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BACKGROUND: The brain and muscle Arnt-like protein-1 (BMAL1) gene is an important circadian clock gene and previous studies
have found that certain polymorphisms are associated with type 2 diabetes in adults. However, it remains unknown if such
polymorphisms can affect fasting glucose in children and if other factors modify the associations.
METHODS: A school-based cross-sectional study with 947 Chinese children was conducted. A multivariable linear regression model
was used to analyze the association between BMAL1 gene polymorphisms and fasting glucose level.
RESULTS: After adjusting for age, sex, body mass index (BMI), physical activity, and unhealthy diet, GG genotype carriers of BMAL1
rs3789327 had higher fasting glucose than AA/GA genotype carriers (b= 0.101, SE= 0.050, P= 0.045). Adjusting for the same
confounders, rs3816358 was shown to be significantly associated with fasting glucose (b= 0.060, SE= 0.028, P= 0.032).
Furthermore, a significant interaction between rs3789327 and nutritional status on fasting glucose was identified
(Pinteraction= 0.009); rs3789327 was associated with fasting glucose in the overweight/obese subgroup (b= 0.353, SE= 0.126,
P= 0.006), but not in non-overweight/non-obese children.
CONCLUSIONS: BMAL1 polymorphisms were significantly associated with the fasting glucose level in children. Additionally, the
observed interaction between nutritional status and BMAL1 supports promoting an optimal BMI in children genetically predisposed
to higher glucose level.
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IMPACT:

● Polymorphisms in the essential circadian clock gene BMAL1 were associated with fasting blood glucose levels in children.
Additionally, there was a significant interaction between nutritional status and BMAL1 affecting fasting glucose levels.

● BMAL1 rs3789327 was associated with fasting glucose only in overweight/obese children.
● This finding could bring novel insights into mechanisms by which nutritional status influences fasting glucose in children.

INTRODUCTION
It is estimated that the prevalence of diabetes in the global adult
population in 2021 is approximately 10.5% (536.6 million), which is
projected to rise to 12.2% (783.2 million) by 2045.1 A similar rising
trend can be observed regarding the prevalence of impaired
fasting glucose in children or adolescents.2,3 In China, the
prevalence of impaired/abnormal fasting glucose and diabetes
in children aged 6–17 was 1.89 and 0.1% in 2014, respectively.4 In
addition, the earlier the onset of diabetes, the longer the patient’s
lifetime exposure to hyperglycemia, the more destructive the
disease is and the more likely it is going to lead to the earlier
development of diabetes related complications reducing the
overall quality of life.5 This indicates that it is necessary to explore

the causes of hyperglycemia in children and adolescents, which
will be beneficial to an early-life prevention and control of
diabetes at childhood. A Chinese and Danish cross-population
twin study demonstrated a high genetic influence on fasting
glucose levels, with heritability ranging from 55 to 71%.6 However,
blood glucose levels are influenced by both environmental and
genetic factors, and the gene–environment interaction is also very
important.7,8

Many aspects of physiology and behavior, such as the daily
rhythms of food intake, metabolism, and, more specifically,
glucose metabolism are regulated by the circadian clock system.9

Brain and muscle Arnt-like protein-1 (BMAL1) is an important
component of the circadian clock in mammals and controls the
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oscillations of the circadian rhythm. It has been shown that
disruptions of circadian rhythm oscillations in glucose metabolism
are involved in the pathogenesis of type 2 diabetes.10 Sadacca
et al. demonstrated that BMAL1 is essential for normal insulin
secretion and glucose homeostasis in pancreatic beta cells.11

Additionally, an experimental study suggested that obesity and
diabetes may reduce the rhythmic expression of clock genes in
the liver and adipose tissue.12 Population studies about BMAL1
gene polymorphisms and risk of type 2 diabetes were contro-
versial and all conducted in adults.13–15 Until now, the relation
between BMAL1 gene polymorphisms and fasting glucose levels in
children is not clear. Therefore, the purpose of this study was to
investigate the relationship between BMAL1 gene polymorphisms
and fasting glucose levels in Chinese children.
In addition, whether BMAL1 polymorphisms could interact with

nutritional status affecting fasting glucose has not been demon-
strated before. Thus, we also investigated the interaction between
BMAL1 gene polymorphisms and nutritional status on fasting
glucose levels in Chinese children.

SUBJECTS AND METHODS
Subjects
Using a cluster sampling method, a total of 1019 children aged 10–15 years
from 3 middle schools in Changsha city, Hunan Province, China were
included. The study was conducted in 2019. Seven participants were
excluded for invalid questionnaire data. Sixty-five participants were
excluded for absence of glucose phenotype data or genotype data.
Therefore, a total of 947 participants were included in the present study.
The study was approved by the Medical Ethic Committee of Hunan Normal
University. Written informed consents was obtained from all participants
and their parents.

Measurement
Height and weight were measured according to standard protocols.
Peripheral venous blood sample were collected under an overnight fasting
condition. Then the fasting plasma blood glucose was measured using
GOD-PAP method with the auto analyzer OLYMPUS AU400 with a standard
protocol. For the fasting requirement, parents of the included children
were informed one day before the blood collection by text message, and
also during the blood collection, the nurses confirmed the fasting status of
the participants. Covariates, including demographic characteristics and
lifestyle factors, such as physical activity and dietary behaviors, were
investigated by questionnaire.16,17 Dietary behaviors included fried chips/
cakes/cookies and soft drinks. Participants were given the option of
“eating/drinking in the past 7 days” (Yes), or “not eating/drinking in the
past 7 days” (No). According to the “Dietary Guidelines for Chinese School-
Age Children (2022)”, the physical activity was divided into “<1 h/day” and
“≥1 h/day”.16,18

According to fasting blood glucose, the definition of prediabetes was
5.6–6.9 mmol/L and diabetes was ≥7.0 mmol/L in Chinese children.19 Also,
the stratified association between BMAL1 gene polymorphisms and blood
glucose level were analyzed with multiple linear regression models in
children with different glucose status (normal blood glucose and
prediabetes/diabetes).
Body mass Index (BMI) was calculated by weight divided by square of

height (kg/m2). Nutritional status of children was defined according to
Working Group of Obesity in China (WGOC) criteria, of which the age and
sex-specific cut-off points are the 85th and 95th percentiles of BMI
(Overweight: BMI ≥ 85th but <90th percentile; Obese: BMI ≥ 90th
percentile).20

Genetic polymorphisms selection and genotyping
Selection of the BMAL1 gene polymorphisms was based on previous
literature regarding population studies on the BMAL1 gene and
cardiometabolic risk factors. Polymorphisms with significant association
with cardiometabolic risk factors were selected. Then, we used the 1000
genome database to identify the MAF of the SNPs in East Asians and only
SNPs with MAF > 0.05 were included in the present study. Finally, four SNPs
from the BMAL1 gene were selected (rs10832020,21 rs3789327,13

rs7950226,14,15 and rs381635822).

Genomic DNA of peripheral blood leukocytes were extracted from
participants’ fasting venous blood employing a salt extraction method.16,23

Matrix-assisted laser desorption/ionization time of flight mass spectro-
metry (MALDI-TOF MS, Agena) was used for the genotyping of BMALI
polymorphisms.16 Genotyping was performed by investigators who were
blind to the participants’ phenotypes. All the call rates of the genotyping
were above 98% (Table S1). In addition, the genotyping was conducted
with 1% randomly selected duplicated DNA samples and the consistent
rate of genotyping results were 100%.

Statistical analyses
Hardy–Weinberg equilibrium was checked with the Chi-square test. F-
statistics (FST) was calculated using the formula FST= (P1− P2)

2/[(P1+
P2) × (2− (P1+ P2))].

24 P1 is the effect allele frequency of a gene
polymorphism in the 1000 Genomes Project database of European
ancestry and P2 indicates the gene frequency of the effect allele in this
study. FST reflects the ancestral differences in the same gene polymorph-
ism between the two populations. FST between 0 and 0.05 indicates a small
ancestral difference; A range of 0.05–0.15 indicates a moderate ancestral
difference; 0.15–0.25 indicates a large ancestral differences; a FST > 0.25
indicates very large ancestral difference.25 Descriptive statistical analysis
was used to analyze the general demographic characteristics, genotypes
and allele frequencies of the participants. T tests were used for continuous
variables and Chi-square test was used for categorical variables. The best
genetic models were selected according to the Akaike Information
Criterion (AIC).26 Multivariable linear regression analysis was conducted
to analyze the association between gene polymorphism and fasting
glucose, and the regression coefficients (b) and standard error (SE) were
presented. Model 1 is the crude model; for Model 2, we added sex, age,
and BMI as covariates; and Model 3 included sex, age, BMI, physical activity,
and unhealthy diet (including soft drink and consumption of fried chips/
cakes/cookies) as covariates. Considering 4 SNPs of BMAL1 were selected in
the present study, we adjusted multiple testing for Bonferroni correction
(P < 0.05/4= 0.0125). SPSS for Windows (version 22.0, SPSS Inc., Chicago,
IL) was used for statistical analysis.

RESULTS
General characteristics
The general characteristics of the participants are shown in
Table 1. A total of 947 children were included in the present
study. The average age of the participants was 11.69 years,
including 476 girls and 471 boys, respectively. Boys had
significantly higher fasting glucose level and a higher percentage
of being active (physical activity ≥2 h/day) than girls (P < 0.05).
The prevalence of overweight and obesity in boys (24.6%) was
significantly higher than that in girls (15.9%) (P= 0.001). For age,
BMI, glucose status, unhealthy diet (including soft drink, fried
chips/cakes/cookies consumption), and genotype frequency of
BMAL1 polymorphisms, no significant sex differences were found
(P > 0.05). The ancestral differences in BMAL1 gene polymorph-
isms between European population in the 1000 Genomes Project
database and our population are all small (all FST values <0.05,
Table S1).

Association between BMAL1 gene polymorphisms and fasting
glucose levels
According to AIC criterion, a dominant genetic model was the
best model for rs10832020, a recessive genetic model for
rs3789327, and an additive genetic model for rs7950226 and
rs3816358 (Table S2). Table 2 shows the associations between
BMAL1 polymorphisms and fasting glucose. In the recessive
genetic model, using sex, age, BMI, physical activity, and
unhealthy diet as covariates, a significant association between
rs3789327 and fasting glucose was found. For the rs3789327
polymorphism, GG genotype carriers had higher blood glucose
levels than GA/AA genotype carriers (b= 0.101, SE= 0.050,
P= 0.045). In the additive genetic model, we found that
rs3816358 polymorphism A allele was significantly associated
with fasting glucose level after adjustment for sex, age, BMI,
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physical activity, and unhealthy diet (b= 0.060, SE= 0.028,
P= 0.032). No significant associations between rs10832020 or
rs7950226 and fasting glucose levels were found (P > 0.05).
However, none of the polymorphisms were significantly asso-
ciated with glucose level after correction for multiple comparison
(P < 0.05/4= 0.0125). We also analyzed the association between
BMAL1 gene polymorphisms and blood glucose level in children
with different glucose status (normal blood glucose and
prediabetes/diabetes), and neither in normal blood glucose
group nor in children with prediabetes/diabetes participants
significant association between the four SNPs of BMAL1 and
blood glucose level was found (P > 0.05, Table S3).

Interaction between BMAL1 gene polymorphisms and
nutritional status on fasting glucose levels
Associations between BMAL1 gene polymorphisms and fasting glucose
stratified according to nutritional status are illustrated in Table 3.
A significant interaction between rs3789327 and nutritional status

on fasting glucose was found (Pinteraction= 0.009). In the overweight/
obese subgroup, rs3789327 polymorphism GG genotype carriers had
significantly higher fasting glucose than the AG/AA genotype carriers
(b= 0.353, SE= 0.126, P= 0.006), but no significant association was
examined in the subgroup who were not-overweight/non-obese. No
significant interactions were observed for the rs10832020, rs7950226,
and rs3816358 polymorphisms of BMAL1. The adjusted fasting

Table 1. General characteristics of the present study.

Variables Total (n= 947) Boys (n= 471) Girls (n= 476) P

Age (years) 11.69 ± 0.66 11.74 ± 0.65 11.64 ± 0.67 0.150

Glucose (mmol/L) 4.88 ± 0.42 4.92 ± 0.40 4.84 ± 0.44 0.007

BMI (kg/m2) 17.69 (16.05, 20.21) 17.84 (16.07, 20.52) 17.60 (16.03, 19.81) 0.369

Nutritional status 0.001

Non-overweight/obesity 742 (79.8%) 350 (75.4%) 392 (84.1%)

Overweight/obesity 188 (20.2%) 114 (24.6%) 74 (15.9%)

Glucose status 0.053

Normal blood glucose 912 (96.3%) 449 (95.3%) 463 (97.3%)

5.6–6.9 mmol/L (prediabetes) 33 (3.5%) 22 (4.7%) 11 (2.3%)

≥7.0 mmol/L (diabetes) 2 (0.2%) 0 2 (0.4%)

Physical activity <0.001

≥1 h/day 344 (38.9%) 205 (45.8%) 139 (31.8%)

<1 h/day 541 (61.1%) 243 (54.2%) 298 (68.2%)

Soft drink 0.160

Yes 580 (61.2%) 299 (63.5%) 281 (59.0%)

No 367 (38.8%) 172 (36.5%) 195 (41.0%)

Fried chips/cakes/cookies 0.350

Yes 193 (21.8%) 103 (23.0%) 90 (20.5%)

No 694 (78.2%) 344 (77.0%) 350 (79.5%)

rs10832020 0.672

Genotyping [n (%)]

TT 473 (50.1%) 241 (51.3%) 232 (48.9%)

TC 375 (39.7%) 180 (38.3%) 195 (41.1%)

CC 96 (10.2%) 49 (10.4%) 47 (9.9%)

rs3789327 0.159

Genotyping [n (%)]

AA 438 (46.4%) 226 (48.1%) 212 (44.7%)

AG 417 (44.2%) 208 (44.3%) 209 (44.1%)

GG 89 (9.4%) 36 (7.7%) 53 (11.2%)

rs7950226 0.102

Genotyping [n (%)]

AA 333 (35.8%) 169 (36.7%) 164 (35.0%)

GA 458 (49.3%) 213 (46.3%) 245 (52.2%)

GG 138 (14.9%) 78 (17%) 60 (12.8%)

rs3816358 0.150

Genotyping [n (%)]

GG 658 (69.9%) 342 (72.8%) 316 (66.9%)

GT 260 (27.6%) 117 (24.9%) 143 (30.3%)

TT 24 (2.5%) 11 (2.3%) 13 (2.8%)

BMI body mass index.
P values <0.05 are set in bold.
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glucose levels stratified by different genotypes and nutritional status
are shown in Fig. 1.

DISCUSSION
To the best of our knowledge, this study is the first to demonstrate
a significant association between the BMAL1 rs3789327 and
rs3816358 polymorphisms and fasting glucose levels in children.
In addition, we found that there was a significant interaction
between BMAL1 rs3789327 polymorphism and nutritional status
regarding fasting glucose levels. More specifically, the association
between the rs3789327 polymorphism and fasting glucose levels
only existed in overweight/obese children, not in children who
were not overweight or obese. Our results suggest that BMAL1 and
nutritional status have an interacting effect on fasting blood
glucose in children.

The finding of an association between the BMAL1 rs3816358
polymorphism and fasting blood glucose in Chinese children is
new. Although this SNP has not been reported in relation to
fasting blood glucose or risk of diabetes, Leu et al. identified that
the T allele of the rs3816358 polymorphism is associated with an
increased risk of non-dipper hypertension (OR= 1.50, 95% CI:
1.04–2.18) in adults.22 In addition, Evans et al. found that the T
allele of rs3816358 is significantly related with later sleep onset
time (b= 0.13, SE= 0.05) objectively measured actigraphy in the
Elderly in the United States.27 Previous studies reported that
sleep onset time is significantly related with glucose-related
phenotypes, such as diabetes, obesity, and fasting blood
glucose, since later bedtime is likely to be associated with
shorter sleep duration, leading to disruption of glycemic control
or glycemic rhythmicity.28,29 But in the present study, the sleep
traits of children were not investigated, which limited us to
explore the potential mediation effect of sleep onset time in the
association between rs3816358 and fasting blood glucose.
Future studies could be conducted to further characterize this
mediation effect.
In addition, our study shows that the GG genotype of rs3789327

might be a risk genotype for high fasting glucose levels in
children. Previous studies have focused on different readouts,
demonstrating associations with myocardial infarction, multiple
sclerosis, and depression.30–32 This is the first study detecting
association between rs3789327 polymorphisms and glycemia
related phenotypes. However, the significant association was not
significant after correcting for multiple testing. The findings
should be interpreted with caution, and larger sample size studies
and functional studies are needed to verify these results.
The current study did not detect significant associations

between rs7950226/rs10832020 and fasting glucose. In addition,
we also analyzed the association between BMAL1 gene poly-
morphisms and blood glucose levels in normal blood glucose and
prediabetes/diabetes participants, no significant results were
found. Several previous studies have shown that BMAL1 gene
polymorphisms are associated with the risk of developing type 2
diabetes in adults.13–15 However, studies have noted that BMAL1
gene polymorphisms are not associated with the occurrence of
type 2 diabetes in Japanese33 and African-American34 cohorts. In
contrast to the findings of our study, Pappa et al. showed that
rs7950226 polymorphism of BMAL1 gene is associated with

Table 2. Association of BMAL1 gene polymorphism with fasting
glucose level.

Models SNP b SE P

Model 1 rs10832020 −0.041 0.027 0.130

rs3789327 0.101 0.047 0.031

rs7950226 0.006 0.020 0.780

rs3816358 0.052 0.026 0.046

Model 2 rs10832020 −0.045 0.027 0.102

rs3789327 0.100 0.047 0.033

rs7950226 0.006 0.020 0.782

rs3816358 0.059 0.026 0.026

Model 3 rs10832020 −0.039 0.029 0.175

rs3789327 0.101 0.050 0.045

rs7950226 0.002 0.021 0.932

rs3816358 0.060 0.028 0.032

Model 1 is the crude model; for Model 2, we add sex, age and BMI as
covariates; and Model 3 with sex, age, BMI, physical activity, soft drink and
fried chips/cakes/cookies as covariates.
BMI body mass index.
P values <0.05 are set in bold.

Table 3. Interaction between nutritional status and BMAL1 gene polymorphism in fasting glucose level.

SNP Category Genotype N Mean SD b SE P Pinteraction
rs10832020 Non-overweight/

obesity
TT 372 4.92 0.39 0.237

TC+ CC 369 4.86 0.43 −0.053 0.031 0.091

Overweight/obesity TT 90 4.82 0.38

TC+ CC 96 4.84 0.52 0.015 0.072 0.834

rs3789327 Non-overweight/
obesity

AA+ AG 674 4.88 0.41 0.009

GG 65 4.92 0.38 0.041 0.055 0.456

Overweight/obesity AA+ AG 170 4.80 0.37

GG 18 5.13 0.88 0.353 0.126 0.006

rs7950226 Non-overweight/
obesity

AA/GA/GG 269/359/
98

4.88/4.88/
4.91

0.37/0.39/
0.50

−0.001 0.023 0.965 0.407

Overweight/obesity AA/GA/GG 60/91/35 4.80/4.87/
4.82

0.40/0.51/
0.39

0.011 0.052 0.831

rs3816358 Non-overweight/
obesity

CC/CA/AA 514/204/
20

4.88/4.90/
5.09

039/0.45/
0.37

0.048 0.03 0.114 0.592

Overweight/obesity CC/CA/AA 136/48/3 4.81/4.90/
5.11

0.39/0.61/
0.33

0.099 0.074 0.183

SD standard deviation, SE standard error.
P and Pinteraction was adjusted for age, gender, physical activity, soft drink, and fried chips/cakes/cookies; P values <0.05 are set in bold.
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susceptibility to gestational diabetes in Greek pregnant women.14

However, this might be due to the different age, ethnic diversity
and varying environmental conditions of the study population.
Furthermore, different genetic risk factors might exist in different
population with different ethnicity.
Regarding potentialmechanismunderlying the associations between

BMAL1 gene polymorphisms and fasting glucose, it is noteworthy that
BMAL1 acts an essential component of the circadian oscillation, which
drives the daily rhythms of physiology and behavior.35 In pancreatic β
cells, BMAL1 plays a key role in mediating insulin secretion, exocytosis
andmetabolism.36 According to previous functional studies about clock
genes and glycemic phenotypes, the possible link between BMAL1 and
fasting glucose levels might be mitochondrial dysfunction.37–39Mito-
chondrial dysfunction is increasingly considered to be themain driver of
pancreatic β cell failure in the pathogenesis of diabetesmellitus, and the
loss of normal β cell function is the core factor of impaired insulin
secretion in diabetes mellitus.40

Furthermore, results of the current study demonstrated a
significant interacting effect between nutritional status and
rs3789327 on fasting blood glucose levels. In overweight/obese
individuals, GG genotype carriers had significantly higher levels of
fasting blood glucose than AA/AG genotype carriers, which was
not detected in children without overweight/obesity. To the best
of our knowledge, no gene–nutritional status interaction of BMAL1
gene was reported before. However, recent studies have found an
association between BMAL1 and indicators of obesity and obesity
is closely associated with elevated fasting glucose in children.41,42

Being overweight or obese might amplify the genetic suscept-
ibility of unfavorable glucose level for specific genotype carriers of
BMAL1 gene polymorphism. Previous studies have reported that
glucose-related phenotypes (Type 2 diabetes) which are attributed
to genetic predisposition can be significantly different in people

with different nutritional status.43,44 The identified interaction of
rs3789327 with nutritional status on glucose in our study is of
clinical interest, considering that mounting evidence have shown
that fasting glucose levels in childhood are significant predictors
for diabetes and other related cardiometabolic risk factors in
adulthood.45,46 Mechanistically, studies have demonstrated that
BMAL1 can activate CRY gene expression in conjunction with the
CLOCK gene when BMAL1 levels are high.47 The degradation of
CRY1 induces gluconeogenesis and maintains blood glucose
levels, but high fat intake accelerates the degradation of
autophagy CRY1 and contributes to the development of obesity-
related hyperglycemia. Furthermore, a recent study observed that
BMAL1 overexpression can enhance circadian clock function and β
cell function, thus enhancing GSIS and systemic glucose
metabolism in the context of diet-induced obesity.48 In short,
the above-mentioned findings could imply that BMAL1 gene
polymorphisms and nutritional status have an essential role in
affecting fasting blood glucose levels in children.
One strength of our study is that it focused on children.

Previous studies have generally set their focus on the association
of cardiovascular metabolic risk factors in adults with BMAL1 gene
polymorphisms and results have been controversial in different
ethnic populations. Genetic studies during childhood, a period
when environmental risk factors (alcohol drinking, smoking, etc.)
are relatively minimal, could increase the possibility to detect a
genetic risk factor that might otherwise be masked, therefore
contribute to elucidate the etiology of abnormal glucose and early
onset diabetes. Fasting blood glucose levels in children are closely
related to genetic factors and an early onset of diabetes also
dictates the development and severity of chronic complications.
Children are also the ideal population for genetic association
study of blood glucose.
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Fig. 1 Adjusted means and standard errors of fasting glucose stratified by brain and muscle Arnt-like protein-1 (BMAL1) gene
polymorphism phenotypes and nutritional status. BMI body mass index. Adjusted mean and standard errors were estimated under a
general linear regression model that adjusted for age, sex, physical activity, and unhealthy diet.
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However, there are also some limitations in our study. We only
selected 4 representative SNPs of the BMAL1 gene but there are
far more known SNPs in this gene. Secondly, studies in adults have
observed controversial results regarding the association between
BMAL1 gene and risk of diabetes in different ethnic groups.
Therefore, further studies on children of other ethnic groups are
needed. Finally, we did not investigate information about puberty
among the study participants, so we were unable to explore the
potential effect of puberty on fasting blood glucose levels.
In conclusion, our study demonstrates that BMAL1 rs3789327

and rs3816358 polymorphisms are significantly associated with
fasting blood glucose levels in Chinese children. We also found
that rs3789327 was associated with fasting blood glucose in
overweight/obese children, but not in non-overweight/non-obese
children. In addition, nutritional status and rs3789327 had an
interacting effect on fasting blood glucose levels. Our finding
highlights the importance of promoting healthy nutrition,
especially in children with a genetic susceptibility to higher
fasting glucose. Thus, these findings might also contribute to the
development of early prevention strategies for elevated blood
glucose in children.

DATA AVAILABILITY
The datasets analyzed in our study are available from the corresponding author on
reasonable request.
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