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that modulate the FOXM1 and PPARA pathway activities in
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Our previous studies demonstrated that the FOXM1 pathway is upregulated and the PPARA pathway downregulated in breast
cancer (BC), and especially in the triple negative breast cancer (TNBC) subtype. Targeting the two pathways may offer potential
therapeutic strategies to treat BC, especially TNBC which has the fewest effective therapies available among all BC subtypes. In this
study we identified small molecule compounds that could modulate the PPARA and FOXM1 pathways in BC using two methods. In
the first method, data were initially curated from the Connectivity Map (CMAP) database, which provides the gene expression
profiles of MCF7 cells treated with different compounds as well as paired controls. We then calculated the changes in the FOXM1
and PPARA pathway activities from the compound-induced gene expression profiles under each treatment to identify compounds
that produced a decreased activity in the FOXM1 pathway or an increased activity in the PPARA pathway. In the second method,
the CMAP database tool was used to identify compounds that could reverse the expression pattern of the two pathways in MCF7
cells. Compounds identified as repressing the FOXM1 pathway or activating the PPARA pathway by the two methods were
compared. We identified 19 common compounds that could decrease the FOXM1 pathway activity scores and reverse the FOXM1
pathway expression pattern, and 13 common compounds that could increase the PPARA pathway activity scores and reverse the
PPARA pathway expression pattern. It may be of interest to validate these compounds experimentally to further investigate their
effects on TNBCs.
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INTRODUCTION
Breast cancer (BC) is the most common cancer and the second
leading cause of death from cancer among Canadian women,
accounting for 25% of all new cancer cases and 13% of cancer-
related deaths [1]. As a heterogenous disease, BC can be divided
into four major molecular subtypes: luminal A, luminal B, HER2-
enriched, and triple negative breast cancer (TNBC) [2]. The TNBC
subtype is chracterized by lacking expression of the estrogen
receptor (ER), progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2), representing 5-10% of all breast
cancers [3]. TNBCs show aggressive features such as high grade
and high proliferation [4]. Patients diagnosed with TNBCs have a
poor prognosis, and almost 40% of patients experience a relapse
within 5 years post-diagnosis [4, 5]. Unlike breast tumors
expressing ER and/or HER2, TNBCs generally do not respond to
otherwise highly effective therapies such as selective estrogen
receptor modulators (SERMs), like tamoxifen, raloxifene, and
aromatase inhibitors that target the ER, or trastuzumab that
targets HER2 expressing tumors [2]. Thus, finding effective
therapeutic strategies for TNBCs is particularly challenging for
researchers.

In one of our previous studies [6], the Gene Set Enrichment
Analysis (GSEA) showed that the FOXM1 pathway was upregu-
lated in all BC subtypes versus normal breast tissue samples and
was the top upregulated pathway in TNBC. The GSEA results also
demonstrated that the PPARA pathway was highly downregulated
in all BC subtypes relative to normal and was the top down-
regulated pathway in TNBC samples. In another study [7], our
integrative analyses revealed 25, 20, 15 and 24 key TF and miRNA
regulators in luminal A, luminal B, HER2-enriched and TNBC
subtypes, respectively. Two TFs and seven miRNAs were identified
in all four subtypes and thus were referred to as common
regulators. Gene set over-representation analysis of targets of the
key regulators was performed to investigate pathways potentially
regulated by these regulators. miR-340-5p and E2F1 were two
common regulators found to be regulating PID_FOXM1_PATH-
WAY (also referred to as FOXM1 pathway in this study). miR-340-
5p and another common regulator miR-664b-3p were found to be
regulators of BIOCARTA_PPARA_PATHWAY (referred to as PPARA
pathway in this study). Moreover, three other regulators (PPARA,
PPARG, and miR-129-5p), which were identified in TNBC and
together in one or two other subtypes, were found to regulate the
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PPARA pathway. miR-9-3p, which was identified as a key regulator
in TNBC alone, was found to regulate the PPARA pathway.
The FOXM1 pathway is a predefined pathway extracted from

the C2 category gene sets in the MSigDB [8]. The FOXM1 pathway
is involved in cell cycle control and DNA damage repair, and it
ultimately promotes tumor cell proliferation. A total of 40 gene
members are engaged in this pathway, including tumor suppres-
sors (e.g., BRCA2, CDKN2A, CHEK2 and RB1), the proto-oncogene
family MYC, genes encoding cyclins (e.g., CCNA2, CCNB1, CCNB2,
CCND1 and CCNE1), genes encoding cyclin-dependent kinases
(e.g., CDK1, CDK2 and CDK4), ESR1, NEK2 as well as FOXM1 itself.
FOXM1 is one of the most important oncogenic TFs and it is
overexpressed in many human cancers [9]. It regulates all
hallmarks of cancer, including proliferation, mitosis, epithelial-
mesenchymal transition, invasion, and metastasis [10]. Not
surprisingly, previously published studies have shown the critical
role of FOXM1 in breast tumorigenesis and resistance to
chemotherapy. In a study by Yang et al. the stable overexpression
of FOXM1 was found to promote metastasis of breast cancer cells
in vivo through stimulating the transcription of SLUG (also known
as SNAI2) which promotes the epithelial-mesenchymal transition
in BC [11]. Xue and colleagues found that the activation of
SMAD3/SMAD4 by FOXM1 promoted the TGF-β pathway activity
and thus induced invasion and metastasis in BC [12]. The up-
regulation of FOXM1 together with XIAP and Survivin antiapopto-
tic genes induces resistance in breast tumor cells to docetaxel,
paclitaxel, and epirubicin [13]. In addition, FOXM1 is over-
expressed in 85% of TNBCs [9] and is identified as the key
transcriptional driver in the differentially expressed gene signature
of TNBC [14]. FOXM1 promotes TNBC proliferation, invasion and
progression by directly binding to and thus transcriptionally
regulating expression of eEF2K [9]. FOXM1 also plays a role in
autophagy by transcriptionally regulating Beclin-1 and LC3 genes
in TNBCs [15]. Increased expression of the cAMP-response
element-binding protein (CBP)/β-catenin/FOXM1 transcriptional
complex in TNBC cells in vivo was associated with a high
proportion of cancer stem cells, high rates of drug resistance and
poor survival outcome [16]. In a recent study, Tan et al.
constructed a gene regulation network in TNBCs and found that
FOXM1 was in a key position in the network [17]. They further
investigated the function of FOXM1 in the TNBC cell line MDA-MB-
231 and found that inhibiting FOXM1 can significantly suppress
MDA-MB-231 cell tumorigenesis in vivo using a mouse xenograft
model [17]. Zhang et al. found that DEP (disheveled, EGL-10,
pleckstrin) domain-containing (DEPDC1) was over-expressed in
human TNBCs relative to their paired neighboring non-cancerous
tissues using two public data sets from Gene Expression Omnibus
(GEO) [18]. Stable DEPDC1 over-expression can facilitate cell
proliferation and tumor growth via upregulating FOXM1 in MDA-
MB-436 cells and BT549 cells [18]. Taken together, these results
suggest that inhibition of FOXM1 function is a potential
therapeutic strategy to treat TNBC.
The PPARA pathway is a predefined pathway extracted from the

C2 category gene sets in the MSigDB database [8]. This pathway
can induce tumor cell apoptosis and includes 57 gene members,
such as the tumor suppressors RB1 and PIK3R1, the proto-
oncogenes MYC and JUN, as well as transcription factors CITED2
and PPARA. The stimulation of the PPARA pathway increases the
volume and number of peroxisomes which are responsible for,
among other things, lipid metabolism and catabolism. Genes in
this pathway are regulated by the PPARA transcription factor.
Previous studies suggest that PPARA is a tumor suppressor in
some cancers, including melanoma [19] and glioblastoma [20].
PPARA also appears to inhibit cell proliferation and tumorigenesis
and induces degradation of the proto-oncogene Bcl2 which
inhibits apoptosis in developing tumor cells [21]. Moreover, a
group of co-expressed genes including LPL, SORBS1, PPARG, PLIN,
FABP4, AQP7, CD36, and ADIPOQ that are involved in the PPARA

signaling pathway may also inhibit the pathway and contribute to
breast tumor progression [22]. Recently, Saleh et al. found that PD-
L1 blockade by atezolizumab in the human TNBC cell line MDA-
MB-231 downregulated tumor growth, metastasis, and hypoxia
signaling pathways, including the PPARA/retinoid receptor a
(RXRa) pathway [23]. To study the mechanisms by which adipose
tissue in obesity promotes BC progression, Blucher et al. treated
TNBC cells with adipose tissue conditioned media generated from
the fatty tissue of obese female patients [24]. The adipose tissue
treatment changed the expression profiles of TNBC cells resulting
in altered expression of many genes regulated by PPAR nuclear
receptors [24]. Thus, adipose tissue generated factors that altered
PPAR-regulated gene expression and lipid metabolism, and
further promoted TNBC progression. These results suggest that
the PPAR pathway has potential targets that could be used to
develop treatments for TNBCs [24].
The findings from our previous studies together with the

published literature strongly support the roles of the FOXM1 and
PPARA pathways in BC and especially TNBC tumorigenesis.
Therefore, identifying compounds that can modulate these two
pathways may provide novel therapeutic strategies for BC, and, in
particular, TNBC. The purpose of this study was to investigate the
suppression of the FOXM1 pathway and the stimulation of the
PPARA pathway on BC cell lines with various compounds.

MATERIALS AND METHODS
Gene expression data and processing
The overall approach of this study is depicted in Fig. 1a. We collected gene
expression data from three major resources. In order to assist in identifying
novel compounds that might modulate the FOXM1 and PPARA pathways,
the Connectivity Map (CMAP) database [25] was used in this study. CMAP
has been widely used to identify novel therapeutic targets for a disease by
establishing advantageous connections between the drug treatment and
the patient response (phenotypic response) [26, 27]. Although it is not
feasible to directly measure a pathway signaling activity, it can be
approximated using gene expression. We used the CMAP build 02
database (http://www.broadinstitute.org/cmap), which includes 3095 drug-
induced gene expression instances (treatment vs. vehicle control pairs)
from MCF7 cells treated with 1294 bioactive small chemical molecules at
varying concentrations. The raw CEL files were downloaded. Since the
CMAP database is based on three different Affymetrix chip types (HG-
U133A, HT_HG-U133A and U133AAofAv2), the microarray data were then
grouped according to the platforms and the Robust Multichip Average
(RMA) [28] method was used to normalize the drug-induced expression
profiles from each chip type. Probe IDs were then mapped to gene
symbols using the corresponding platform files. If a probe was mapped to
multiple or zero genes, the data from this probe were discarded. If multiple
probes were mapped to the same gene for a given expression profile, the
maximum value from the probes was taken as the expression value for that
gene. Finally, we kept only those genes present in all the three chip types
and applied the ComBat function in the R package sva [29] to remove
batch effects. Thus, the normalized and batch effect corrected drug-
induced gene expression data from different platforms could be used for
further study.
For the TCGA breast tumor data, we used the estimated baseline

expression (i.e., without drug treatment) of genes computed by the RSEM
method [30] provided by Firehose Broad GDAC (https://
gdac.broadinstitute.org), multiplied by 106 to obtain Transcripts Per Million
(TPM) [30] and log2-transformed. The disease subtype for each sample was
defined based on the tumor immunohistochemistry status with respect to
ER, PR and HER2.
The GEO data set GSE48213 contains molecular profiles (pre-treatment

measurements of mRNA expression, CNV, protein expression, promoter
DNA methylation, and gene mutation) from a collection of 84 BC cell lines
reported in Daemen et al.’s publication [31]. In this study, baseline
expression data in Fragments Per Kilobase of transcript per Million mapped
reads (FPKM) values that are available for 56 BC cell line samples were
extracted from the data set GSE48213 [31], converted into TPM [32], and
log-transformed log2(TPM+ 1). Cell line, and subtype information was
obtained from Daemen et al. [31]. Cell lines with expression data missing in
more than 50% of all genes were excluded from this study.
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Fig. 1 Study design. a The three major pipelines of this study are depicted. b Initially, three signatures were built: two signatures built with
each of the FOXM1 and PPARA pathways alone and a third signature built with the two pathways together. c Next, the pathway activity scores
of the FOXM1- and PPARA-pathway signatures based on genome-wide expression data with drug treatment were computed by the DART
algorithm to identify drugs inducing the activity score changes of the two pathways. d In parallel, the connectivity scores for the FOXM1- and
PPARA-pathway signatures were computed by the CMAP online tool to identify drugs reversing the expression pattern of the two pathway
signatures. Finally, the intersection of the drugs identified from the two pipelines (c, d) were considered as drugs influencing the activity of the
FOXM1 or PPARA pathways. In addition, connectivity scores for the FOXM1/PPARA-pathway signature were computed by CMAP online tool to
identify drugs reversing expression pattern of the two pathways simultaneously.
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Pathway-based signature construction
Three gene signatures were constructed based on the GSEA results from
the FOXM1 and PPARA pathways in our previous study [6] (Fig. 1b). A
typical signature was represented by two subsets of genes (“up” tags and
“down” tags). The FOXM1-pathway signature was built based on the
expression pattern of the 40 gene members in the FOXM1 pathway
between TNBC tumor samples and normal breast tissue samples observed
in the GSEA results in our previous study [6] (Supplementary information:
Table S1). We grouped those genes which are upregulated in TNBC relative
to normal breast tissue into “up” while those genes which are down-
regulated in TNBC compared to normal breast tissue were grouped into
“down” (Fig. 1b). Similarly, based on the expression pattern of the 57 gene
members form the PPARA pathway between TNBC and normal breast
tissue samples observed in the GSEA results in our previous study [6]
(Supplementary information: Table S2), the PPARA-pathway signature was
built. We grouped those genes which are upregulated in TNBC relative to
normal breast tissue into “up” while those which are downregulated in
TNBC compared to normal breast tissue were grouped into “down”
(Fig. 1b).
Given that the FOXM1 pathway is the top upregulated pathway, while

the PPARA pathway is the top downregulated pathway in TNBC versus
normal breast tissue, the signatures from both pathways were simplified
into a single FOXM1/PPARA-pathway signature by selecting genes that are
most responsible for up-regulation of the FOXM1 pathway and down-
regulation of the PPARA pathway (Fig. 1b). According to GSEA, for an
enriched gene set, the core members contribute most to the gene set
enrichment [33]. Thus, the core members of the FOXM1 pathway which
accounted for the up-regulation of the FOXM1 pathway in TNBC versus
normal (Supplementary information: Table S1) were selected and tagged
as “up”. The core members of the PPARA pathway which accounted for the
down-regulation of the PPARA pathway in TNBC versus normal
(Supplementary information: Table S2) were selected and tagged as
“down”. Thus, the FOXM1/PPARA pathway signature represents the core
gene members from the FOXM1 and the PPARA pathways.

Pathway activity score calculation
To calculate the activity score of the FOXM1- and PPARA-pathway
signatures, the DoDART function from the De-noising Algorithm based
on Relevance network Topology (DART) [34] R package was used. By
inputting the expression profiles of given samples and a predefined
signature, the DoDART function performed the following steps to calculate
pathway activity scores using the DART algorithm: 1) constructing the
relevance network where nodes are genes in the signature and edges
represent the correlation among genes based on the expression profiles.
The significance of the correlation between a gene pairs is defined using
the default FDR value of 1.0 ×10−6, which is stringent and represents a
conservative Bonferroni threshold that assumes that a typical signature
consists of on the order of 100 genes thereby necessitating an estimated
10,000 pairwise gene correlations; 2) evaluating the consistency of the
gene-gene correlations (i.e., edges) in the relevance network with the prior
gene-gene correlations contained in the given signature; 3) filtering out
edges that are inconsistent with the prior information contained in the
given signature from the relevance network; and 4) estimating an activity
score of the given signature for each individual sample using its expression
profile. A high positive pathway activity score indicates the stimulation of
the pathway activity in a given sample while high negative score indicates
the repression of the pathway activity.
Considering the difference between cancer tissue and cell lines in terms

of transcriptional profiles, we asked whether the activity scores of the
FOXM1- and PPARA-pathway signatures across different BC subtypes
showed a similar pattern between the BC tissue and cell lines. We
computed the activity scores of the two signatures for the BC cell line
samples from the GSE48213 gene expression data set and also for BC
tissue samples from the TCGA BC gene expression data set. The activity
scores of the two pathways in the BC tissue and cell lines were normalized
into the range of 0 to 1 for easy comparison. For each signature, we
performed the ANOVA test to check the difference of activity score in three
BC cell line subtypes (luminal, HER2 and TNBC) in GSE48213. To compare
the means of the signature activity score between any two BC cell line
subtypes in GSE48213, we performed pairwise t-tests between every two
subtypes followed by Benjamini–Hochberg correction for multiple testing.
For each signature, we also performed the ANOVA test to check the
difference of the signature activity score in five BC tissue sample groups
(luminal A, luminal B, HER2-enriched, TNBC, and normal breast tissue) in

TCGA. We performed pairwise t-tests between BC tissue pairs followed by
Benjamini–Hochberg correction for multiple testing to compare the
means of the pathway activity scores between BC tissue sample groups
in TCGA.
To assess the effect of a treatment on the activity of the FOXM1 or

PPARA pathways, we applied the DoDART function to the CMAP
perturbational expression profiles and calculated the FOXM1- and
PPARA-pathway signature activity scores for each CMAP instance (i.e.,
the treatment and the paired vehicle control) (Fig. 1c). In the case of
multiple controls per treatment, we removed the control with the highest
and lowest activity scores as outliers, and then used the mean of the rest as
the control. Some compounds with the same dose were exposed to the
MCF7 cells for multiple times. In this case, we took the average of the
activity scores of the FOXM1 and PPARA pathways. In the end, activity
scores of the two pathways for 1390 MCF7 gene expression instances (i.e.,
treatment vs. vehicle control pairs) were obtained.

Identification of compounds modulating pathway activity
scores
We evaluated compounds, many of which are drug treatments, affecting
pathway activity in the context of the change of pathway activity score
between treated and control cell lines in CMAP (Fig. 1c). For each of the
two pathways in a given instance, we defined the activity score difference
(ASd) as the activity score in the treatment (ASt) minus the activity score in
the control (ASc) (Eq. (1)).

ASd ¼ ASt � ASc (1)

The magnitude of ASd is the degree of change in pathway activity score
caused by the corresponding treatment, while the sign of ASd is the
direction of that change. Therefore, a positive sign indicates the treatment
increases the pathway activity while a negative sign decreases the
pathway activity. We ordered the instances according to increasing
difference score for the FOXM1 pathway but decreasing difference score
for the PPARA pathway. Therefore, the top-ranked instances for the FOXM1
pathway are those which decrease the pathway activity while for PPARA
pathway are those which increase the pathway activity. These top-ranked
instances were further investigated.

Connectivity Map query of compounds modulating pathway
expression patterns
In comparison to drug treatments affecting pathway activity in the context
of the change of pathway activity score between treated and control cell
lines in CMAP, we also evaluated drug treatments in the context of
modulating (mimicking or reversing) pathway expression patterns using
the CMAP online tool (Fig. 1d). The three signatures (the FOXM1-pathway
signature, the PPARA-pathway signature, and the FOXM1/PPARA-pathway
signature) were used as the query signatures to perform the CMAP analysis
through the CMAP build 02 web interface. To query the CMAP online tool
with a given signature, we first changed the gene list from gene symbols
to Affymetrix probe IDs, which are required as input into the CMAP. This
probe list was collated into tag sets of “up” or “down” genes and queried
against the CMAP database to generate hits. The similarity between the
gene expression profile of the query signature and that of a CMAP instance
was measured by the connectivity score, which ranged from −1 to 1.
When a query signature receives a high positive score for a treatment, it
means with this treatment the upregulated (i.e., “up”) genes in the
signature are also upregulated while the downregulated (i.e., “down”)
genes in the signature are also downregulated. Thus, a high positive
connectivity score indicates that the corresponding compounds induced
the same changes in expression of the query signature as those caused by
BC. When a query signature receives a high negative score for a treatment,
it means that the upregulated genes in the query signature are
downregulated by the treatment while the downregulated genes in the
signature are upregulated by the treatment (Fig. 1d). Therefore, a high
negative connectivity score indicates that the corresponding compounds
reversed the expression of the query signature. In the current study, for a
query signature, we expected the upregulated genes to be downregulated
while the downregulated genes to be upregulated after a particular
treatment. So those treatments returning a large negative connectivity
score for the three query signatures are treatments of interest. In other
words, we expected to identify the compounds which could reverse the
expression patterns of the three signatures.
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RESULTS
Three pathway-based signatures
Gene lists for the three signatures are provided in Table 1.
According to the GSEA results [6] (Supplementary information:
Table S1), of the 40 genes in the FOXM1 pathway, 27 were
upregulated and 13 downregulated in TNBC compared to normal
breast tissue. Thus, the 40-gene FOXM1 pathway signature was
represented by two subsets of genes (“up” tags and “down” tags).
In the same way, the 57 genes in the PPARA pathway were divided
into two parts, 12 up, and 45 downregulated genes (Supplemen-
tary information: Table S2). It is noteworthy that the majority of
the FOXM1 pathway genes are upregulated while the majority of
the PPARA pathway genes are downregulated in TNBC, which is in
accordance with the up-regulation of the FOXM1 pathway and the
down-regulation of the PPARA pathway in TNBC identified by the
GSEA analysis in our previous study [6]. In this way, we built the
FOXM1-pathway signature and the PPARA-pathway signature
(Fig. 1b).
Given the trend of up-regulation of the FOXM1 pathway and

down-regulation of the PPARA pathway in TNBC, the signatures
from both pathways were simplified into a single FOXM1/PPARA
pathway signature by identifying genes that are most responsible
for FOXM1 pathway up-regulation and PPARA pathway down-
regulation. Among the 27 upregulated genes from the FOXM1

pathway, 21 were core members that contribute most to the
pathway up-regulation in the GSEA results in our previous study
[6] (Supplementary information: Table S1). Among the 45 down-
regulated genes from the PPARA pathway, 26 were core members
that contribute most to the pathway down-regulation in the GSEA
results in our previous study [6] (Supplementary information:
Table S2). We used the 21 core gene members from FOXM1
pathway as the “up” genes and the 26 core gene members from
the PPARA pathway as the “down” genes to build the FOXM1/
PPARA-pathway signature (Fig. 1b).

FOXM1 pathway activity in breast cancer tissue and cell line
samples
We calculated the activity score of the FOXM1 pathway for TCGA
breast tumors [35], including 424 luminal A, 121 luminal B, 37
HER2-enriched, 112 TNBC, and 112 normal breast tissue samples.
There are significant differences among the five groups regarding
the FOXM1 pathway activity score (ANOVA, p-value < 2.2 × 10−16)
(Fig. 2a). We found that the averaged activity score is significantly
lower in the normal breast tissue group than each of the four
TCGA BC groups (luminal A, luminal B, HER2-enriched, and TNBC)
(Fig. 2a). Among the four TCGA BC subtypes, the TNBC group
appears to show a higher FOXM1 activity score than HER2-
enriched but the results are not statistically significant (Fig. 2a).

Table 1. The three signatures established by using FOXM1 and PPARA pathways.

Signature Gene member Gene number Tag

FOXM1-pathway
signature

AURKB, BIRC5, BRCA2, CCNA2, CCNB1, CCNB2, CCND1, CCNE1, CDC25B, CDK1, CDK2, CDK4,
CDKN2A, CENPA, CENPB, CENPF, CHEK2, CKS1B, ESR1, FOXM1, GSK3A, HIST1H2BA, NEK2,
ONECUT1, PLK1, SKP2, XRCC1

27 up

CREBBP, EP300, ETV5, FOS, GAS1, LAMA4, MAP2K1, MMP2, MYC, NFATC3 RB1, SP1, TGFA 13 down

PPARA-pathway signature APOA1, APOA2, DUT, HSP90AA1, HSPA1A, INS, MED1, MRPL11, NCOR2, NR0B2, RELA, SRA1 12 up

ACOX1, CD36, CITED2, CPT1B, CREBBP, DUSP1, EHHADH, EP300, FABP1, FAT1, HSD17B4, JUN,
LPL, MAPK1, MAPK3, ME1, MYC, NCOA1, NCOR1, NFKBIA, NOS2, NR1H3, NR2F1, NRIP1,
PDGFA, PIK3CA, PIK3CG, PIK3R1, PPARA, PPARGC1A, PRKACB, PRKACG, PRKAR1A, PRKAR1B,
PRKAR2A, PRKAR2B, PRKCA, PRKCB, PTGS2, RB1, RXRA, SP1, STAT5A, STAT5B, TNF

45 down

FOXM1/PPARA-pathway
signature

AURKB, BIRC5, BRCA2, CCNA2, CCNB1, CCNB2, CCNE1, CDC25B, CDK1, CDK2 CDK4, CDKN2A,
CENPA, CENPF, CHEK2, CKS1B, FOXM1, GSK3A, NEK2, PLK1, SKP2

21 up

STAT5B, HSD17B4, PIK3R1, DUSP1, CD36, CITED2, STAT5A, SP1, PRKAR1A, NCOA1, JUN,
MAPK3, LPL, PRKAR2B, NCOR1, RB1, RXRA, NR2F1, EHHADH, ACOX1, PRKACB, NRIP1, PDGFA,
NR1H3, CREBBP, PRKAR2A

26 down

Fig. 2 The FOXM1 pathway activity score in breast cancer. a The FOXM1 pathway activity score in TCGA BC tissue samples. b The FOXM1
pathway activity score in GSE48213 BC cell line samples. The pairwise comparison between groups using t-tests followed by
Benjamini–Hochberg correction. The significance level of adjusted p-values is as follows: ns, p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001;
****p ≤ 0.0001.
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We note that the GSEA results in our previous study [6] showed
the FOXM1 pathway was the most significantly upregulated
pathway in TNBC.
Although there are well documented differences between BC

cell lines and BC tissue samples, we expected to see at least some
similarity between their pathway activity scores given that BC cell
lines are ultimately derived from BC tissue samples. With the gene
expression data and subtype annotation from the publicly
available GEO data set GSE48213 [31], we obtained data for 14
luminal, 21 HER2-enriched and 10 TNBC cell lines. The GSE48213
data set included two matched normal-like BC lines, on which
RNA-Seq was not performed and thus were excluded. We
calculated the activity scores of FOXM1 pathway for the
GSE48213 BC cell lines. The FOXM1 pathway activity scores
showed a significant difference among the three GSE48213 BC cell
line subtypes (ANOVA, p-value= 0.003) (Fig. 2b). Similar to the
results in the four TCGA BC subtypes (Fig. 2a), the TNBC cell line
group exhibits a higher FOXM1 activity score than the luminal and
HER2-enriched cell line groups (Fig. 2b). There is a significant
difference between the FOXM1 pathway activity scores for the
TNBC and HER2-enriched subtypes but no significant difference
between the TNBC and luminal subtypes. The similarity of the
FOXM1 pathway activity score in TCGA breast tumor tissue
samples and GSE48213 BC cell lines suggests that the compounds
that can modulate the FOXM1 pathway in BC cell lines could also
potentially modulate the pathway in breast tumor tissue samples.

PPARA pathway activity in breast cancer tissue and cell line
samples
The activity scores of the PPARA pathway were calculated for
breast tumor samples from TCGA and BC cell lines from GSE48213.
The PPARA pathway activity score is significantly different among
the five TCGA BC tissue groups (ANOVA, p-value < 2.2 × 10−16)
(Fig. 3a). The normal tissue group from TCGA shows a significantly
higher PPARA pathway activity score than each of the four breast
cancer tissue groups (Fig. 3a). However, no significant difference in
the PPARA pathway activity score was observed among the four
TCGA BC subtypes. Similarly, the activity of the PPARA pathway
does not show significant differences among the three GSE48213
BC cell line subtypes (ANOVA, p-value= 0.15) (Fig. 3b), similar to
the results observed in TCGA breast tumor tissue samples. The
similarity of the PPARA pathway activity score in TCGA breast
tumor tissue samples and GSE48213 BC cell lines suggests that the
compounds that can modulate the PPARA pathway in BC cell lines

could also potentially modulate the pathway in breast tumor
tissue samples.

Identification of compounds modulating the FOXM1 pathway
activity in breast cancers
To identify drugs that can modulate the FOXM1 pathway activity
in BC we used the CMAP database. CMAP contains 1390 drug-
induced gene expression instances from treatment vs. vehicle
control pairs in MCF7 cells treated with 1294 approved drugs and
experimental compounds. We evaluated the effect of these drugs
on the FOXM1 pathway activity score (Fig. 1c). Since the FOXM1
pathway has a high positive activity score (i.e., activated) in BC
while a high negative activity score (i.e., inactivated) in normal
breast tissue, an effective drug treatment should reduce the
FOXM1 pathway activity score (i.e., suppressing the pathway
activity) and thus have a larger negative activity score difference
(ASd) between treatment and control groups. Of the 1390
perturbational gene expression instances, 885 instances show a
negative difference score for the FOXM1 pathway (i.e., the activity
score in the treatment is less than the paired control) (blue bars in
Fig. 4a), suggesting that the corresponding treatment suppresses
the FOXM1 pathway activity. For comparison, we also evaluated
the ability of the drug treatments to reverse the pattern of gene
expression in the FOXM1 pathway (Fig. 1d). In parallel, out of the
1390 expression instances, 785 generated a negative connectivity
score in the CMAP query results for the FOXM1 pathway (blue bars
in Fig. 4b), suggesting that the corresponding treatment could
reverse the pattern of gene expression in the FOXM1 pathway.
Ordering the instances according to increasing activity difference
and connectivity scores, respectively, we examined the top 50
instances in detail. After extracting the top 50 instances from each
case, we found that 19 drugs decreased the FOXM1 pathway
activity scores and reversed the pattern of gene expression in the
FOXM1 pathway simultaneously (Fig. 4c, Table 2).

Identification of compounds modulating the PPARA pathway
activity in breast cancers
We evaluated the effect of drug treatments on PPARA pathway
activity scores (Fig. 1c). The PPARA pathway shows a high negative
activity score (i.e., inactivated) in BC tumors and a high positive
activity score (i.e., activated) in normal breast tissue. Thus, an
effective drug treatment would be able to increase the PPARA
pathway activity score (i.e., stimulating the pathway activity) and
thus has a larger positive activity score difference (ASd) between

Fig. 3 The PPARA pathway activity score in breast cancer. a The PPARA pathway activity scores from TCGA BC tissue samples. b The PPARA
pathway activity score in GSE48213 BC cell lines. Pairwise comparisons between groups were performed with t-tests followed by
Benjamini–Hochberg corrections. The significance level of adjusted p-values is as follows: ns, p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001;
****p ≤ 0.0001.
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the treatment and the paired control groups. Of the 1390 drug-
induced gene expression instances, 739 show a positive difference
score for the PPARA pathway (i.e., the activity score in the
treatment is larger than the paired control) (red bars in Fig. 5a),
suggesting that the corresponding treatment increases the PPARA
pathway activity. For comparison, we also evaluated the ability of
the drug treatments to reverse the pattern of gene expression in
the PPARA pathway (Fig. 1d). The CMAP query returned 505
instances with a negative connectivity score for the PPARA
pathway out of the 1390 instances (blue bars in Fig. 5b),
suggesting that the corresponding treatments could reverse
pattern of gene expression in the PPARA pathway. Ordering the
instances according to increasing activity difference and con-
nectivity scores, respectively, and after extracting the top 50
instances from each case, we found that 13 drugs increased the
PPARA pathway activity scores and reversed the pattern of gene
expression in the PPARA pathway simultaneously (Fig. 5c, Table 3).

Identification of compounds modulating the FOXM1 and
PPARA pathways concurrently in breast cancers
Using the FOXM1/PPARA pathway signature built using both
FOXM1 and PPARA pathways to query the CMAP database, we
identified 360 compounds (Supplementary information: Table S3)
that can reverse the pattern of gene expression in the FOXM1 and
PPARA pathways in BC. The top 10 such drugs, with the smallest
connectivity scores, are listed in Table 4. To have a further look at
the effect of these CMAP gene expression instances on the FOXM1
and PPARA pathways, we also include the up-scores representing
the absolute enrichment of the up-genes (i.e., the “core” genes
which are upregulated in BC and from the FOXM1 pathway) in a
given instance and the down-scores representing the absolute
enrichment of the down-genes (i.e., the “core” genes which are
downregulated in the PPARA pathway in BC) in a given instance.
Both the two types of scores can adopt values between+1 and−1.
A high positive up (or down)-score indicates that the corresponding

drug induced the expression of the up (or down)-genes. Whereas a
high negative up (or down)-score indicates that the corresponding
drug repressed the expression of the up (or down)-genes. We
therefore expected that drugs that might be effective in BC would
repress the expression of the up-genes while inducing the
expression of the down-genes. Thus, the most effective drugs were
expected to have a high negative up-score and a high positive
down-score. Among the top 10 drugs, MG-262, MG-132, celastrol,
ciclopirox, and puromycin, which are also among the top drugs
from the FOXM1 pathway, showed a negative correlation with the
FOXM1/PPARA pathway signature, indicating their ability to reverse
the pattern of gene expression in the FOXM1 and PPARA pathways
in BC. Examination of the up- and down-scores shows that
these compounds produce a higher magnitude repression of the
FOXM1 pathway than their stimulation of the PPARA pathway
(Table 4).

DISCUSSION
CMAP analysis has been widely used to identify novel therapeutic
treatments and it can be performed by querying a pathway
signature against the CMAP database using the gene set
enrichment analysis algorithm described by Lamb et al. [25]. The
generated connectivity score is an indication of the ability of a
given drug to reverse or induce the expression pattern of the
queried pathway. This method considers all gene members in a
pathway of equal relevance and treats pathways as unstructured
lists of genes. The DART algorithm evaluates the relevance of
the prior information of genes in a given pathway and signature
and then estimates pathway activity. In this study, we identified
the drug candidates for their ability to modulate the FOXM1
and PPARA pathways using both the CMAP query and the DART
algorithm. The intersection of drugs identified from each
method increased our confidence in their identification as
candidates.
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Fig. 4 Affects of compounds (i.e., instances) on the FOXM1 pathway activity and expression pattern. a The FOXM1 pathway activity score
differences derived from the 1390 CMAP gene expression instances. The y-axis shows the difference between the activity score in the
treatment and the paired control for each instance. The x-axis shows the instances ordered by increasing corresponding activity score
difference. b The connectivity score of the 1390 CMAP gene expression instances where the y-axis shows the connectivity score and the x-axis
shows the instances ordered by increasing corresponding connectivity score. c A Venn diagram showing the intersection between the top 50
drugs identified by the activity score difference and the activity score.
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Fig. 5 Affects of compounds (i.e., instances) on the PPARA pathway activity and expression pattern. a The PPARA pathway activity score
difference of the 1390 CMAP gene expressoin instances. The y-axis shows the difference between the activity score in the treatment and the
paired control for each instance. The x-axis shows the instances ordered by decreasing corresponding activity score difference. b The
connectivity score of the 1390 CMAP gene expression instances. The y-axis shows the connectivity score and the x-axis shows the instances
ordered by increasing corresponding connectivity score. c A Venn diagram showing the intersection between the top 50 drugs identified by
the activity score difference and the activity score.

Table 2. The intersection of top 50 drugs by activity (Method 1) and connectivity (Method 2) scores on FOXM1 pathway.

Drug name Dose (µM) Na Rank by Activity score (Method 1) Connectivity
score

(Method 2)Activity score
difference
(ASd)

b

Connectivity score Treatment
(ASt)

Control (ASc) Difference (ASd)

5109870 25 1 1 10 −8.57 1.59 −10.16 −0.66

MG-132 21 1 2 1 −4.45 1.97 −6.42 −1

MG-262 0.1 1 4 3 −2.95 1.79 −4.74 −0.83

Celastrol 2.5 1 5 7 −2.99 1.59 −4.58 −0.72

Resveratrol 50 2 6 8 0.92 5.2 −4.28 −0.7

Ciclopirox 15 2 7 37 −2.45 1.53 −3.98 −0.59

Pyrvinium 3.4 2 11 2 −1.85 1.56 −3.41 −0.84

Emetine 7.2 2 13 14 −1.37 1.71 −3.08 −0.63

15-delta
prostaglandin J2

10 8 14 11 −1.18 1.73 −2.91 −0.66

Cephaeline 6 3 15 32 −0.95 1.96 −2.91 −0.6

Puromycin 7.4 2 16 17 −0.94 1.89 −2.84 −0.62

Parthenolide 16.2 2 23 18 −1.43 1.03 −2.46 −0.62

Azacitidine 16.4 2 24 49 −0.87 1.53 −2.39 −0.57

Cycloheximide 14.2 2 28 45 −0.3 2 −2.29 −0.57

Astemizole 8.8 2 29 27 0.04 2.3 −2.26 −0.6

5224221 12 2 36 25 −1.42 0.61 −2.03 −0.6

Scriptaid 10 1 42 20 1.32 3.29 −1.97 −0.62

Ouabain 5.4 2 43 30 −0.34 1.63 −1.97 −0.6

Bepridil 10 2 49 13 0.12 2 −1.88 −0.63
aThe number of experiments.
bActivity difference (ASd)= activity score in treatment (ASt)− activity score in control (ASc).
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Among the 19 drugs (Table 2) identified by both the CMAP
query and the DART algorithm as repressing the FOXM1 pathway,
some have been noted in other studies for their potential to treat
cancer. For example, the ChemBridge compound 5109870 which
had the lowest activity score difference (−10.16) and was ranked
tenth by the connectivity has been found previously to induce HIF-
1α-responsive genes, chelate iron, and block progression of BC in
two distinct mouse models [36]. MG-132 and MG-262 are
proteasome inhibitors which have been shown in vitro and
in vivo to have anticancer properties on their own, or synergisti-
cally with other compounds [37]. In one study, the combination
of natural compounds such as gambogic acid with MG-132 or
MG-262 showed inhibitory effects on growth of malignant cells
and tumors in allograft animal models apparently with no
observed systemic toxicity [38]. Celastrol is a compound derived
from Tripterygium wilfordii root and was reported to inhibit
breast cancer cell invasion by reducing NF-ĸB-mediated matrix
metalloproteinase-9 expression [39] and also showed anticancer
effects on human TNBC, potentially by affecting oxidative stress,
apoptosis and the PI3K/Akt pathways [40]. Several studies have
suggested that resveratrol may have anti-tumor affects through a
variety of mechanisms including but not limited to inhibition and/
or activation of histone deacetylases [41] and suppression of the
PI3K/Akt signaling pathway [41]. In particular, resveratrol inhibits

migration of MDA-MB-435 BC cells via suppression of the PI3K/Akt
signaling pathway [41]. In BC, it is reported that the proliferating
cell percentage was reduced with resveratrol. In addition, higher
doses of resveratrol delayed tumor formation and multiplicity,
while the lower dose did not significantly alter these parameters
when compared to a control. The work of Chatterjee et al. reported
that resveratrol decreased the expression of TGFβ1 and NF-κB and
the expression and activity of 5-LOX, as well as cell proliferation,
while increasing the faction of cells undergoing apoptosis [42].
Resveratrol also decreased the appearance of single-strand DNA,
suggesting that there was less DNA damage [42]. Despite these
interesting findings, it should be noted that multiple studies on
resveratrol have demonstrated its inconsistent effects on cancer in
animals and humans including negative, positive and no effect on
cancer outcomes [41, 43]. Ciclopirox, which is currently used as a
topical antifungal, may also inhibit cell proliferation, inducing cell
death, as well as inhibiting angiogenesis and lymph angiogenesis
all of which suggest a potential role as an anti-cancer drug. Zhou
et al. showed that ciclopirox inhibits human breast cancer MDA-
MB-231 growth in xenografts [44]. Emetine, which is currently used
as an antiemetic and for the treatment of amebiasis, has also
demonstrated anticancer properties, by inhibiting both ribosomal
and mitochondrial protein synthesis and interfering with the
synthesis and activities of DNA and RNA [45].

Table 3. The intersection of top 50 drugs by activity (Method 1) and connectivity (Method 2) scores on PPARA pathway.

Drug name Dose (µM) Na Rank by Activity score (Method 1) Connectivity score
(Method 2)

Activity score
difference (ASd)b

Connectivity score Treatment
(ASt)

Control
(ASc)

Difference
(ASd)

Anisomycin 15 2 1 15 2.71 −0.26 2.96 −0.66

Cephaeline 6 3 2 48 3.01 0.61 2.4 −0.58

Pararosaniline 10 1 3 4 2.52 0.3 2.22 −0.73

Cycloheximide 14.2 2 6 39 2.05 −0.02 2.08 −0.61

Monensin 10.9 1 17 21 0.34 −1.23 1.57 −0.64

Wortmannin 1 2 18 44 2.75 1.18 1.56 −0.6

Raloxifene 0.1 1 24 47 0.72 −0.66 1.38 −0.58

Prednisolone 1 1 25 8 0.65 −0.73 1.38 −0.71

Valinomycin 0.1 2 34 29 1.11 −0.09 1.2 −0.62

Oligomycin 1 1 37 31 0.51 −0.63 1.15 −0.62

Mepacrine 7.8 1 44 14 0.93 −0.1 1.03 −0.66

5186324 2 1 47 20 1.31 0.3 1.01 −0.65

5162773 7 1 48 30 1.31 0.3 1.01 −0.62
aThe number of experiments.
bActivity difference= activity score in treatment (ASt)− activity score in control (ASc).

Table 4. The top 10 drugs identified by Method 2 for downregulating the FOXM1 and upregulating the PPARA pathways simultaneously.

Rank Drug name Dose (µM) Na Up score Down score Connectivity score (Method 2)

1 MG-262 0.1 1 −0.55 0.19 −0.91

2 Clotrimazole 50 1 −0.32 0.34 −0.82

3 MG-132 21 1 −0.52 0.14 −0.81

4 Hycanthone 11 2 −0.44 0.15 −0.73

5 Celastrol 3 1 −0.43 0.15 −0.72

6 Ciclopirox 15 2 −0.46 0.11 −0.71

7 Withaferin A 1 2 −0.39 0.18 −0.7

8 Cephaeline 6 3 −0.35 0.19 −0.67

9 Pararosaniline 10 1 −0.31 0.23 −0.67

10 Puromycin 7 2 −0.34 0.19 −0.66
aThe number of the MCF7 cell samples treated by the drug at the same dose.
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We found 13 drugs (Table 3) that could increase the PPARA
pathway activity scores by the DART algorithm and reverse the
PPARA pathway expression pattern by the CMAP query. Aniso-
mycin is an antibiotic which is active against protozoa and yeast
by inhibiting DNA and protein synthesis [46]. Recently, anisomycin
has been found to be active against certain types of cancer, such
as ovarian cancer, colon cancer and renal carcinoma [46]. It is also
an agonist of p38-mitogen activated-protein kinase and c-Jun N-
terminal kinase [46]. Anisomycin has been shown to sensitize
glucocorticoid-resistant leukemia cells to dexamethasone-induced
apoptosis through p38-MAPK/JNK [46]. Prednisolone is a gluco-
corticoid anti-inflammatory similar to dexamethasone. It has been
used in combination with other anticancer drugs to treat some
kinds of leukemia and lymphoma and to reduce the incidence of
anemia and thrombocytopenia caused by cancer treatments.
Interestingly, raloxifene is a SERM that produces anti-estrogenic
effects in breast and uterine tissues and is used to decrease the
risk of BC in post-menopausal women who are at high risk for
invasive BC [47, 48].
Among the top 10 drugs (Table 4) that induce the PPARA

pathway and repress the FOXM1 pathway concurrently, clotrima-
zole shows a connectivity score of −0.82, together with a similar
up score and down score, suggesting its capacity to suppress the
FOXM1 pathway while inducing the PPARA pathway. Clotrimazole
is a widely used topical antifungal that has been found to
preferentially inhibit human BC cell proliferation, viability and
glycolysis [49]. Hycanthone and withaferin A were found to
reverse the pattern of gene expression in the FOXM1 and PPARA
pathways like clotrimazole but unlike clotrimazole, these two
compounds have a stronger effect on the FOXM1 pathway than
on the PPARA pathway. Hycanthone is an antischistosomal that is
a thioxanthone derivative, and was found to exhibit, antitumor,
and anti-metastatic activities against BC, however, it also causes
life threatening liver toxicity [50]. Two compounds closely related
to hycanthone, SR271425 and SR233377 are in Phase I and II
clinical trials for solid tumors but appear to have less liver toxicity.
Withaferin A is a steroidal lactone and negatively regulates breast
cancer growth [51]. Pararosaniline is a dye that was among the top
drugs for the PPARA pathway and could also reverse the pattern
of gene expression in the FOXM1 and PPARA pathways. Cephaelin,
with a connectivity score of −0.67, was among the top drugs for
both the FOXM1 and PPARA pathways (Tables 2 and 3) and
therefore reversed the pattern of gene expression in the FOXM1
and PPRA pathways (Table 4). MG-262, MG-132, celastrol,
ciclopirox, and puromycin, which are also among the top drugs
for the FOXM1 pathway, showed a negative correlation with the
FOXM1/PPARA pathway signature, indicating they could reduce
the FOXM1 pathway activity and increase the PPARA pathway
activity. Examination of the up- and down-scores show that these
compounds produce a greater repression of the FOXM1 pathway
than their stimulation of the PPARA pathway. A similar trend was
observed for all compounds in Table 4.
Cancer cell lines have been used extensively to screen anti-cancer

drug candidates. However, the capacity of candidate drugs to
repress tumor cells in vitro is not quantified as often. In this study,
we investigated the activity pattern of the FOXM1 and PPARA
pathways in both TCGA breast tumor patient and breast cancer cell
line data (Figs. 2 and 3). The FOXM1 pathway has a higher activity
score in the four BC subtypes than that in the normal tissue samples,
with the highest in TNBC. The PPARA pathway has a higher activity
score in the normal breast tissue samples than that in the four BC
subtypes. No significant difference was found among the four BC
groups for their PPARA pathway activity. With the BC cell lines, we
were surprised to see that the distribution of the FOXM1 and PPARA
pathway activity scores in breast tumor cell lines is similar to that in
TCGA breast tumor patients. The findings suggested that drugs

affecting the two pathways in BC cell lines could also potentially
affect the two pathways in the BC tumors.
It is difficult to draw any conclusions about the clinical relevance of

doses used in Tables 2 through 4, since the data from these tables
derive from experiments performed with cultured MCF7 cells and not
humans. Accordingly, the environment of such experiments is
substantially different from the human systemic circulation, and in
any case, it is unlikely that the plasma concentration and the tumor
concentration of any drug are the same. Moreover, many of the drugs
in Tables 2 through 4 are experimental and being as they are
untested in humans, we lack any relevant human plasma concentra-
tion data. The antifungals clotrimazole and ciclopirox (Tables 2–4) are
only administered topically in humans so we would not expect any
significant systemic absorption and again, lack relevant clinical
concentration data. However, some of the drugs identified in Tables 2
through 4 have such clinical data. For example, when taken orally at
normal doses, the typical plasma concentration of raloxifene is
0.0028 μM. The dose used in Table 3 is 0.1 μM which is >30-fold
higher and may reflect the need for a higher doses to induce cell
death in MCF7 cells. The maximum plasma concentrations of
prednisolone (Table 3) after oral administration varies widely based
on dose but is typically between 0.3 and 3.7 μM and the 1 μM dose
used in Table 3 is within this range.
The limitation of this study was that only the MCF7 cell line was

used to investigate the drug candidates for the two pathways.
MCF7 is known to be luminal A breast tumor cell line and
therefore cannot fully represent each sub-type of breast cancer,
which is a complex and heterogeneous disease. Therefore, the
drugs identified for the FOXM1 and PPARA pathways in MCF7 cells
may not have the same effects in the luminal B, HER2-enriched,
and TNBC subtypes. Ideally, we would have been able to identify
the drugs for the two pathways in cell lines representing each BC
subtype, but we did not have this data. Nevertheless, it is
interesting to note that MCF7 cells grown continuously in the
absence of estrogen or the presence of SERMs or estrogen
antagonists begin to from sub-populations that are triple negative
(TN) [52]. Furthermore, evidence suggests that this is a result of
overgrowth of minor TN sub-populations within MCF7 cells rather
than differentiation of the parental MCF7 cell line [53]. Such data
suggest that MCF7 cells used to generate the data in this study
may have had sub-populations with a TN phenotype.

CONCLUSIONS
Up-regulation of the FOXM1 pathway and down-regulation of the
PPARA pathway were found in BCs and in particular TNBCs.
Therefore, the current study was aimed to identify compounds
effective at repressing the FOXM1 pathway activity as well as
those inducing the PPARA pathway activity in BC. The former
included 5109870, MG-132, MG-262, celastrol, resveratrol, ciclo-
pirox and cephaeline while the latter included anisomycin,
cephaeline, pararosaniline cicloheximide and monensin. In addi-
tion, compounds decreasing the FOXM1 pathway activity while
increasing the PPARA pathway activity concurrently were identi-
fied, including MG-262, MG-132, celastrol, ciclopirox and
puromycin.

DATA AVAILABILITY
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breast tumor patient gene expression data are available in the Firehose Broad GDAC
(https://gdac.broadinstitute.org). The breast cancer cell line gene expression dataset
GSE48213 is available in the GEO repository (https://www.ncbi.nlm.nih.gov/geo/).
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