Skip to main content
. 2023 Jul 7;13(3):313–327. doi: 10.1007/s13534-023-00305-8

Table 2.

Performances of reported sleep staging using the signals from wearable devices

Signals / Models # of
Stages
# of
Rec.
Performance Ref.
Agree. (%) Kappa

EEG (O1, O2, Fpz, F7, F8), Acc. PPG, SpO2

/ LSTM

5 25 83.5 0.75 [21]

EEG (F4, C4, O2)

/ MLP neural network

5 154 89 - [22]
EEG (Fpz-Cz, Pz-Oz) / CNN 5 20 86 - [23]
EEG (Fpz-Cz) / CNN + BiRNN 5 61 84.3 0.79 [24]
EEG (F4-EOG) / CNN + LSTM 5 62 86.2 0.80 [25]
EEG (Fpz-Cz) / LSTM 5 12 86.7 - [26]
EEG (In-ear) Support Vector Machine 5 16 74.1 0.61 [27]
Random Forest 5 80 80.6 0.73 [28]
Acc.

Generalized Estimating

Equation

2 77 86.3 - [29]
Rule-based model 2 228 84.0 - [30]
ECG LSTM 4 584 71.9 0.57 [31]
LSTM 4 584 77 0.61 [32]
LSTM 5 373 71.2 0.52 [33]
CNN 4 993 77 0.66 [34]
PPG Bayesian linear discriminant 4 215 59.3 0.42 [35]
LSTM 4 60 69.8 0.55 [31]
CNN + Gated Recurrent Unit 5 894 64.1 0.51 [36]
PPG, Acc. / MLP 3 219 72.3 0.28 [37]
PAT, PPG, Acc. / Rule-based model 4 227 66.0 0.48 [38]

# of Rec. number of data points used in the study, Agree. agreement, Ref. reference, EEG electroencephalogram, Acc. Accelerometry signals, ECG electrocardiogram, PPG photoplethysmogram, Skin Temp. Skin temperature, PAT Peripheral arterial tone, LSTM Long-Short Term Memory, MLP multilayer perceptron, CNN convolutional neural network, BiRNN Bidirectional recurrent neural network, SVM support vector machine