Skip to main content
. 2023 Jul 19;13(3):273–291. doi: 10.1007/s13534-023-00303-w

Table 2.

Summary of the reviewed A phase classification procedures, showing only the article’s reported results from best-performing models. The table sorted the articles by classification approach (first thresholds, then conventional machine learning, followed by deep learning). When using the same approach, the results were sorted by performance. In the end, the mean and standard deviation of the metrics reported by at least two studies are presented. Abbreviations: bruxism (B), derivation (D), female (F), healthy (H), insomnia (I), male (M), narcolepsy (N), periodic leg movement (PLM), subjects (S), threshold-based (TB), with ages between (WAB), years old (YO)

Article Population Classifier Performance metrics (%)
Subjects Characteristics Acc Sen Spe AUC Other
[32] 41~ S (8 H, 9 with I, 1 with B, 4 with SDB, and 19 with RBD) using F2-F4/Fp2-F4, F4-C4, C4-P4, P4-O2, C4-A1, and F4-A1 D TB - 91.2 - - Precision: 45.9; F1 score: 59.6, false negative rate: 8.8, false discovery rate: 54.1
[34] 10* H S (all M) using F4-C4 D TB - 84.0 90.0 - Correctness: 77.0
[36] 8^ - TB - 84.9 77.6 - Concordance: 81.1
[37] 8  H S (4 M and 4 F) using C3-A2 or the C4-A1 D TB 72.4 51.6 76.4 - -
[39] 6~ H S (4 M and 2 F) using C3-A2 or the C4-A1 D TB 80.5 75.8 81.3 - -
[35] 10  H S (5 M and 5 F) using F4-C4 D TB 83.5 - - - -
[38] 16~ H S using C3-A2 or the C4-A1 D TB 86.1 67.0 89.6 - -
[46] 6~ H S using C3-A2 or the C4-A1 D SVM 72.4 76.8 69.2 79.0 F1 score: 69.9
[48] 6~ H S using C3-A2 or the C4-A1 D Ensemble of trees 73.4 76.6 71.0 - -
[44] 14 ~ WAB 23 and 78 YO Using C3-A2 or the C4-A1 D Linear DA 75.0 78.0 74.0 76.0 -
[51] 30 ~ WAG 14 and 67 YO (mean 31.0) NFLE S (16 M and 14 F) using C4-A1 D SVM 76.0 79.0 76.0 - Weighted accuracy: 78.0
[45] 14 ~ WAB 23 and 78 YO S (9 H, 4 with SDB, and 1 with B) using C3-A2 or the C4-A1 D FFNN 79.0 76.0 80.0 78.0 -
[41] 4  H S (4 M and 2 F) using C3-A2 or the C4-A1 D FFNN 81.6 75.7 83.1 - -
[42] 4  H S (4 M and 2 F) using C4-A1 and F4-C4 D SVM 84.1 73.8 85.9 - Cohen’s kappa: 50.0
[43] 8  H S (4 M and 4 F) using C3-A2 or the C4-A1 D Linear DA 84.9 72.5 86.6 - Cohen’s kappa: 45.0
[47] 77 ~ WAB 16 and 82 YO (mean 48.0) S (6 H, 7 with I, 5 with N, 27 with NFLE, 9 with PLM, 22 with RBD, and 1 with SDB) using C4-A1 and F4-C4 D Ensemble of trees 78.0 74.0 - 86.0 Precision: 80.0, Cohen’s kappa: 56.0
[59] 6~ H S using C3-A2 or the C4-A1 D CNN 53.0 92.1 - - Precision: 20.1, F1 score: 33.0
[58] 6~ H S using C3-A2 or the C4-A1 D CNN 60.6 69.5 59.3 71.1 Precision: 19.8, F1 score: 30.8
[53] 14~ D (9 H, 4 with SDB, and 1 with B) using C3-A2 or the C4-A1 D DAE 67.0 55.0 69.0 - -
[56] 15 ~ WAB 23 and 42 YO (mean 32.2) H S (6 M and 9 F) using C3-A2 or the C4-A1 D LSTM 69.7 51.2 81.1 66.3 -
[54] 19 ~ WAB 23 and 78 YO (mean 40.6) S (15 H and 4 with SDB, 10 M and 9 F) using C3-A2 or the C4-A1 D LSTM 76.0 74.6 76.6 75.2 Positive predictive value: 65.9, negative predictive value: 82.1, diagnostic odds ratio: 9.6
[60] 9 ~ WAB 23 and 42 YO (mean 32.2) H S (5 M and 4 F) using C3-A2 or the C4-A1 D CNN 76.3 - - - -
[55] 16 ~ WAB 16 and 67 YO (mean 32.9) S (8 H and 8 with NFLE, 5 M and 11 F) using Fp23-F4, F4-C4, and the C4-A1 D LSTM 76.5 72.9 77.1 82.4 -
[57] 16~ H S using C3-A2 or the C4-A1 D LSTM 82.4 75.3 83.9 - F1 score: 57.4
[65] 19~ S (15 H and 4 with SDB, 10 M and 9 F) using C3-A2 or the C4-A1 D LSTM 83.0 76.5 83.4 88.2 -
[63] 15~ H S using C3-A2 or the C4-A1 D LSTM 83.0 76.1 84.2 - F1 score: 58.2
[62] 15 ~ WAB 23 and 42 YO (mean 32.4) H S (6 M and 9 F) using C3-A2 or the C4-A1 D Ensemble of CNNs 83.3 80.1 83.7 - Average: 82.4
[61] 16~ H S using C3-A2 or the C4-A1 D CNN 92.5 63.6 96.1 79.8 Precision: 64.5, F1 score: 62.4
Mean ± standard deviation 14.4 ± 11.3 S TB 80.6 ± 5.1 76.5 ± 12.4 82.7 ± 5.3 - -
18.1 ± 22.2 S Conventional machine learning 78.3 ± 4.3 75.8 ± 2.0 78.2 ± 6.2 79.8 ± 3.8 -
13.8 ± 4.3 S Deep learning 75.3 ± 10.6 71.5 ± 11.0 79.4 ± 9.4 77.2 ± 7.2 -

*Used 60 min of data per subject

^Used a total of 16 h of data

~Reccordings from the CAP sleep database [6, 30]