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Abstract: Lignocellulosic biomass is a significant source of sustainable fuel and high-value chemical
production. However, due to the complex cross-linked three-dimensional network structure, lignin is
highly rigid to degradation. In natural environments, the degradation is performed by wood-rotting
fungi. The process is slow, and thus, the use of lignin degradation by fungi has not been regarded
as a feasible technology in the industrial lignocellulose treatment. Fungi produce a wide variety of
ligninolytic enzymes that can be directly introduced in industrial processing of lignocellulose. Within
this study, screening of ligninolytic enzyme production using decolorization of ABTS and Azure
B dyes was performed for 10 fungal strains with potentially high enzyme production abilities. In
addition to standard screening methods, media containing lignin and hay biomass as carbon sources
were used to determine the change in enzyme production depending on the substrate. All selected
fungi demonstrated the ability to adapt to a carbon source limitation; however, four strains indicated
the ability to secrete ligninolytic enzymes in all experimental conditions—Irpex lacteus, Pleurotus
dryinus, Bjerkandera adusta, and Trametes versicolor—respectively displayed a 100%, 82.7%, 82.7%,
and 55% oxidation of ABTS on lignin-containing media and 100%, 87.9%, 78%, and 70% oxidation
of ABTS on hay-containing media after 168 h of incubation. As a result, the most potent strains of
fungi were selected to produce lignocellulose-degrading enzymes and to demonstrate their potential
application in biological lignocellulose pretreatment.

Keywords: lignocellulosic biomass; biomass pretreatment; ligninolytic enzymes; white rot fungi

1. Introduction

The rapid growth of the global population over the past half-century has led to an
increasing demand not only for fresh water and food but also for petroleum products [1]. At
present, energy consumption and production contribute to two-thirds of global emissions,
and 81% of the global energy system is still based on fossil fuels, the same percentage as
30 years ago [2,3]. The current aim of the European Union (EU) is to become carbon neutral
with net-zero greenhouse gas emissions by 2050 [4]. Renewable biomass will continue to
have an important role in EU energy, covering approximately 5% of the primary energy sup-
ply of the EU-27 [5]. Generally, lignocellulosic biomass consists of three main components—
cellulose (40–50%), hemicellulose (25–30%), and lignin (15–20%), as well as extractives
(0–15%), and the proportions of these vary depending on the biomass source [6,7]. From
these, lignin is an aromatic biopolymer found in the vascular tissues of plants, and together
with cellulose and hemicellulose, forms a natural structural bio-composite, which provides
rigidity and mechanical strength to the plant’s cell and structures [8]. The composition of
lignocellulosic biomass varies based on the source of the biomass and type of the plant
(Table 1); it is also released as a by-product in the pulp, paper, and bioethanol industries.
The pulp industry produces around 30 million tons of lignin per year [9], which makes
the industry a large producer of lignocellulosic and lignin waste. Lignin, both from plant
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biomass and industrial waste sources, can serve as an important renewable raw mate-
rial source in a variety of other commercial applications. Biofuel production, as well as
the biological production of chemicals, are potential applications for the biodegradation
of lignin.

Most of the applications of lignocellulosic biomass require pretreatment to partly or
completely degrade lignin [10]. However, in addition to providing plant stems the rigidity
and waterproofing vascular tissues for sap circulation, the role of lignin is the protection of
the cellulose polymer towards hydrolytic attack by saprotrophic organisms, which makes
the lignin treatment and degradation process difficult. Nevertheless, some microorganisms
have developed a strategy to be able to degrade lignin based on unspecific one-electron
oxidation of the benzenic rings in the different lignin substructures by extracellular ligni-
nolytic enzymes [11]. Given the role of ligninolytic enzymes in the lignocellulosic biomass
degradation and detoxification in the environment [6,12], the biological pretreatment could
be a possible environmentally friendly and chemical-free method for the degradation of
lignin and lignin biowaste in many industries [6].

Table 1. Composition of lignocellulosic biomass from various substrates [13–18].

Lignocellulosic Materials Cellulose (%) Hemicellulose (%) Lignin (%)

Natural biomass sources

Hardwood 40–55 24–40 18–25
Oak 43.2 21.9 35.4
Pine 45.6 24 26.8

Natural hay 44.9 31.4 12
Leaves 15–20 80–85 0
Reed 34–36 26–27 21

Switchgrass 31–45 20–31 12–18

Agricultural biomass by-products or residues

Barley straw 31–45 27–38 14–19
Wheat straw 33–38 26–32 17–19

Rye straw 33–35 27–30 16–19
Oat straw 31–37 27–38 16–19

Silage 39.27 25.96 9.02
Hemp 53.86 10.6 8.76

Rapeseed 20–35 15–22 15–23

Industrial residues and waste

Willow sawdust 35.6 21.5 28.7
Paper 85–99 0 0–15

Newspaper 40–55 25–40 18–30
Waste papers from chemical

pulps 60–70 10–20 5–10

Primary wastewater solids 8–15 NA 24–29
Sugarcane bagasse 44 28 21

Numerous fungi, as well as bacterial species, can cause lignin degradation (Table 2);
however, fungi are more efficient in the breakdown of lignin than bacteria, which are more
limited in their enzyme secretion abilities and lignin degradation rates [6]. It has been
reported that around 1600–1700 wood-rot fungal species identified in North America are
capable of biodegrading lignin [19]. Wood-degrading species are mostly saprotrophs or
weak parasites in forest ecosystems. Saprotrophic fungi associated with lignin degradation
have been divided into the following three major groups depending on their morphology
and enzymes associated with the lignin degradation mechanism: white rot, brown rot, and
soft rot fungi. All three groups of fungi are able to degrade lignin, but only Basidiomycota
(aerobic white rot fungi) are able to decompose lignin completely to CO2 and H2O [20,21].
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In nature, white rot fungi mostly occur on hardwoods and are primary lignin degraders,
whereas brown rot fungi more often are found on softwoods in coniferous ecosystems [22].

Table 2. Bacteria and fungi degradation of lignin on different feedstocks.

Species Feedstock Used Lignin Degradation (%) Time (Days) Reference

Bacteria

Pseudomonas spp.
Kraft lignin 39 52 [23]

Poplar wood 40–52 30 [24]
Kraft lignin 20 40–60 [23]

Acinetobacter spp. Poplar wood 47–57 30 [24,25]
Xanthomonas spp. Poplar wood 39–48 30 [24,25]

Streptomyces badius Indulin lignin 3–4 35 [26]
Streptomyces viridosporous Indulin lignin 3–4 35 [26]

Streptomyces cyaneus Barley straw 29–52 21 [27]
Thermomonospora mesophila Barley straw 36–48 21 [24,27]

Fungi

Pleurotus ostreatus
Cotton stalks 40 30 [28]
Beech wood 56.5 120 [28]

Phanerochaete chrysosporium Cotton stalks 60 30 [28]
Cotton stalks 28 14 [23]

Trametes versicolor spp. Beech wood 57.4 120 [29]
Bamboo culms 9–24 28 [30,31]

Irpex lacteus Cornstalks 15 11.84 [32]
Echinodontium taxodii 2538 Bamboo culms 24 28 [30]

Phlebia sp. MG-60 Oak wood 40.6 56 [33]
Ceriporia lacerata Red pine 13 56 [34]
Stereum hirsutum Red pine 15 56 [31]

Ceriporiopsis subvermispora Corn stover 39.2 42 [35,36]

The enzymes involved in lignin degradation have been divided into two groups—
lignin-modifying enzymes (LME) and lignin-degrading auxiliary (LDA) enzymes [37].
LMEs are also called ligninolytic enzymes and have gained attention as biological agents
for the degradation of lignocellulosic waste-containing compounds and other organic
pollutants [12]. These enzymes also have a role in industrial waste treatment and other
xenobiotic compounds through the biodegradation and decolorization process [37]. The
LDA enzymes are unable to degrade lignin on their own and need additional enzyme
involvement for complete lignin degradation; however, these enzymes enable the process
of lignin degradation through the sequential action of several proteins that may include
oxidative H2O2. This group includes cellobiose dehydrogenase, aryl alcohol oxidases,
glyoxal oxidase, glucose oxidase, and pyranose 2-oxydase [12].

LME produced by microorganisms are classified as phenol oxidases (laccases) and
heme-containing peroxidases—lignin, manganese, and versatile (multifunctional) perox-
idase [38,39]. Recently, a new superfamily of heme peroxidases called dye-peroxidases
(DyP, originally named dye-decolorizing peroxidases) was identified in fungi and later in
bacteria. DyP may also have a role in the lignin degradation process; however, the clear
mechanisms behind their abilities are yet to be discovered [40].

The lignin peroxidases (LiP) are capable of attacking lignin polymers and are relatively
non-specific to their substrate. These enzymes are characterized by their ability to oxidase
different phenolic aromatic compounds as well as a variety of non-phenolic lignin model
compounds and other organic molecules [38]. LiPs were first discovered in the 1980s
in Phanerochaete chrysosporium and later in Trametes versicolor, Bjerkandera sp., and Phlebia
tremellosa, which are well-known white rot fungi species [37]. Microorganism-secreted
enzymes are usually a family of isozymes whose relative composition and isoelectric
points vary depending on growth conditions, culture media, and nutrients provided in the
cultivation process [41].
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Similarly to LiP, manganese peroxidases (MnP), as a family of isozymes, were first
discovered over 30 years ago and were first detected in P. chrysosporium. MnPs are another
important LME and have also been found in other Basidiomycota species, including Panus
tigrinus, Lenzites betulinus, Agaricus bisporus, Bjerkandera sp., and Nematoloma frowardii.
Details about MnPs presence in bacteria, yeast, and mold are emerging in the scientific
literature, and the presence and activity of these enzymes have been studied in several
species under the absence and presence of enzyme inducers [37].

Versatile peroxidases (VPs) combine the molecular architecture of LiP and MnP and
oxidize typical LiP substrates as well as Mn2+, yet they also oxidize azo-dyes and other non-
phenolic compounds with high redox potentials in the absence of mediators [42,43]. VPs
were first found in members of the genera Pleurotus (P. eryngii, P. ostreatus) and Bjerkandera
(B. adusta, B. fumosa) [37].

Dye-decolorizing peroxidases (DyP) are a new family of heme peroxidases, phyloge-
netically unrelated to other LME peroxidases [44]. These enzymes were first discovered in a
culture of the fungus B. adusta and, as the name suggests, are able to decolorize a wide range
of dyes [40]. The ligninolytic activity of DyP has been reported in other fungi (Termitomyces
albuminosus, Auricularia auricula-judae, and Irpex lacteus) and several bacterial species [37].
The presence of DyP-expressing genes is more common in bacteria, and a smaller number
of genes are reported in fungi and higher eukaryotes and archaea, suggesting that these
enzymes are the bacterial equivalent of fungal LME [45]. DyPs are relatively non-specific to
their substrate and oxidase all typical peroxidase substrates as well as have an additional
hydrolase or oxygenase activity [46]. DyP are active at lower pH values (pH range 3–4) and
are able to degrade different dyes; however, the physiological role of these enzymes is still
unclear [47].

Laccases are considered the most important components of the lignin degradation
process and are widely distributed in plants, fungi, bacteria, and insects; however, the role
of laccases in these processes is not known in detail. All laccases oxidize a range of aromatic
compounds, phenolic components also found in lignin, aromatic amines, benzenothiols,
and hydroxyindols using molecular oxygen as an electron acceptor, bypassing a stage
of hydrogen peroxide production [37,48]. These enzymes are extracellular, periplasmic,
and intracellular proteins, and a majority of fungi produce mostly extracellular as well as
some intracellular laccases [48]. In plants, intracellular laccases participate in the synthe-
sis of lignin, intracellular fungal laccases, and periplasmic bacterial laccases most likely
participate in the transformation of phenolic compounds in the cell, while extracellular
laccases participate in lignin degradation [49,50]. Fungal laccases also participate in the
pathogenesis, detoxification, and development of higher fungi [51]. Laccases belong to
the group of polyphenol oxidases and are also called blue multicopper oxidases due to
containing copper atoms in the catalytic site of the enzyme [51], and mainly react with free
phenolic fragments of lignin due to the random polymer nature of lignin and laccases lower
redox potential; however, mediators can cause a reaction to non-phenolic compounds with
higher redox potential [52]. Similarly, as peroxidases, laccases are also secreted as several
isoforms in most fungi, originating from the same or different genes. The number and
properties of isozymes secreted vary depending on the growth conditions, fungal species,
as well as nutrients and inducers found in the growth media [37,48].

In recent years, ligninolytic enzymes have gained applications in the fields of the food
industry, textile industry, synthetic chemistry, cosmetics, soil bioremediation and biodegra-
dation of environmental phenolic pollutants, and removal of endocrine disruptors [53,54].
These enzymes are also used for paper and pulp delignification, where they can be used in
the enzymatic adhesion of fibers in the manufacturing of lignocellulose-based composite
materials, such as fiberboards [54]. Using fungal strains, which can produce the enzymes
needed for biomass conversion and to produce ethanol, improved biorefinery efficiency
can also be achieved [55,56].

To evaluate the ability of fungal growth and lignocellulosic biomass degradation,
mostly culture media or pure lignin in culture media has been used [40,57–59]. Here we
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report a screening study of 10 biotechnologically relevant fungal isolates on their ability to
produce lignin-degrading enzymes in the presence of untreated lignocellulosic biomass.

2. Materials and Methods
2.1. Microorganisms

In this study, commercially available cultures of Irpex lacteus DSM 9595, Pleurotus
dryinus (Pers.) P. Kumm, Pleurotus ostreatus DSM 1020, Bjerkandera adusta DSM 23426,
Trametes versicolor DSM 6401, Pycnoporus cinnabarinus (Fr.) P. Karst, Aspergillus brasiliensis
ATCC®16404™, and cultures isolated from pine forests of Latvia—Fusarium graminearum,
Fomitopsis pinicola, Trichoderma paraviridescens, which were maintained on potato dextrose
agar (PDA) (Oxoid Ltd., Basingstoke, Hants, UK) medium at 2–8 ◦C, were used in ligni-
nolytic enzyme screening tests.

2.2. Media Conditions and Screening of Ligninolytic Enzymes

To detect the ability of selected fungal species for ligninolytic enzyme production, 0.1%
(w/v) ABTS (2,2′-Azino-bis(3-ethylbonzotiazoline-6-sulfonic acid)) diammonium salt) [60],
and 0.01% (w/v) Azure B [61] were used as reaction substrates. ABTS is a non-phenolic
dye that is oxidized by laccase to the more stable and preferred state of ABTS cation radical.
The radical is responsible for the distinct blue-green color and can be correlated to laccase
activity [62]. A distinct purple color formation has been described when the laccase content
was equal to or higher than needed for the reduction of ABTS present [63]. Azure B is
a triarylmethane dye and has a similar structure to lignin, thus is usually used as the
substrate to measure the ligninolytic enzyme activity. Decolorization of this dye illustrates
the presence of LiP, MnP, or laccase produced by the fungi [64].

To prepare agar medium containing lignin or hay, 2 g of the respective substrate, 0.8 g
KH2PO4, 0.4 g K2HPO4, 0.5 g MgSO4·7H2O, 2 g NH4NO3, 2 g yeast extract, and 15 g agar
(pH 5.5 ± 0.2) were added per L of distilled water. The prepared agar media were sterilized
by autoclaving at 121 ◦C for 15 min. The chemical composition of the hay biomass from
grasslands, which includes approximately 22–26% cellulose, 14–25% hemicellulose, and
1–13% lignin, has been adopted for this study [65].

After media preparation, 1 cm2 mycelial disk of each fungal species was placed on
9 types of agars (Table 3) containing PDA, lignin (Sigma-Aldrich, Darmstadt, Germany)
or hay (dry weight (DW): 92.8 ± 1.3%, collected from semi-natural grassland in Latvia) as
biomass substrate. The specific initial color of the media was recorded (Table 3).

During the screening tests, agar plates were incubated for 168 h at 25 ◦C and 80% rH in
constant climate chamber (KBF 115, BINDER GmbH, Tuttlingen, Germany). Oxidation zone
and dark color formation around the mycelium indicated on the presence of ligninolytic
enzymes. The diameter and intensity of the color change were used as an indicator of the
lignocellulosic enzyme production. Color zone formation and color change intensity were
monitored and captured daily using NIKON D3300 (NIKON, Tokyo, Japan). Visual analysis
was performed to determine the qualitative changes in the agar plates. Quantitative analysis
was conducted to determine the percentage of the agar plate area that was covered by
fungal mycelium and underwent oxidation induced in the presence of fungal enzymes by
measuring the diameter of the fungal mycelium and the oxidation zone. The experiments
were performed in 3 independent repetitions.
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Table 3. Color of uninoculated agar used in ligninolytic enzyme screening tests.
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3. Results and Discussion

Fungal growth and substrate oxidation results show that on PDA, within 168 h, four
fungal strains—I. lacteus, P. dryinus, B. adusta, and T. paraviridescens—fully covered the agar
plate and simultaneously showed the most intense ABTS oxidation (Figure 1). However,
only one white rot fungus—T. versicolor—caused significant color change on both ABTS
(78.8% of plate area) and Azure B (59.6% of plate area) agar.

Agar containing only lignin as a carbon source limited the fungal growth rate, and
only F. graminearum was able to fill the agar plates completely (Figure 2) in both PDA and
lignin-containing medium. The mycelium growth rate of I. lacteus and B. adusta was less
influenced by a change in carbon source. The growth activity of I. lacteus was decreased only
by 1.2% and B. adusta—only by 3.2%. A more significant decrease in mycelium growth was
observed in T. paraviridescens (21.0%), P. cinnabarinus (21.2%), F. pinicola (25.2%), T. versicolor
(27.4%), and A. brasiliensis (48%) cultures. This suggests that different fungal species have
varying adaptability and metabolic strategies in response to carbon source limitations.
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Despite the limitations imposed by the carbon source, significant color change and
ABTS oxidation were still observed in five white rot fungal cultures—I. lacteus, P. drynus,
P. osteatus, B. adusta, and T. versicolor. In contrast to the PDA plates, decolorization of
Azure B was found in different intensities in the previously mentioned cultures depending
on the media composition, which suggests that carbon source limitation to agar only
intensifies enzyme secretion in fungal cultures leading to more efficient decolorization and
lignin degradation.

Hay biomass provides a more easily available carbon source for fungal growth when
compared to lignin, and numerous cultures fully covered the plate surface within 168 h of
incubation (Figure 3). The mycelium growth rate of all white rot fungi was increased—by
1.2% in the I. lacteus culture, 3.2% in B. adusta, 11.6% in P. ostreatus, 12.1% in P. dryinus,
and up to 21.8% in the T. versicolor culture. The most significant increase in the growth
activity was observed in F. pinicola (31.5%). I. lacteus, P. dryinus, B. adusta, F. graminearum,
and T. paraviridescens were able to fully grow in the given time frame, but F. graminearum
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and T. paraviridescens failed to demonstrate significant color zone formation with ABTS or
Azure B. Significant color formation zones and decolorization of Azure B were observed
with I. lacteus, P. dryinus, B. adusta, and T. versicolor. P. ostreatus was also able to ensure
intense oxidation of both ABTS and Azure B, although, the growth rate of P. ostreatus
was limited and very variable between experiment repetitions. Previous studies describe
P. ostreatus as a well-known fungal laccase producer with a high catalytic potential and
one of the first cultures to produce a significant amount of DyP enzymes. However, it
has been tested only in lignin systems or fungal gene expressions in other organisms to
produce these enzymes [40,48]. Therefore, the results gathered in this study suggest that for
lignocellulose biomass degradation, other fungal cultures seem more promising, given the
screening tests with the hay biomass substrate offer a model closer to possible industrial
applications for lignocellulosic biomass treatment.
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after 168 h of incubation.

The screening results on lignin and hay biomass agar plates suggest that cultures
of I. lacteus, P. dryinus, B. adusta, and T. versicolor have the potential to develop technologies
for lignin or lignocellulose biomass degradation.

Based on the growth rate, color formation zone, and the oxidation intensity of the
selected fungi during screening tests, I. lacteus, P. dryinus, B. adusta, and T. versicolor were
selected as potent fungal species for lignin and lignocellulose biomass treatment. All
the selected strains also showed intense color formation during the screening tests using
ABTS (Figure 4). However, the most significant color formation on all types of agars was
performed by P. dryinus and T. versicolor. Although, compared to I. lacteus and B. adusta, the
mentioned fungi were characterized by a lower growth rate of the fungal mycelium. The
most significant Azure B dye decolorization results were observed using B. adusta, the only
fungal strain that degraded the added dye completely in the oxidation zone (Figure 5).
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When comparing the degradation process of ABTS and Azure B (Figure 6), all four
selected fungi caused a faster color formation on the ABTS-containing agar, regardless of



J. Fungi 2023, 9, 780 10 of 13

the added carbon source. The potential explanation is that the ABTS used in this study
for the screening tests has also been studied and used as a mediator that facilitates and
promotes the release of lignin-degrading enzymes [59]. The highest rate of color formation
occurred on PDA and hay-containing agar. Hay biomass and PDA contain more easily
obtainable carbon compounds necessary for fungal growth, which facilitate more rapid
fungal growth and enzyme release.
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Comparing the ABTS oxidation rate and color formation zone diameter, the fastest
color formation was performed by I. lacteus, which filled 100% of the plate area within
144 h. The color formation and oxidation of ABTS by B. adusta occurred more slowly;
however, this culture degraded the color most intensively and efficiently on agar-containing
Azure B. This is explained by the fact that B. adusta was discovered as a dye-decolorizing
peroxidase-secreting fungus and is able to decolorize a wide range of dyes [40]. T. versicolor
was characterized by the slowest growth compared to I. lacteus, B. adusta, and P. dryinus;
however, it showed a high efficiency of the oxidation of both ABTS and Azure B and linear
growth and oxidation zone formation rate on all types of agars. P. dryinus was characterized
by a relatively rapid growth and oxidation zone formation rate on all types of agars, except
glucose- and hay-containing medium with Azure B, where the oxidation zone did not
exceed 15% of the plate area during 168 h of screening.

4. Conclusions

I. lacteus, P. dryinus, B. adusta, and T. versicolor demonstrated the most promising
results in terms of ABTS and Azure oxidation. These ligninolytic enzyme-producing
white rot fungi were identified as potent fungal to offer an environmentally friendly,
sustainable, and cost-efficient technology for lignin pretreatment, which could improve
lignocellulosic biomass degradation and attain in production of high-value products. No
change in the mycelium growth rate of I. lacteus, P. dryinus, or B. adusta on the lignocellulose
biomass media was observed, and a decrease of 2.4–8.2% was observed on lignin-containing
media when compared to PDA. T. versicolor demonstrated a more significant decrease in
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growth rate; however, all four selected fungal strains formed intense ABTS oxidation zones.
Moreover, B. adusta displayed efficient decolorization of Azure B dye.

Given the screening results with lignin and lignocellulose substrates, the selected
fungal strains can be characterized by the intense release of ligninolytic enzymes and dye
oxidation abilities. These findings suggest that these fungal cultures have the potential
for developing technologies aimed at lignin or lignocellulose biomass degradation. Fur-
ther investigation is needed to explore their enzymatic capabilities and optimize their
performance for industrial applications in lignocellulosic biomass treatment.
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