→ CO/Rd→ CY/ F2
→ CK
Rc→ Rd/CMc1→ F2/CMc
→ CK

PDB 28 5.0 144 2.47
(g L−1) [69]

Enzyme recombinant expressed in E. coli

bgpA coding for
β-glucosidase from
Terrabacter ginsenosidimutans

Rb1→ Gyp XVII→ Gyp LXXV
→ CK SD 45 7 N/A N/A [62]

bgp3 coding for
β-glucosidase from
Microbacterium
esteraromaticum

Rb1→ Rd→ CK SD 40 7 1 77%
(0.46 mg/mL) [63]

Rb2→ CY→ CK SD 40 7 12 0.1
(mg mL−1) [64]

β-glucosidase from
Bifidobacterium breve
ATCC 15700

Rd→ F2→ CK CB/PB 35 5.0 12 96% [65]

β-glucosidase from
Sulfolobus solfataricus

Rb1 or Rb2→ Rd→ F2→ CK,
Rc→ CMc→ CK Z buffer 85 5.5 12 1.63

(mg mL−1) [70]

Rb1→ Rd→ CK,
Rb2→ CY→ CK CB 85 5.5 3 0.53

(mg mL−1) [66]

β-glucosidase from
Pyrococcus furiosus Rb1, Rb2, or Rc→ Rd→ CK CB 95 5.5 1 2.010

(mg L−1 h−1) [67]

Cytolase PCL5 Rb3→ Rd→ F2→ CK N/A 55.36 4.3 78.05 2.068
(mg mL−1) [71]

Enzyme recombinant expressed in Lactococcus lactis NZ9000

β-glucosidase genes (BglPm
and BglBX10) from
Paenibacillus mucilaginosus
and
Flavobacterium johnsoniae

Rb1→ Rd→ F2→ CK SD N/A 7.0 36 70% [72]

Enzyme recombinant expressed in Pichia pastoris

β-glucosidase from
Sulfolobus solfataricus Rb1→ Rd→ F2→ CK AB 80 6.0 30 82.5% [73]

Intestinal bacterial hydrolysis

Eubacterium sp. A-44 Rb1→ Rd→ F2→ CK GAM 37

24 9.6 nmol
min−1 mg−1

[74]7 4.8 ng mL−1

15 83.4 ng mL−1

Human gut bacteria Rb1→ Rd→ F2→ CK BHI 37 36 186.9
(µg mL−1) [75]

Bifidobacterium K-103 Rc→ Rd→ F2→ CK GAM
or TSTA 37 24 62.3

(µg mL−1)

[76]Bifidobacterium K-506 Rc→Mb→ F2/Mc→ CK GAM
or TSTA 37 24 6.5

(µg mL−1)

Bacteroides JY-6 Rc→Mb→ F2/Mc→ CK GAM
or TSTA 37 24 6.7

(µg mL−1)

CK production from endophytes

Panax ginseng

Arthrinium sp. GE 17-18 Rb1→ Rd→ F2→ CK PDA 30 N/A N/A [77]

Panax notoginseng

Fusarium oxysporum
YMF1.02670 Rb1→ Rd→ F2→ CK PDA 28 12

days 4 mg [78]

Platycodon grandiflorum

Luteibacter sp. JG09 Rb1→ Rd→ F2→ CK LB 30 7 days 66.34% [79]

Note: MDES, medium-deep eutectic solvent; SA, sodium acetate; SD, sodium phosphate; FB, formate buffer; AB,
acetate buffer; CB, citrate buffer; PB, phosphate buffer; PDA, potato dextrose agar; PDB, potato dextrose broth;
LB, liquid broth; GAM, general anaerobic medium; BHI, brain heart infusion; TSTA; tryptic soy broth containing
0.01% sodium thioglycolate and 0.1% ascorbic acid; and N/A, not available.
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The lack of post-translational modification and low intracellular expression in E. coli
led to a limit on the production of CK. Consequently, there is a need to explore alterna-
tive microbial hosts for ginsenoside production. Recently, Pichia pastoris (P. pastoris) and
Lactococcus lactis have been used as microbial hosts for β-glucosidase expression [72,73].
Both strains are generally regarded as safe (GRAS) microbes. While lactic acid bacteria
(LAB) possess probiotic characteristics, P. pastoris exhibits the ability for post-translational
modification and rapid growth at high cell densities. Therefore, these strains are a suitable
expression system for heterologous protein production. In the case of lactic acid bacteria,
L. lactis NZ9000, carrying β-glucosidase genes (BglPm and BglBX10) from Paenibacillus
mucilaginosus and Flavobacterium johnsoniae, demonstrated the conversion of up to 70% of
Rb1 to CK [73]. In another case, P. pastoris was used as a microbial host for the expression
of a thermostable β-glucosidase from Sulfolobus solfataricus. The recombinant SS-bgly ex-
pressed in P. pastoris achieved an 82.5% conversion rate of Rb1 to CK (Table 2) [73]. These
results indicated that lactic acid bacteria and P. pastoris could be potential candidates for
the industrial production of the rare ginsenoside CK.

3.3. Biotransformation by the Human Intestinal Bacteria

Although ginseng plants primarily contain major ginsenosides, the human body could
obtain CK via oral administration of ginsenosides. A study was conducted to investigate
the concentration of ginsenosides and CK in human plasma, involving 11 healthy Korean
adults who consumed red ginseng extract for 2 weeks [7]. The results showed a decrease
in the concentration of Rg3 while CK and its metabolites increased over time. This slow
absorption suggests that CK and its metabolites can be absorbed in the intestine, with
intestinal bacteria playing a crucial role in generating CK from major ginsenosides. The
transformation process of ginsenosides by the gut microbiota is extremely complex, with
15 different metabolites from protopanaxadiol saponins.

Although major ginsenosides such as Rb1, Rb2, and Rc, possess high solubility, they
have low membrane permeability and are susceptible to degradation [80]. Intestinal bac-
terial hydrolysis not only plays a significant role in metabolic function but also improves
the absorption and stability of ginsenosides. The conversion pathway, Rb1→ Rd→ F2→
CK, is known as one of the ubiquitous approaches to biotransformation by intestinal bac-
teria. Various bacterial species, including Eubacterium sp. A-44 isolated from rat or human
gut bacteria such as Streptococcus sp. and Bifidobacterium sp., showed the ability to trans-
form Rb1 to CK through geniposide-hydrolysing β-D-glucosidase activity [74,75]. Similarly,
Hasegawa et al., [81] isolated Prevotella oris strains from human fecal samples, which were
found to have the ability to hydrolyze ginsenoside Rb1 into CK. Studies have also identified
the transformation pathway of Rd→ F2→ CK through selective hydrolysis of the C-3 in Rd
using β-D-glucosidase enzyme [65]. Interestingly, another pathway via Rb1→ G-XVII→
G-LXXV/F2→ CK was investigated when pooled gut bacteria were incubated anaerobically
with Rb1. It was observed that the rate of the pathway was rapid and the percentage of
conversion from G-XVII to G-LXXV was minor in comparison with the conversion of G-XVII
to F2. These findings indicated that human gut bacteria could digest glucose residue at the
C-20 position in addition to Rb1, and other major ginsenosides are also utilized by microbiota
for conversion into CK. The bacteroide HJ-15 transforms Rc into CK via ginsenosides Mb and
Mc (Rc→Mb→Mc→ CK) (Figure 3; Table 2) [76]. In summary, bacteria utilize stepwise
sugar cleavage reactions to transform various ginsenosides [82].

A study on the plasma levels of compounds in 15 individuals found significant
variation in the concentrations of Rd and CK among subjects. Some individuals had much
higher levels of Rd and CK than others in the study. The data recorded on the first and
fifteenth days showed that this difference was not dependent on the method of extract use:
either a single dose or multiple days in a row. This difference suggests that some individuals
have a higher capacity to convert ginsenosides to Rd and CK [83]. The absorption rate of
CK in the blood is directly linked to the body’s ability to convert it [84]. In mice, this ratio
is also influenced by the diet, including prebiotics [85]. Furthermore, the absorption rate of
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CK also varies depending on the species. The concentration in the plasma and AUC of CK
in mice is 5–6 times higher than in rats, although there is no significant difference in half-life
or average residence time between the two species. Analysis of bacterial composition in
fecal samples revealed that groups of Bacteroides sp., Eubacterium sp., and Bifidobacterium sp.
in mice have lower proportions and activity compared to humans [86]. It has been reported
that humans with a higher proportion of Bacteroides sp. in their gut microbiota have six
times higher metabolic activity of compound K than those with a lower proportion of
Bacteroides sp. [71]. The study also highlighted the high diversity and richness of the group
with strong conversion ability, particularly in the dominant groups Firmicutes, Bacteriodetes,
and Tenericutes [87].

Overall, the gut microbiota is healthy. However, gut bacterial enzymes are influenced
by many factors, particularly dietary habits. Enzyme activity is not dependent on gender
or age but varies between individuals, impacting their ability to convert ginsenosides [88].
These reports have shown that the low absorption of ginsenoside metabolites is significantly
dependent on the composition and metabolic activity of the gut microbiota.

3.4. Biotransformation by Endophytes

As mentioned previously, CK is a minor ginsenoside that cannot be extracted in
large amounts from the natural ginseng plant. Therefore, several studies have focused
on transforming major ginsenosides to CK through different methods such as hydrolysis,
enzymatic biotransformation, microbial transformation, etc. Inside microbial transforma-
tion, biotransformation by endophytes is an efficient method due to its low price, high
accuracy, selectivity, and environmental protection [89]. Endophytes are microorganisms
inside vascular tissues and intercellular spaces in plant tissues that have the function of
infiltrating healthy plant tissues without causing any disease for the plants [90]. Based
on their unique living conditions and extended coexistence with their hosts, endophytes
have developed distinct adaptations to maintain a consistent symbiosis. They can also
synthesize a variety of extracellular enzymes for the manufacture of secondary metabolites.
Thus, to produce more active compounds, complicated processes involving endophytes
have been applied to the biotransformation of region- and stereo-selective synthesis to
converse natural compounds [91].

In recent years, numerous studies have focused on exploring different endophytes that
could participate in the biotransformation of major ginsenoside to minor ginsenoside, includ-
ing CK. It has been reported that the glucosidase of endophytes Fusarium sp. YMF1.02670
or YMF1.02193 could deglycosylate the major ginsenoside Rb1 to CK [78]. Among 32 β-
glucosidase-producing endophytes, extracted endophyte bacteria JG09 defined as Luteibacter
sp. from P. grandiflorum is capable of efficiently converting CK from the major ginsenosides
Rb1, Rb2, and Rc. To enhance the yield of CK, the optimal conditions of the fertile process
and the content of saponins were evaluated. Endophyte JG09 was found to hydrolyze Rb1,
Rb2, and Rc to CK by distinct β-glucosidase in the following pathways: Rb1→ Rd→ F2
→ CK; Rb2→ CO→ CY→ CK; Rc→ CMc1→ CMc→ CK; and Rd→ F2→ CK. After
7 days, the highest yield of CK was recorded at 66.34% (Figure 3; Table 2) [79]. Similarly,
the extracted β-glucosidase-producing endophyte from P. ginseng also participated in the
biotransformation of Rb1 to CK through the hydrolyzation method in the following sequence:
Rb1→ Rd→ F2→ CK [77]. Moreover, a different study also represented a high percentage
of transformation from Rb1 to CK, with the contribution of endophytes Fusarium oxysporum
and Coniochaeta sp. extracted from ginseng and P. notoginseng [92]. In another study, using
β-glucosidase isolated from Armillaria mellea mycelium, Rb2 was hydrolyzed and transformed
into CK via the catalytic pathway Rb2→ CO→ CY→ CK [93]. These studies have showcased
the significant control that endophytes exert in the biotransformation of major ginsenosides to
CK. The advancement of fermentation, extraction, purification, characterization, and bioassay
techniques has also contributed to the improvement of the biotransformation process [94].
Moreover, the fermentation process is speedy, efficient, and commercially sustainable, with
plenty of room for manipulation through the addition of precursors, elicitors, specialized en-
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zymes, and modifiers for the effectively increased synthesis of bioactive chemicals. However,
there are ongoing challenges in maintaining the biotransformation by endophytes that should
be considered.

4. Metabolically Engineered Microbes

Engineering microorganisms is a sustainable and promising approach for the pro-
duction of plant-derived secondary metabolites to accelerate industrialization. Synthetic
biology and metabolic engineering have made significant progress in producing high-value
compounds. For example, flavonoids and stilbenes are produced by E. coli [95], taxol is
produced by E. coli and Saccharomyces cerevisiae [96,97], and artemisinin is produced by
S. cerevisiae [98]. To date, the highest terpenoid titers have been achieved using E. coli and
S. cerevisiae. Both model microbes are known as GRAS organisms with well-characterized
microbial cell factories. They are not only easy to cultivate and grow fast but also pro-
duce high efficiency and productivity of terpenoids [99]. The toxic accumulation of CK
negatively affects the growth of E. coli, and expressing plant cytochrome P450s in E. coli is
challenging [60]. By contrast, yeasts, including S. cerevisiae and Yarrowia lipolytica, possess
redox systems that allow tailoring enzymes such as CYP450s and glycosyltransferase to
further modify the core structure of terpenoids. As a result, yeast cells can produce CK
as well as other terpenoids [18,100]. According to the advantages and characteristics of
yeasts, metabolic engineering strategies provide various approaches to producing CK. First,
the common approach is the overexpression of heterologous genes in S. cerevisiase. The
genes of CK biosynthesis from squalene involve endogenous squalene epoxidases 1 (ERG1),
dammarenediol synthase (PgDDS) and UDP-glycosyltransferase (UGT71A28) from P. gin-
seng, and a cytochrome P450 (CYP716A47) from P. ginseng co-expressed with an NADPH-
cytochrome P450 reductase (ATR2-1) from Arabidopsis thaliana. In this pathway, ERG1
catalyzes the conversion of squalene to 2,3-(S)-oxidosqualene. Then, 2,3-(S)-oxidosqualene,
an intermediate from the mevalonate pathway in S. cerevisiae, is converted to dammarene-
diol II (DD II) by catalyzing PgDDS. Next, UGT71A28 catalyzes the formation of DMG
from DD II under the availability of UDP-Glucose in the cells. After that, CYP716A47
fused-ATR2-1 is catalyzed as a monooxygenase to the formation of CK from DMG. On the
other hand, DD II is converted to PPD by CYP716A47 fused-ATR2-1 and forms CK from
PPD by catalyzing UGT71A28 (Figure 4). Noticeably, UGT71A28 acts as a stereospecific
and regioselective glycosyltransferase, which transfers glucose residues to the C-20S-OH
of PPD. As a result, engineered S. cerevisiae BK1 harboring biosynthesis pathway genes
produced 155.4 µg L−1 of CK using glucose as a carbon source (Table 3) [101].

Table 3. List of the engineered yeasts for CK production under shake-flask/fed-batch conditions with
appropriate medium at 30 ◦C.

Strains Related Gene Cassettes in
Biosynthesis Pathway Titer Major Media Carbon Source Cultivation

Condition Ref.

Saccharomyces cerevisiae

BK1 (BA21) ERG1, PgDDS, PgCYP716A47,
AtATR2-1, UGT71A28

155.4
(µg L−1)

SC

Glucose

Shake-flask [101]

BKE
AtATR2-1, UGT71A28,

PgCYP716A47, ERG1, PgDDS,
tHMGR-UPC2.1

802.1
(µg L−1)

AKE ERG1, PgDDS, PgCYP716A47,
AtATR2-1, UGT71A28

243.8
(µg L−1)

Galactose
AK1

AtATR2-1, UGT71A28,
PgCYP716A47, ERG1, PgDDS,

tHMGR-UPC2.1
1424.8

(µg L−1)

ZW-F1-17 ERG20, PgERG1, ERG9, tHMG1,
CYP716A53v2, PgCPR1, UGTPg1

7.5
(µg L−1) SC Glucose Shake-flask [102]
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Table 3. Cont.

Strains Related Gene Cassettes in
Biosynthesis Pathway Titer Major Media Carbon Source Cultivation

Condition Ref.

WLN-3

DS, PPDS-ATR1, ERG1, tHMGR,
ERG9, ERG20, ERG10, ERG13,

ERG12, ERG8, ERG19, IDI1, NCP1,
ACSseL641P, TetR, PGM2 and

UGP1, PgUGP1

263.94
(mg L−1) YPD Glucose Shake-flask

[103]

WLN-3

DS, PPDS-ATR1, ERG1, tHMGR,
ERG9, ERG20, ERG10, ERG13,

ERG12, ERG8, ERG19, IDI1, NCP1,
ACSseL641P, TetR, PGM2 and

UGP1, PgUGP1

384.52
(mg L−1) YPDG (20%) Glucose,

glycerol Shake-flask

WPK12

ERG10, ERG13, tHMG1, ERG12,
ERG8, ERG19, IDI1, ERG20, ERG9,
ERG1, PgDDS, PgPPDS, PgCPR1,

synUGTPg1, PGM2, URA6,
YNK1, ∆AGL5

5.74
(g L−1) YPD Glucose Fed batch [104]

LPTA-M
ERG12, tHMG1, ERG13, ERG10,

ERG8, ERG19 IDI1, AtSQS2, ERG1,
SmFPS, SynPgPPDS, ATR1, PLN1

5.0
(g L−1) SD Glucose Shake-flask [105]

Yarrowia lipolytica

YL-MVA-CK tHMG1, ERG9, ERG20, opDS, PPDS
linker2-ATR1, UGT1

161.8
(mg L−1) YPD Glucose Fed batch [106]

Secondly, the control of gene expression has a significant effect on the optimization of
cell factories. Promoter sequences encode the level of gene expression by regulating the
transcription in yeast S. cerevisiae. Making a rational design of the promoter is one of the
most effective approaches for controlling gene expression. Constitutive and inducible pro-
moters have been widely used for gene expression in recent years. Constitutive promoters
are constantly active under various cultural conditions. Well-known examples in yeasts
include constitutive promoters of ribosomes (PRP, cytoplasmic ribosomal protein; Pribi,
ribosome biogenesis; and PsnoRNA, small nucleolar RNA genes) [107], promoters for genes
encoding the cellular translational machinery (PTEF1, and PTEF2, translation elongation
factor EF-1α and EF-2 α, respectively) [108], and constitutive promoters of glycolytic genes
(PGAP, glyceraldedyde-3-phosphate dehydrogenase; PGPM1, phosphoglycerate mutase; and
PADH1, alcohol dehydrogenase) [109]. For example, the expression of genes related to
the MVA pathway under the control of a constitutive promoter in S. cerevisiae ZW-F1-17,
including ERG20 under the control of PGPM1, EGR9, tHMG1, and UGTPg1 under the control
of PGK1, PgERG1, and CYP716A53v2 under the control of PTEF1 and PgCPR1 under the
control of PTDH3, resulted in the production of 7.5 mg L−1 of CK [102]. Due to the strong
characteristics of these promoters, the expression of certain enzymes in metabolic pathways
leads to the production of toxic by-products, thus reducing cell growth [110]. Furthermore,
the flux regulation of the central carbon metabolism and the demand for energy (ATP)
and redox cofactors (NADPH) lead to an increase in metabolic burden for yeast cells [111].
Therefore, inducible promoters are a sustainable approach to the replacement of strong
constitutive promoters under dynamic cultural conditions. Carbon source-dependent pro-
moters allow activation of a biosynthesis pathway after the host growth phase has been
completed [108]. For example, in the replacement of constitutive promoters PGPM1 and
PTEF1 by the galactose inducible promoters PGAL1 and PGAL10 in engineered S. cerevisiae
AK1, CK was produced 1.57-fold higher than a BK1 strain from galactose with a yield of
244.8 µg L−1 [101].
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ERG13, HMG-CoA synthase; HMG, 3-hydroxy-3-methylglutaryl-CoA reductase; ERG12, mevalo-
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axadiol synthase; UGT, UDP-glycosyltransferase; PGM: phosphoglucomutase 2; FKS1, 1,3-β-D-glu-
can synthase; GLC3, glycogen-branching enzyme; and ALG5, glycosyltransferase on N-linked  
glycosylation. 
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Figure 4. The proposed biosynthetic pathway for CK production in engineered yeasts. Blue: yeast
native enzymes; purple: P. ginseng enzymes, and green: A. thaliana enzyme. Intermediates: HMG-CoA, β-
Hydroxyβ-methylglutaryl-CoA; DMAPP, dimethylallyl pyrophosphate; IPP, isopentenyl pyrophosphate;
FPP, farnesyl diphosphate; MVA, mevalonate; MVAP, mevalonate 5-phosphate; MVAPP, mevalonate
5-pyrophosphate; UTP, uridine triphosphate; UDP, uridine diphosphate; and UMP, uridine monophos-
phate. Enzymes: ACS: acetyl-CoA synthase; ADH2, alcohol dehydrogenase; HK, hexokinase; ALD6,
acetaldehyde dehydrogenase; ERG10, acetyl-CoA C-acetyltransferase; ERG13, HMG-CoA synthase;
HMG, 3-hydroxy-3-methylglutaryl-CoA reductase; ERG12, mevalonate kinase; ERG8, phosphomeval-
onate kinase; ERG19, diphosphomevalonate; IDI, isopentenyl diphosphate-isomerase; ERG20, farnesyl
diphosphate synthase; ERG9, squalene synthase; ERG1, squalene epoxidase; ERG7, lansterol synthase;
CPR, cytochrome P450 reductase; PPDS, protopanaxadiol synthase; UGT, UDP-glycosyltransferase;
PGM: phosphoglucomutase 2; FKS1, 1,3-β-D-glucan synthase; GLC3, glycogen-branching enzyme; and
ALG5, glycosyltransferase on N-linked glycosylation.

Thirdly, the identification and overexpression of key rate-controlling enzymes in the
biosynthesis pathway are promising approaches to improving the target products. In
the MVA pathway, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG) reductase (HMG1,
HMG2) catalyzes the conversion of HMG to MVA. This enzyme is identified as the rate-
limiting enzyme because it shows the ability to inhibit post-transcriptional feedback in the
MVA pathway [112]. In order to address this bottleneck, the removal of the N-terminal
transmembrane sequence, which encodes membrane-binding activity, has commonly been
used to enhance enzyme activity. In addition, overexpression of tHMH1 under control
of PADH1 along with a semi-dominant mutant allele of a global transcription factor for
sterol biosynthesis (UPC2.1) under control of PADH1 has significantly improved CK pro-
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duction. The engineered S. cerevisiae AKE and BKE produced a 5-fold increase in the
yield of CK, with 1424.8 and 802.2 µg L−1, respectively [101]. Similarly, the inefficiency
of UDP-sugar, the donor sugar moieties of glycosyltransferase enzymes, is one of the
major limiting factors for the production of CK in yeast cells. An engineered strain for
CK production was developed by overexpressing a UDP-glucose biosynthetic pathway in
PPD-producing S. cerevisiase WLT-MVA5. The UDP-glucose biosynthetic pathway included
UDP-glucose glucosyltransferase (UGP1) from P. ginseng, phosphoglucomutase 2 (PGM2),
and UTP-glucose-1-phosphate uridylyltransferase 1 (UGP1) from S. cerevisiae W303-1a. In
this pathway, glucose-6-phosphate is converted to glucose-1-phosphate by PMG2. Then,
UGP1 catalyzes the conversion of glucose-1-phosphate to UDPG. Finally, the formation of
CK from PPD is carried out through the catalyzing of UGT1. After successful overexpres-
sion of three genes, a 79.81% increase in CK production and a 183.20% enhancement in the
rate of conversion were achieved (Table 3) [103].

Fourthly, in addition to overexpression of the genes involved in UDP-glucose biosyn-
thesis, reducing UDP-glucose consumption is an important approach to preserving and
improving the available UDP-glucose in S. cerevisiae. Overexpression of URA6 along with
YNK1 or the deletion of YND1 led to improved UTP, a metabolic intermediate of UDP-
glucose. While URA6 is catalyzed to produce UDP from UMP, YNK1 is converted from
UMP to UTP. On the other side, UTP could be dephosphorylated by YND1 to synthesize
UDP and UMP. At this stage, the combined overexpression of the genes PGM2, UPG1,
URA6, and YNK1 in engineered S. cerevisiae WPK8 or the combined overexpression of the
genes PGM2 and UPG1 along with the deletion of YND1 in engineered S. cerevisiae WPK8
resulted in an improvement in the CK titer (Figure 4) [104]. In theory, UDP-glucose could
not only be converted to intermediate molecules through enzymatic reversible reactions
but also be present in many yeasts’ metabolic processes, including glycogen biosynthesis,
protein glycosylation, and cell well biosynthesis [113,114]. Therefore, knockdown and
knockout of the genes encoding the consumption pathway of UDP-glucose are required
for improving CK production. However, it has been demonstrated that the deletion of
FKS1 (encoding for yeast 1,3-β-D-glucan synthase, which catalyzes glucan chain elongation
using a glucose donor from UDP-glucose on the cell wall biosynthesis) and GLC3 (encoding
for glycogen-branching enzyme) did not improve CK production in engineered S. cerevisiae
WPK10 and WPK11, respectively (Figure 4) [115,116]. Conversely, the deletion of ALG5
(encoding for a glycosyltransferase on N-linked glycosylation of protein in yeast) resulted
in an increase of 12% of CK tilter compared to the non-mutant strain, which is the highest
reported yield to date with 5.74 g L−1 (Table 3) [104]. It is possible that UDP-sugar is used
as a compensatory mechanism in a network of biochemical reactions.

Fifthly, yeast cells consist of various subcellular compartments, such as the endo-
plasmic reticulum, mitochondria, peroxisomes, vacuole, and cytosol. Each subcellular
compartment exhibits a unique physiochemical environment with different enzymes, cofac-
tors, and metabolites [117,118]. Modifying subcellular compartments in engineered yeasts
provides novel strategies to produce CK. Interestingly, this strategy could achieve up to
5 g L−1 of CK. In order to engineer storage organelles (lipid droplets) of PPD substrate
from DD II, the yeast PLN1 protein was expressed in the normally endoplasmic reticulum
(ER), which is the localization of cytochrome P450 enzymes PPD synthase (PPDS). It was
demonstrated that the change in the ratio of volume and surface area of LDs led to a de-
crease in the conversion from DD to PPD, while the alternative morphology of LDs showed
the effects on their storage capacity [105].

Noticeably, one of the greatest challenges of industrial production is the cost of raw
materials. While non-renewable fossil raw materials for energy and commercial products
are rapidly becoming a global crisis, the application of renewable carbon sources has been
developed as a recent national and global strategy [119]. Currently, glucose is known as the
main renewable carbon source for microbial production. However, there are various other
types of renewable carbon sources available, such as agricultural and forestry residues,
industrial by-products, or non-food biomass, which could be used as low-cost feedstock
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to produce commercial products. Moreover, these raw materials do not compete with
food and feed chains. Therefore, alternative carbon source utilization is a sustainable
approach to apply to microbes for bioproduction [120,121]. In the case of CK production,
glycerol and ethanol are used as carbon sources in engineered S. cerevisiase. Glycerol, being
a byproduct of the biodiesel industry, is a low-cost and abundant product. Moreover, there
are several other advantages to using glycerol as a carbon source in microbial production.
Firstly, glycerol provides more reducing equivalents compared to sugars. The amount of
reducing equivalents from glycerol to phosphoenolpyruvate or pyruvate is 2-fold higher
than the conversion from glucose [122]. Secondly, since glycerol does not show activity on
the permeable membrane, it can increase the stabilizing enzyme conformation on the cell
membrane. Furthermore, glycerol acts as a chaperone for protein folding [123,124]. It has
been reported that glycerol increases UDPG pyrophosphatase activity and the accumulation
of UDPG when S. cerevisiae is cultured in glycerol [125]. As a result, the production of CK
from engineered S. cerevisiae WLT-MVA5 cultured in YPD medium containing 20% glycerol
was 45.68% higher than that from this strain cultured in YPD medium containing 20%
glucose [103]. Noticeably, S. cerevisiase produces ethanol during fermentation, and then
ethanol is used as a carbon source when glucose becomes depleted [126]. Since ethanol
facilitates the formation of PPD, a mixture of glycerol and ethanol was used, enabling CK
production of 1.7 g L−1 in the 5-L bioreactor fed fermentation (Table 3) [103].

Recently, the non-conventional oleaginous yeast Y. lipolytica has been considered
a promising host for the production of lipid-based oleochemicals [127]. Like S. cerevisiase,
Y. lipolytica is known as a eukaryote cell with “GRAS” status. Moreover, the genome of
Y. lipolytica has been well sequenced and is suited for genetic manipulation [128]. How-
ever, there are many advantages of Y. lipolytica in the production of hydrophobic com-
pounds compared to S. cerevisiase. Firstly, unlike the Crabtree-positive yeast S. cerevisiae,
Y. lipolytica is Crabtree-negative and possesses a respiratory metabolism with a robust
energy supply system, enabling higher biomass yields in fermentation processes [106].
Therefore, Y. lipolytica metabolism avoids carbon loss through excretion of acetate and
ethanol. Moreover, unlike S. cerevisiae, Y. lipolytica can grow with high growth rates on
various renewable carbon sources, such as glycerol, pentose, waste oil, fatty acids, and
C1 carbon sources. This characteristic may provide a promising industrial host for the
economic production of high-value compounds [129]. Importantly, the metabolic traits of
Y. lipolytica include high acetyl-CoA flux, which is known as a key precursor of the MVA
pathway [130]. These traits are thus of interest for the application of metabolic engineering
and synthetic biology to the synthesis of terpenoids, such as monoterpenoids (limonene
and linalool) [131,132], sesquiterpenoids (α-farnesene and (+)-nootkatone) [37,133], and
tetraterpenoids (β-carotene and lycopene) [134,135]. However, engineering Y. lipolytica
for the production of triterpenoids has been rarely performed; especially since Y. lipolytica
cannot be directly synthesized to CK due to its lack of three enzymes, including DDS,
CYP450s, and UGT. To increase the metabolic flux of 2,3-Oxidosqualene and promote the
accumulation of the final product, overexpression of key genes in the MVA pathway and
heterologous expression of lacking genes have been investigated.

5. Conclusions and Future Perspectives

CK exhibits various important biological and pharmaceutical properties, including
antitumor, anti-cancer, anti-diabetic, anti-skin aging, hepatoprotective, and neuroprotective
effects. The research of CK not only focuses on expanding various biological activities
but also aims to understand its multiple molecular mechanisms. Although ginseng of the
Araliaceae family commonly produces protopanaxadiol and protopanaxatriol ginsenoside,
CK is still absent from natural ginseng. The various processes used for CK biosynthesis
include chemical synthesis, enzymatic reactions, microbial transformation, and metabolic
engineering. Chemical synthesis is not only rare but also has low yields. Chemical methods
use toxic agents and organic solvents, which are hazardous to human health and the
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environment. While green chemistry has reduced and eliminated the use of hazardous
substances, biological approaches have shown many advantages for the production of CK.

Microbial hosts, including human intestinal bacteria, endophytes, and industrial mi-
crobes, have been shown to be the most important cell factories for CK production. While
endophytes are known as a promising source of ginsenosides, biotransformation has also
been carried out by intestinal bacteria. The discovery of novel endophytes from ginseng
plants would provide potential approaches to producing CK. Moreover, the investigation
of β-glucosidase-produced endophytes is necessary to increase the amount of biotransfor-
mation for the production of CK. Similarly, further investigation is required to understand
the distribution, biodiversity, and composition of gut microbiota. The β-glucosidase from
endophytes and intestinal bacteria could be supported by the genes in engineered strains,
such as E. coli or/and S. cerevisiae. This approach provides various sources of enzymes for
in vitro reactions, which may improve the efficient production of CK.

Recently, the whole genome of ginseng plants and endophytes has been investigated
through omics tools. Omics tools, including next-generation sequencing, metagenomics,
transcriptomics, proteomics, and metabolomics, have been applied to identify genes en-
coding for three enzymes crucial for CK biosynthesis: OSCs, CYP450s, and GTs. However,
the functional genes and enzymes from omics data are still limited. The reason is that
the characterized OSCs, CYP450s, and GTs are most likely sourced from P. ginseng. The
identified genes encoding for three enzymes from other ginseng plants have not been well
understood yet. Furthermore, omics data from the ginseng endophytes is still lacking.
Therefore, the development of omics data from the ginseng plants and their endophytes is
required for further studies.

Noticeably, metabolic engineering assisted-synthetic biology provides a promising
approach to producing CK in endophytes and engineered microbes. Various metabolic
engineering strategies on yeast strains, such as heterologous gene expression, enzyme
engineering, codon optimization, copy number multiplication, subcellular localization,
balancing, and increasing metabolic flux, have been applied to achieve the efficient pro-
duction of CK. Importantly, the development of synthetic biology tools, including RNA
interference (RNAi) and CRISPR-Cas systems, have emerged as a powerful tool for genome
editing, which allows knock-down, knock-out, knock-in, and fine-tuning of genes from
the CK biosynthetic. While synthetic biology tools have been highly applied for genomic
editing on S. cerevisiae, Y. lipolytica and P. pastoris have not been much used as hosts for CK
production. Therefore, these two non-conventional yeasts could be engineered by synthetic
biology tools to improve the productivity of CK.
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