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Abstract: Various properties of HfO2, such as hardness, corrosion, or electrical resistance, depend
on the method and the conditions of deposition. In this work, a thorough comparison of scarcely
investigated mechanical properties of HfO2 thin films deposited with different conditions of reac-
tive magnetron sputtering process is presented. Four thin films were sputtered in processes that
varied in plasma ignition method (continuous or sequential) and target–substrate distance. The
structural characteristics of the HfO2 thin films were examined using Raman spectroscopy and X-ray
diffraction measurements. Furthermore, the optoelectronic properties were determined based on
transmittance and current–voltage characteristics. The mechanical properties of the HfO2 thin films
were determined using nanoindentation and scratch test. In turn, the corrosion properties were
determined by analyzing the voltametric curves. The transparent HfO2 thin films deposited in the
continuous process are characterized by better corrosion resistance than the same layer formed in the
sequential process, regardless of the target–substrate distance (8 cm or 12 cm). Furthermore, these
samples are also characterized by the highest value of Young’s modulus and scratch resistance. The
combination of good corrosion and scratch resistance could contribute to the new application of HfO2

as a corrosion protective material.

Keywords: HfO2; nanohardness; Young’s modulus; corrosion resistance; optical properties; electrical
properties; magnetron sputtering

1. Introduction

Hafnium dioxide is one of the metal oxides that can be widely used in modern
technologies. Its low optical absorption and dispersion, as well as high refractive index,
make it an attractive material for many applications in the field of optoelectronics [1,2]. For
example, HfO2-based thin films are used in accessories for high-power lasers, in cameras
for space applications, as well as in antireflective coatings [3,4]. On the other hand, the
high dielectric constant (k~25) and the wide energy gap (Eg~5.7 eV) [5,6] often result in the
application of HfO2 as a dielectric material that replaces SiO2, for example, in transparent
thin-film transistors as a gate material [7] or is used as an insulator in resistive free-access
memory [8].

However, works on the mechanical properties of HfO2 thin films, such as wear resis-
tance or corrosion resistance in various environments, including biological fluids are rather
scarce [9]. It is worth paying more attention to the corrosion susceptibility of HfO2 because,
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as the Pourbaix diagram shows, hafnium is one of the most corrosion-resistant metals.
This resistance is a result of the formation of the HfO2 layer, which is passive in a wide
potential–pH range [10]. This oxide was considered in 1984 by Marcel Pourbaix as one of
the materials for surgical implants [9]. Recently, oxides such as TiO2, ZrO2, Al2O3, and
HfO2 deposited by atomic layer deposition were investigated as protective barrier layers.
Aluminum and hafnium oxides could be a protective layer of copper tubes in a 0.1 M
NaCl solution. However, HfO2 provides better long-term protection [11,12]. Dinu [13]
investigated the corrosion susceptibility of Ti(N,O)-coated stainless steel in a saline, acidic,
and oxidizing environment. An additional coating of 10 nm of hafnium oxide increased
corrosion robustness of stainless steel. The anticorrosion protection of HfO2 may also
be important in photovoltaic applications. Staišiūnas [14] investigated the possibility of
using amorphous hafnium(IV) oxide as a protective layer in the aggressive environments
of silicon used in photovoltaic devices for water splitting. In an alkaline environment,
it provided corrosion protection, but the layer was not irrelevant to the activity of the
electrode. In acidic environments, the HfO2 film enhanced the effect of water splitting.

Furthermore, studies on the possibility of using HfO2 as protective coatings for im-
plants were carried out for titanium alloys [9,15] and magnesium alloys such as AZ31 [16–18].
For such applications, the good thermal, chemical, and mechanical stability of hafnium
oxide [1–3] and its biocompatibility and osteogenesis [9] are essential. The additional
coating of HfO2 on magnesium or titanium alloys decreases the corrosion current density
in the human body’s pH range (5.6 to 9) and improves cytotoxicity and cell viability [15,17].
However, most of the work published to date on corrosion properties concerns amorphous
coatings deposited by ALD, while there is a lack of studies on crystalline films prepared
using other methods, e.g., using magnetron sputtering.

The mechanical properties of HfO2 coatings have so far been scarcely investigated.
However, the determination of mechanical parameters of coatings, in particular for cor-
rosion protective layers, is important. When two materials rub against each other, it can
lead to abrasion of the corrosion protection layer. Tribocorrosion studies have shown that
hafnium, after mechanical damage to a passive layer, has the ability to repassivate faster
than titanium, but volume loss is greater [9].

However, the properties of HfO2 thin films strongly depend on the preparation method
and deposition conditions. Mechanical properties and corrosion resistance strongly depend
on the polymorphs of hafnium dioxide, i.e., monoclinic, tetragonal, and cubic. The most
thermodynamically stable at room temperature and pressure is the monoclinic (m-HfO2)
polymorph. The transformation of m-HfO2 into a tetragonal (t-HfO2) or cubic (c-HfO2)
structure occurs at temperatures higher than 1995 K and 2695 K, respectively [19,20].

Magnetron sputtering provides the opportunity to tailor optical, electrical, and me-
chanical properties of the thin film by precisely adjusting the deposition parameters such
as the type of plasma generation method, substrate temperature, applied power, and
O2/Ar ratio. Zahoor [21] measured hardness values for polycrystalline HfO2 thin films
prepared by magnetron sputtering in different O2/Ar ratios. At a lower O2/Ar ratio, a
lower homogeneity of hardness in the layer was obtained. The hardness of such layers
was approximately 12 GPa and the Young’s modulus increased with the increasing O2 flux,
and the highest obtained hardness and Young’s modulus were 12.53 GPa and 208.08 GP,
respectively. On the other hand, Vargas et al. [22] by changing the Ar to O2 ration obtained
metallic, amorphous, and monoclinic HfO2 thin films of various mechanical parameters.
The highest values of hardness and Young’s modulus were achieved for crystalline thin
films (metallic Hf and monoclinic HfO2), and the values decreased with the amorphization
of the film films. Mazur et al. [23] studied the effect of power on various properties of HfO2
thin films. As power increased, the hardness and modulus of elasticity increased, which
could be due to the higher packing density and lower porosity of the films. Additionally,
the refractive index increased with increasing power.

To date, the influence of the parameters of the reactive magnetron sputtering process,
such as position of the sample in the deposition chamber and the plasma-inducing method
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(continuous or sequential) on various properties of HfO2 thin films has never been stud-
ied. Therefore, in this paper, not only the influence of various deposition parameters on
structural, optical, and electrical properties were described but also a deeper insight into
mechanical and corrosion properties of monoclinic HfO2 thin films was presented.

2. Materials and Methods

HfO2 thin films were deposited from high-purity (99.95%) metallic Hf targets us-
ing pulsed DC magnetron sputtering process. Coatings were sputtered in pure oxygen
(working gas, e.g., argon, was not introduced into the chamber). The base pressure in
the deposition chamber was equal to 5 × 10−5 mbar, while the sputtering processes were
carried out with a pressure of 1.2 × 10−2 mbar. In each deposition process, sputtering
conditions such as pressure, oxygen flow (18 sccm), and power (450 W) were maintained
the same. Magnetron with Hf target was powered using DPS pulsed DC power suppliers
working in the unipolar mode with 165 kHz sinusoidal pulses grouped at a frequency
of 1.6 kHz with the voltage amplitude up to 1.8 kV. Four sets of HfO2 thin films were
deposited due to the change in magnetron powering type and target–substrate distance.
Coatings were deposited in processes with constant and intermittent powering of a mag-
netron. In the case of constant powering, magnetron was continuously supplied with
voltage, while in intermittent powering, magnetron was supplied for 1 s with 1 s break.
Therefore, these processes were called as continuous and sequential, respectively. Further-
more, the influence of a target–substrate distance (8 cm and 12 cm) on thin films properties
was analyzed. Due to changes in magnetron powering and target–substrate distances,
the sputtering process times were also adequately selected (Table 1). Hafnium dioxide
coatings were deposited on unheated substrates of fused silica and TiAlV alloys in order to
determine their microstructure, optical, mechanical, and electrochemical properties. Thin
films deposited on fused silica were used for X-ray diffraction (XRD), Raman spectroscopy,
transmission measurements, scratch tests, as well as optical imaging with the aid of an
optical microscope and profilometer. For electrical measurements, corundum ceramic
substrates with interdigitated platinum–gold electrodes were used, while thin films on
Ti6Al4V substrates were destined for corrosion resistance and mechanical tests. Deposited
thin film had a thickness in the range of 340 to 400 nm. Detailed information of deposition
conditions are summarized in Table 1.

Table 1. Deposition conditions of HfO2 thin films.

MS Type
Target–

Substrate
Distance (cm)

Time of
Powering
Break (s)

Sputtering
Time
(min)

Power
(W)

Sputtering
Pressure
(mbar)

Oxygen
Flow

(sccm)

sequential 8
1

180

450 1.2 × 10−2 18
12 360

continuous
8 - 90

12 180

The structural properties of the prepared thin films were measured with the use of
XRD and Raman spectroscopy. A PANalytical Empyrean PIXel3D powder diffractometer
was equipped with a Cu Kα X-ray source (λ = 1.54056 Å). The Scherrer equation was used
to estimate the crystallite size [24,25]. Raman spectra were measured using a Thermo
Scientific, Waltham, MA, USA, DXR™ Raman Microscope. The spectra were recorded
in the range from 90 to 800 cm−1 with a resolution of ca. 1 cm−1. The excitation source
was a 455 nm blue laser diode at a power of 8 mW. During measurement, 10 scans were
performed for each sample with an exposure time of 90 s.

Characterization of optical properties was performed by measuring transmittance in
the wavelength range of 210 to 1000 nm. A coupled deuterium–halogen lamp was used
as a light source, and the characteristics were obtained using an Optics QE65000 spec-
trophotometer. The analysis allowed to determine the average transmission in the visible
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wavelength range. Furthermore, the average transmittance at 550 nm was determined
using the envelope method with Equation (1) [26]:

Ti (λ=550) =
2·Tλ max ·Tλ min
Tλ max + Tλ min

(1)

where Tλmax is the transmission value of the envelope that passes through the maxima and
Tλmin is the transmission value of the envelope that passes through the minima.

On the basis of the results of transmission measurements, the absorption coefficient
spectra were calculated using the following Equation (2):

a =
1
t
· ln(T) (2)

where t is the thickness of the thin film.
Using the reverse engineering method and FilmStar FTG v2.61.4405 software, the

refractive index (n) and the extinction coefficient (k) were also calculated.
Electrical characterization was performed by measuring electrical resistivity at room

temperature and at elevated temperature (up to 353 K) with the aid of a Keithley SCS4200
system and an M150 Cascade Microtech probe station.

Ti6Al4V titanium alloy was used as the substrate material for corrosion and nanoin-
dentation tests. Before preparing the thin films, the titanium alloy surfaces were polished
using the Stuers RotoPol 21 grinding and polishing apparatus. The surface of the samples
was polished with emery paper and diamond suspension up to 0.05 µm to a ‘mirror image’.

The corrosion behavior of titanium alloy and alloy with thin films was examined by an
analysis of the voltametric curves, i.e., the extrapolation of the cathodic and anodic branch
of the voltametric curves to the corrosion potential [27] in a three-electrode cell setup. In
this setup, the titanium alloy and titanium alloy with thin films were used as working
electrode, while a platinum and Ag/AgCl electrode with a Luggin capillary were used
as counter and reference electrodes, respectively. Measurements were carried out in an
electrolyte solution, which was composed of 0.5 M NaCl and 0.03 M KF and pH = 2 adjusted
by concentrated hydrochloric acid with a scan rate of 1 mV/s within the range of −150
to 1000 mV versus open circuit potentials (OCP). Measurements were carried out using
a Princeton Applied Research VersaSTAT 3 potentiostat/galvanostat with VersaStudio
v2.63.3 software in aerated solutions at room temperature.

The hardness and Young’s modulus measurements of the thin films were performed
using a CSM Instruments (Peseux, Switzerland) nanoindenter equipped with a Vickers
diamond indenter. Hardness and Young’s modulus were calculated using the method
proposed by Oliver and Pharr [28]. Several measurements were carried out for various
depths of nanoindentation (from 80 to 700 nm). To measure the ‘film-only’ properties
and minimize the impact of the substrate, a method of nanoindentation measurement
approximation was implemented [29].

Scratch tests were performed with respect to the ASTM F735 standard [30] using
the Taber Oscillating Abrasion Tester 6160. The effect of the scratch test was evaluated
using an Olympus BX51 optical microscope and a TalySurf CCI Lite Taylor Hobson optical
profilometer.

3. Results
3.1. Structural Characterisation of the HfO2

The results of XRD measurements of HfO2 thin films deposited in various mag-
netron sputtering processes are shown in Figure 1. All deposited coatings were nanocrys-
talline with crystallite sizes from 6.3 nm to 8.4 nm and exhibited a monoclinic HfO2 struc-
ture [31,32]. XRD patterns are quite similar in the case of all thin films; however, detailed
analysis showed some differences. First, thin films deposited in sequential process had
smaller crystallite sizes of ca. 20% than those prepared in continuous sputtering. Moreover,
changes in the target–substrate distance from 8 cm to 12 cm lead to a decrease in crystallite
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sizes of ca. 10%. Detailed XRD results of HfO2 thin films regarding their crystallite sizes,
interplanar distances, and type of occurring stress are summarized in Table 2.
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Figure 1. XRD diffraction patterns of HfO2 thin films deposited in various magnetron sputtering
processes.

Table 2. Results of XRD analysis performed for HfO2 thin films deposited in various magnetron
sputtering processes.

Thin Film MS Process Target–Substrate
Distance (cm) D (nm) d (nm) dPDF

(nm)

m-HfO2 sequential
8

6.9 0.3160

0.3145
m-HfO2 continuous 8.4 0.3155
m-HfO2 sequential

12
6.3 0.3159

m-HfO2 continuous 7.5 0.3156
Designations: D—average crystallites size, d—interplanar distance, dPDF—standard interplanar distance.

Raman spectroscopy was used for further analysis of the structural properties of
deposited thin films since it is a more surface-sensitive method for the determination of
crystallinity and microstructure. Hafnium dioxide with monoclinic structure has 18 active
modes, 9Ag and 9Bg [33–35]. The peaks that are visible in Figure 2 were in good agreement
with the reference values and indicated that the deposited coatings had a monoclinic
HfO2 structure. Moreover, theses peaks can be assigned to both active modes, i.e., Ag (107,
133, 148, 384, 499, 580, 671 cm−1) and Bg (241, 332, 548, 639 cm−1).

3.2. Optical and Electrical Properties of HfO2 Thin Films

As shown in Figure 3a, HfO2 thin films deposited magnetron sputtering were highly
transparent in measured region. A sharp decrease in the transmission was observed for
wavelengths shorter than 250 nm, showing increased absorption below this wavelength–
absorption spectra are shown in Figure 3b. The average transmittance in the visible range
was equal to 89%, while the transmission measured using the envelope method for a
wavelength equal to 550 nm was equal to 88% for all HfO2 thin films. Only negligible
changes in the refractive index of the deposited hafnia coatings were observed as n at
λ = 550 nm was in the range of 1.75 to 1.79 (Figure 3c). In addition, the extinction coefficient
of HfO2 thin films (Figure 3d) in the visible wavelength range was of the order of 10−3,
demonstrating relatively good optical quality and low optical losses of the coatings. The
type of generated plasma during magnetron sputtering, as well as the target–substrate
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distance, did not significantly influence the optical parameters of the hafnium dioxide
thin films.
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(b) absorption spectra, (c) refractive index, and (d) extinction coefficient.
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The electrical resistivity of HfO2 was evaluated based on the linear current–voltage
characteristics presented in Figure 4a. The resistivity values for HfO2 thin films deposited
by sequential process was (7.9 ± 1.1) × 107 Ωcm and were similar to the resistance of the
thin film deposited by continuous process with a target–substrate distance equal to 8 cm.
The resistivity of the film deposited in the continuous process with greater distance between
the substrate and the target was over two times higher. In Figure 4b, the temperature-
dependent resistivity plot is presented. On a semi-logarithmic scale, the relations of the
resistivity and temperature in the range (303 ÷ 353 K) were linear. Thermally generated
free charge carriers caused the resistance decrease. The activation energies (Ea) were
in the range from 0.19 eV/K to 0.31 eV/K and were evaluated according to Arrhenius
Equation (3) [36,37]:

ρ = ρ0 exp
(

Ea

kT

)
(3)

where k is the Boltzmann constant and T is the absolute temperature.
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3.3. Corrosion Resistance and Mechanical Properties of HfO2 Thin Films

The electrochemical parameters of the HfO2 thin films deposited on Ti6Al4V sub-
strates are summarized in Table 3. In turn, Figure 5 presents the voltametric curves of the
titanium alloy and titanium alloy with HfO2 thin films. The calculated corrosion current
density (icorr) was found to be equal to 3.63 × 10−8 A/cm2 and 1.26 × 10−9 A/cm2 for
films deposited at the target–substrate distance of 8 cm during sequential and continuous
processes, respectively. Changing the target–substrate distance to 12 cm resulted in ob-
taining corrosion current densities of 3.09 × 10−8 A/cm2 and 4.33 × 10−9 A/cm2 for films
sputtered in sequential and continuous processes, respectively. These results show that a
low corrosion rate and high electrochemical corrosion resistance were achieved by all HfO2
coatings on the titanium alloy surface. However, the smallest corrosion current density
and therefore the best corrosion properties were obtained for HfO2 thin film deposited in
continuous magnetron sputtering processes. Changes in target–substrate distance from 8 to
12 cm do not strongly affect the icorr value. Only the influence of the magnetron powering,
i.e., sequential or continuous, is noticeable.
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Table 3. Electrochemical parameters of the titanium alloy and thin films on Ti6Al4V alloy.

Thin Film MS Process Target–Substrate
Distance (cm) icorr (A/cm2) Ecorr (V)

HfO2

sequential
8

3.63 × 10−8 0.052
continuous 1.26 × 10−9 −0.410
sequential

12
3.09 × 10−8 0.542

continuous 4.33 × 10−9 0.663

as-received sample Ti6Al4V 6.10 × 10−5 −1.188
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Figure 5. Voltametric curves of Ti6Al4V and titanium alloy with HfO2 thin films.

The hardness and Young’s modulus of the prepared HfO2 coatings were measured by a
nanoindentation technique and determined using an approximation method. Additionally,
the root mean square error (RMSE) was calculated. The results of the measurements of the
mechanical parameters of the samples obtained from the approximation method are shown
in Table 4.

Table 4. Mechanical parameters of HfO2 thin films deposited on titanium alloy.

Thin Film MS Process Target–Substrate
Distance (cm) Hardness (GPa) Elastic Modulus

(GPa)

HfO2

Sequential
8

7.12 ± 0.12 93.3 ± 2.1
Continuous 7.07 ± 0.09 108.3 ± 3.4
Sequential

12
6.45 ± 0.10 88.8 ± 2.6

Continuous 6.27 ± 0.10 108.0 ± 3.1

As results show, changing the distance between sample and target caused the change
in hardness of obtained thin film, while maintaining the Young’s modulus constant. By
increasing the target–substrate distance from 8 cm to 12 cm, the hardness of HfO2 thin
film decreased, for sequential processes from 7.12 GPa to 6.45 GPa, while for continuous
processes from 7.07 GPa to 6.27 GPa, respectively (see Figure 6a). When changing the type
of deposition process, and maintaining a constant target–substrate distance, this time a
change in the value of Young’s modulus was observed. The change in the type of magnetron
powering method from sequential to continuous causes an increase in the value of Young
modulus, from 93.3 GPa obtained for the sequential process carried out at a distance of
8 cm to 108.3 GPa for the continuous process carried out at the same distance. For the
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distance of 12 cm, the value of Young’s modulus increases from 88.8 GPa for sequential
process to 108.0 GPa for continuous process (see Figure 6b).
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at various target–substrate distances and magnetron powering method.

As demonstrated by Vargas et al. using magnetron sputtering with different ratios
of Ar/O2 gas, it is possible to scale hardness values and Young’s modulus. The hardness
ranged from 20 GPa for metallic hafnium to 9 GPa for the amorphous structure. The
hardness for the well-crystallized monoclinic hafnium oxide was 15 GPa, and Young’s
modulus was 164 GPa [22]. For CVD-deposited films, a hafnium silicide interlayer or a
deliberately applied ZnO interlayer has been shown to increase the hardness of films with
thickness below 100 nm [38,39].

As previous research has shown [22,40,41], it is possible to control mechanical parame-
ters, such as Young’s modulus and hardness, of HfO2 thin films by changing their structure
and chemical composition (content of Hf in the obtained thin film). Conducted research
has shown that while the same structure of the HfO2 thin film (monoclinic) remains, the
mechanical parameters of these coatings can be controlled by changing:

- The type of magnetron powering from sequential to continuous to change the value
of Young’s modulus;
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- The target–substrate distance to control the hardness.

Although the observed changes are subtle, they retain a certain consistency. This may
prompt further research of the observed phenomenon for the obtained thin films.

To determine further the mechanical properties, scratch tests were performed. The
thin films scratch resistance was evaluated based on images obtained using an optical
microscope (Figure 7) and an optical profilometer (Figure 8). After tests, some scratches
were visible on each thin film. Thin films deposited by the sequential process were less
resistant to scratching, and the most noticeable scratches were obtained in the case of the
film deposited with the target–substrate distance equal to 12 cm. Both thin films deposited
in continuous process have a small number of scratches and with lower depths. The
difference between the highest and lowest point on the surface was greater than 500 nm
for the sequential process and less than 80 nm in the case of the continuous process. In
each case, before conducting scratch tests, the surface was homogeneous and the roughness
characterized with the Sq parameter was less than 1 nm. However, after performing scratch
tests, the Sq parameter increased to 40 nm and 5 nm for thin films from sequential and
continuous processes, respectively.
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4. Summary

The subject of the work was focused on the HfO2 thin films deposited by magnetron
sputtering. During the deposition, plasma was generated in continuous or sequential
method, and the target–substrate distance in the sputtering chamber was equal to 8 cm or
12 cm. The premise of the work was to correlate the different deposition conditions with
various properties of HfO2. To date, the optical and electrical properties of HfO2 thin films
have been extensively investigated; however, the influence of the magnetron sputtering
conditions on the mechanical and electrochemical properties still offers a plenty of space
for exploration, e.g., for anticorrosive, scratch-resistant films for biomedical applications.

The corrosion and scratch tests clearly show that the HfO2 thin film deposited by
continuous process is characterized by better corrosion and scratch resistance than the same
layer formed during the sequential process, regardless of the position of the sample in the
chamber (i.e., target–substrate distance of 8 cm or 12 cm). Mechanical characterization of
obtained HfO2 thin films clearly shows that, by changing the parameters of the magnetron
sputtering process, such as target–substrate distance and plasma-inducing method, it is
possible to control its mechanical parameters, such as: hardness and Young’s modulus, and
maintain the monoclinic structure of the obtained HfO2 thin films. Changing the distance
between sample and target in the deposition chamber causes the change in hardness of
obtained HfO2 thin film, while maintaining the Young’s modulus constant value. This
phenomenon is completely independent of the method of inducing plasma during the
sputtering method. Unlike the value of Young’s modulus that varies with change of the
inducing plasma method and the position of the sample in the chamber. The observed
phenomena require further thorough research.

Obtained results show a clear correlation between the value of Young’s modulus,
scratch resistance, and corrosion resistance of the HfO2 thin films. Thin films formed
during the continuous deposition process are characterized by a higher value of Young’s
modulus and the best corrosion resistance. To explain the observed phenomenon, it is
necessary to conduct further detailed studies.
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