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Abstract
Surface electromyography (sEMG) meets extensive applications in the field of prosthesis in the current period. The effective-
ness of sEMG in prosthesis applications has been verified by numerous revolutionary developments and extensive research 
attempts. A large volume of research and literature works have explored and validated the vast use of these signals in pros-
theses as an assistive technology. The objective of this paper is to conduct a systematic review and offer a detailed overview 
of the work record in the prosthesis and myoelectric interfaces framework. This review utilized a systematic search strategy 
to identify published articles discussing the state-of-the-art applications of sEMG in prostheses (including upper limb 
prosthesis and lower limb prostheses). Relevant studies were identified using electronic databases such as PubMed, IEEE 
Explore, SCOPUS, ScienceDirect, Google Scholar and Web of Science. Out of 3791 studies retrieved from the databases, 
188 articles were found to be potentially relevant (after screening of abstracts and application of inclusion–exclusion criteria) 
and included in this review. This review presents an investigative analysis of sEMG-based prosthetic applications to assist the 
readers in making further advancements in this field. It also discusses the fundamental advantages and disadvantages of using 
sEMG in prosthetic applications. It also includes some important guidelines to follow in order to improve the performance 
of sEMG-based prosthesis. The findings of this study support the widespread use of sEMG in prosthetics. It is concluded 
that sEMG-based prosthesis technology, still in its sprouting phase, requires significant explorations for further develop-
ment. Supplementary investigations are necessary in the direction of making a seamless mechanism of biomechatronics for 
sEMG-based prosthesis by cohesive efforts of robotic researchers and biomedical engineers.
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1  Introduction

In general, the sEMG signal comprises of superimposed 
motor unit action potentials (MUAPs) which exist in the 
vicinity and the pick-up range of the surface electrodes. On 
account of the variations in amplitude and frequency con-
tent of sEMG signal with regard to the level of contraction 
force [1, 2], user control of assistive devices aided by the 

muscle contractions is possible. In general, assistive devices, 
commonly known as prostheses, are artificial devices that 
replace a missing body part and restore the normal func-
tions of the missing body part. The body part may be lost 
through trauma, a disease, or a congenital disorder. In prin-
ciple, sEMG signals are acquired from the patient's (i.e., the 
amputee's) body. After suitable processing of the acquired 
sEMG data, the processed data is fed as control input to 
drive motors coupled to the prosthetic device. Usually, the 
prosthetic device is worn by the amputee, and the amputee's 
sEMG signals initiate the control mechanism for the device.

With the introduction of the concept of sEMG in the 
1940s [3], the first successful attempt towards the devel-
opment of a myoelectric prosthetic arm as an application 
of sEMG was made in 1960 [4]. Over the past few dec-
ades, research has tended to focus on the applications of 
sEMG interfaces. Besides establishing their prospective in 
applications for disabled individuals [5–11], myoelectric 
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interfaces have also substantiated their promising applica-
tions for healthy users [12–17]. Furthermore, several patents 
in the field of mobile technology have been encouraged as a 
result of the numerous advantages of sEMG interfaces over 
conventional devices [18, 19].

There has been a growing interest in sEMG-based pros-
thesis applications over the past decade. Figure 1 shows 
the trends in publications related to the sEMG-based pros-
thetic device, its control, and applications for various years. 
The trends indicate (1) a substantial increase in publica-
tions demonstrating ongoing research in this field and (2) 
the active participation of researchers in the maturation of 
sEMG-based prosthetic devices.

In comparison to the conventional and supplementary 
techniques of man–machine control, it has been suggested 
that the sEMG interface provides a number of benefits. It has 
been shown that comparatively less user attention is entailed 
in sEMG control unlike EEG–based controls or controlling 
action via movements of the eye. Contrary to visual–based 
control, the myoelectric control permits the user to gaze 
about during the controlling task of the device. Also, sEMG 
signals offer reasonably high signal-to-noise ratio in compar-
ison of other biosignals. When compared to voice control, 
sEMG control has just a minor delay. Furthermore, sEMG 
control is robust to and insensitive to changes in ambient 
sound. For users with motor impairment, sEMG interfaces 
may assist in the development of interactive interfaces with 
minimal requirement of user motor skills. Nevertheless, 
some training is requisite to make the user familiar with 
the interface. The electrodes employed in sEMG recording 
offer ease in their placement and may be placed beneath the 
clothes or even fixed over them [20, 21]. Commercial textile 
electrodes (including smart shorts) which measure the EMG 
activity are available whose control commands are delivered 

via delicate movements or various intensities of muscular 
contractions [21–23]. Conclusively, no marking is made on 
handicapped users or users with exceptional concessions by 
the sEMG interface.

The superficial muscles of the human body are the loca-
tions of measurement of sEMG signals [24]. In the sEMG 
interfaces, muscles of the upper limbs [5, 25], the lower 
limbs [26], the shoulder or the head, face, and neck [27–29] 
have been utilized. Accordingly, by using their contractible 
muscles (which they are able to contract), users with mobil-
ity disabilities can control a number of devices. For instance, 
using the contractions of the facial muscles, a device can 
be controlled by a quadriplegic individual [6]. Moreover, 
sEMG signal can be recorded from the stump skin of the 
amputees in order to control the prosthesis [5, 25, 30, 31]. 
Thus, an amputee is allowed to perform a variety of con-
trolling actions (such as grasp posture of prosthesis) merely 
by the usage of residual muscles. Moreover, some relevant 
reviews have been reported in the literature which discussed 
about the imperative issues associated with sEMG signal 
measurement and processing [8, 32, 33] along with the pre-
carious issues and endorsed practices in view of myoelectric 
interfaces [34]. Also, researchers have shown keen interest 
towards sEMG interfaces which is mainly observed due to 
the pattern recognition-based approach for controlling action 
embraced in 1993 in interfaces linked to sEMG [35]. One 
of the major aspects is the massive use of sEMG signals in 
prostheses as an assistive technology.

Based on the above framework and the above dialogue, 
this review article presents an all-inclusive discussion of 
the state-of-the-art applications of sEMG in prostheses. 
This narrative literature review highlights the recent devel-
opments and underscores the challenges associated with 
sEMG-based prosthesis. Contrary to the existing reviews, 

Fig. 1   Trends in the number 
of publications associated with 
sEMG and its applications in 
prosthetic devices. The data 
(number of publications for 
each year) has been taken from 
Google Scholar
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this review also suggests some critical directions to follow 
to improve the performance of sEMG-based prosthesis. This 
review also provides some guidelines for the acceleration of 
future developments. Like other existing reviews, this review 
is also subject to limitations including but not limited to: (1) 
potential bias, including the influence of the authors' view-
points, and (2) gaps in literature-searching practices that 
might have led to the omission of relevant research. We also 
tried our best to avoid misrepresenting or misinterpreting 
the source data.

Review Organization: This review is structured as follows. 
Section 2 describes the methodical search strategy followed 
for performing this review. Section 3 provides a compre-
hensive description of the result and applications of sEMG 
signal in prostheses (including upper limb and lower limb). 
Section 4 provides discussions and a list of challenges asso-
ciated with sEMG-based prostheses. Finally, in Sect. 5, the 
review ends with the concluding remarks and some pros-
pects in sEMG-based prostheses technology for boosting its 
broad and extensive utilization.

2 � Methodology

For this review, a comprehensive literature search was per-
formed from many databases using generic search terms 
such as “Surface Electromyography”, “sEMG”, “Prosthesis”, 
etc. The following databases were chosen for the literature 
search based on the high number of results: IEEE Explore, 
ScienceDirect, PubMed, Google Scholar, and Web of Sci-
ence. The following keywords (and their combinations) were 
adopted for the literature search: Surface Electromyography, 
Myoelectric control, Prosthesis, Amputees. For the search, 
we considered publications (1) in journals and conference 
proceedings later than 1950, and (2) mostly in English, due 

to the predominance of the English language in scientific 
literature. Other articles extracted from the references of the 
papers identified in the electronic search were also included. 
Indeed, many articles on sEMG (and its applications) existed 
before 1950. However, we restricted our search to articles 
from 1950 onwards for the following reasons: (1) to narrow 
down the number of articles included in the review; and 
(2) to consider advanced and state-of-the-art in sEMG and 
exclude obsolete technologies.

A large number of publications on sEMG were retrieved 
during the initial screening. Hence, to include the searches 
with the main focus on sEMG-based prosthesis, an inclusion 
criterion was utilized in the search string. From the selected 
databases, the search retrieved a total of 3791 publications. 
Then, the duplicate records were removed. After that, based 
on the title and abstract, the remaining 2758 publications 
were screened for their relevance by using the following 
inclusion and exclusion criteria. Publications focusing on 
‘sEMG-based prosthesis’ were included, whereas those 
works which delivered theoretical concepts on sEMG were 
excluded. We also excluded those studies available only in 
the form of abstracts. Besides, if the paper was a workshop 
summary, we excluded it.

Based on the screening and eligibility, 188 research 
chronicles were identified that offered explicit applications 
of sEMG in prosthesis, and were found to be relevant to 
this review. The review process is shown in Fig. 2 by the 
PRISMA flow diagram. PRISMA i.e., “preferred reporting 
items for systematic reviews and meta-analyses” is employed 
in systematic reviews to refine the quality of reporting.

For better identification and visualization of the clusters 
that influence the topic of this review paper, we exploited 
VOSviewer: a software tool infrastructure that constructs 
and visualizes bibliometric networks. Figure 3 illustrates the 
network visualization where items are represented by using 
their labels and, by default, also by a circle. The network 

Fig. 2    PRISMA flow diagram illustrating the search and inclusion process. N represents the number of records
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has 54 clusters, each representing a unique color. The item’s 
weight determines the label's size and its corresponding cir-
cle size. The higher the weight of an item, the larger the label 
and its associated circle. For example, referring to Fig. 3, 
the item “electromyography” has the highest weight and the 
largest label and circle sizes.

3 � Results and applications in prosthetic 
devices

One of the greatest applications scrutinized in the perspec-
tive of sEMG interfaces is the EMG prostheses as evident 
from an immense expanse of research chronicles [36–46]. 
Established by the Central Prosthetic Research Institute of 
the USSR in 1960s, the first commercial prosthetic arm 
was a revolutionary step in the arena of sEMG applications 
in upper limb prostheses (ULP) [4]. This prosthetic arm 
included one DOF (open and close) which used strong antag-
onistic muscle contractions for control action. Regardless of 
the fact that the realization of high classification accuracies 
for about twelve classes [25, 47] has been reported in erst-
while sEMG investigations, the contemporary sEMG-based 

ULP employ the classical threshold-based concepts. On–Off 
control based on threshold is one of the easiest methods for 
control which actuates the desired function whenever a pre-
set value of threshold falls below the sEMG amplitude. In 
addition, different channels positioned over physiologically 
apt muscles can be allotted different functions. Nonetheless, 
for controlling one DOF (such as hand opening or closing), 
as a minimum, two signal sites are needed. Moreover, the 
series of muscle activity (starting from the threshold and 
terminating at the value of maximal muscle contraction) 
may be separated among numerous intervals such that each 
interval links to a specific prosthetic function [48]. Rate cod-
ing (which involves utilization of speed of the muscle con-
traction) and pulse coding (which utilizes pulses of sEMG 
activity as the control command) are two more strategies 
employed in commercial prostheses [48]. After the introduc-
tion of the advanced ULP, the markets were flooded with 
multiple-DOFs based prostheses as shown in [34]. These 
systems ensure control of DOFs in a sequential and con-
secutive manner. Unintuitive movements are necessary for 
the production of two sEMG control signals (one for using 
both DOFs and the other for switching between two DOFs). 
For switching between different DOFs, co-contractions are 

Fig. 3   Network visualization: term co-occurence map showing the network of co-occuring keywords with VOSviewer
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required. One of the major limitations of this approach is 
the incapability of concurrent control of multiple joints and 
increased complexity with increasing number of DOFs. 
Some of the major advancements and pioneering investi-
gations in the field of sEMG-based prostheses have been 
discussed in the following sub-sections. More specifically, 
we present the review results for both upper and lower limb 
prostheses detailed in many aspects, as illustrated in Fig. 4.

3.1 � Upper limb prosthesis

Upper limb amputation ominously hinders the performance 
of amputees towards their daily activities. The functions of 
such lost limbs can be seamlessly re-established by utiliz-
ing the signals from residual stump muscles via myoelectric 
prostheses. Many remarkable attempts have been made by a 
number of researchers and academicians towards ULP con-
trol via sEMG.

3.1.1 � Levels of upper limb amputation

Usually, the upper limb amputation can be categorized into 
various types as exemplified in Table 1 [49]. However, the 
levels of upper limb loss can be classified as transcarpal, 
wrist disarticulation, transradial, elbow disarticulation, 

transhumeral, shoulder disarticulation and forequarter [50, 
51]. The sEMG-based prostheses control for amputees with 
various levels of amputation has been addressed by a huge 
volume of literature works.

3.1.2 � Related work

A comprehensive assessment on the improvements in the 
arena of sEMG-based control of ULP has been presented 
in [52]. Also, state-of-the-art evaluations on control of 
prosthetic hands via myoelectric controlling action [53], 
the hybrid myoelectric control systems in [54] and bionic 
prosthetic hands have been put forward in literature. Moreo-
ver, some imperative issues associated with control strategy 
(based on sEMG and pattern recognition) for versatile and 
multi-purpose myoelectric ULP have also been discussed in 
[49]. These concerns include sEMG processing and evalu-
ation along with the performance analysis of algorithms for 
pattern recognition. For the measurement of sEMG signal 
for clinical applications, a sensor system was developed in 
[55]. The sEMG signals at various muscles located above the 
elbow for activities like elbow flexion/extension, abduction/
adduction were studied. As a whole, the earlier mentioned 
effort along with [56], delivered an enhanced knowledge of 

Fig. 4   Organization of review 
results

Table 1   Types of upper limb 
amputations

S. no Type Description

1 Transradial amputation Remaining forearm muscles
Required movements: Wrist, Hand

2 Transhumeral amputation Remaining upper-arm muscles
Required movements: Wrist, Hand, Elbow

3 Shoulder disarticulation No Remaining arm muscles
Required movements: Wrist, Hand, Elbow, Shoulder
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sEMG analysis and opened new prospects for the design of 
powerful, flexible and efficient prostheses.

Using Independent Component Analysis, the applica-
tion of sEMG signal towards the control and governance 
of myoelectric ULP has been demonstrated [57]. In [57], 
the patterns corresponding to various hand actions were 
determined on the basis of two correlations: first correlation 
between the muscle voluntary contraction and the degree 
of motor movement, and the second correlation between 
motor frequencies and the degree of motor movement. In 
another work considering the amputation below the elbow 
[58], a body-powered prosthetic hand was developed which 
was regulated by EMG signals via DSP by means of vir-
tual prosthesis implementation. The recommended system 
was implemented and tested with acceptable results due to 
the fast-processing capability of the considered processor. 
Another pioneer work dealt with advanced robotic hand 
control via sEMG wherein the effective real-time control of 
finger force and position of a highly dexterous robotic hand 
was demonstrated by integrating machine learning and sim-
ple downsampling approaches [59]. The impedance control 
was used to exert force for holding and grasping of objects.

Moreover, a single channel sEMG control of a simple, 
fast and low-cost advanced prosthetic hand has been dem-
onstrated [60]. It can recognize four gestures specifically the 
closing of hands, opening of hands, flexion of the wrist and 
double flexion of the wrist. On the basis of predefined grasp 
postures, it was verified that these gestures can be utilized for 
controlling a prosthetic terminal. Real-time gesture recogni-
tion and acceptable classification accuracy were observed 
through experimental investigation [60]. In the context of 
wireless and mobile platform for sEMG acquisition, a cost-
effective mobile apparatus for effective prosthetic control 
was established which could perform continual operation 
based on daily activities [61].

For adequate detection of posture and grasp force of 
amputees via sEMG, an experiment was performed which 
demonstrated satisfactory feed-forward control of a dexter-
ous prosthesis [62]. Another major contribution towards 
control of prosthetic movements was made in [63] by ana-
lyzing a precise discrimination among discrete and collec-
tive finger movements. In this work, the sEMG signals were 
utilized for posture control of various fingers of hand pros-
thesis. A multichannel sEMG for synchronized, multi-axis, 
comparative regulation of prosthetic systems was developed 
to ensure instantaneous controlling action of activities like 
rotation of wrist, flexion or extension of wrist, and grasping 
for able individuals as well as transradial amputee [64].

Also, sEMG based test tool was presented for envisaging 
realizable function in intentional control via EMG [65]. This 
method assists in the prosthetic control training and fitting, 
and measures proportional prosthetic control in upper limb 
amputees before prosthetic fitting. This tool was developed 

with the aim of pre-evaluating the activation skills of the 
trainable voluntary muscle to assist in decision support in 
advance of prosthetic fitting. Also, long term stability of 
sEMG (from the forearm muscles) pattern classification 
for ULP control has been inspected in [66]. Some of the 
important advancements in ULP design and control based 
on sEMG have been elucidated in Table 2.

For dexterous control of ULP via sEMG, classifica-
tion of essential hand movements via forearm muscles has 
also been reported [67]. Another work provided a database 
directed towards the investigation of the correlation among 
sEMG, kinematics and forces of the hand, with the intention 
of establishing a non-invasive robotic hand prosthesis with 
regular monitoring and governance action [68]. Other works 
proposed fuzzy model for simultaneous control of bionic 
hand wherein the construal and investigation of sEMG of 
amputees were done [69, 70].

3.1.3 � Classification of sEMG signals for ULP

Various approaches for processing and classification of 
sEMG signals have been elucidated in [76] for prosthetic 
control applications along with [77]. Some of these clas-
sification techniques and their applications in sEMG-based 
prosthesis control have been presented in Table 3. Besides 
the classification techniques mentioned in Table 3, other 
machine learning techniques, such as k-nearest neighbor 
(k-NN), Naive Bayes (NB), decision tree (DT), etc., have 
also been utilized in sEMG-based prosthetic devices. For 
instance, a system on chip (SoC) Raspberry platform 
exploits a multi-thread algorithm to operate a prosthetic hand 
device using k-NN and DT machine learning techniques.1

Based on the existing literature, it is shown that the clas-
sification techniques (mentioned in Table 3) can achieve 
satisfactory and high classification accuracies of up to 99% 
[79]. However, the choice of the classifier remains to be 
one of the potentially unresolved issues that needs to be 
addressed. While the classification performance might not 
be heavily reliant on the choice of the classifier, the number 
of samples greatly influences the classifier's performance. 
For instance, downsampling might enhance the classifier 
performance by artificially increasing the number of sam-
ples. An increased sample size might reduce the variance of 
the estimator (even though the samples are not independent), 
consequently improving the classification accuracy. Besides, 
to be successful in classifying the sEMG signal, the selec-
tion of a feature vector ought to be carefully considered. 

1  Triwiyanto, T., Caesarendra, W., Purnomo, M.H., Sułowicz, 
M., Wisana, I.D.G.H., Titisari, D., Lamidi, L. and Rismayani, R., 
2022. Embedded machine learning using a multi-thread algorithm 
on a Raspberry Pi platform to improve prosthetic hand perfor-
mance. Micromachines, 13(2), p.191.
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More simply, a robust classifier can only perform well if the 
choice of features is good. In addition, there is a bias-vari-
ance trade-off and various analytics trade-offs in an end-to-
end machine learning-based classification system for sEMG 
signals. Thus, the choice of the classifier remains debatable, 
and a well-defined solution to this problem seeks thorough 
investigation and exhaustive experiments.

3.1.4 � Advancements in ULP for different amputees

For the evaluation of ULP control based on sEMG and pat-
tern recognition, an investigation was carried out in [91] on 
transradial amputees for 2-DOF electric prosthesis control 
in the completion of everyday activities. The foremost inten-
tions were to evaluate the outcomes of a transradial amputee 
via the control strategy for 2-DOF prosthesis and to analyze 
the skill acquisition pace in users with transradial amputa-
tions. For analyzing the effects of user adaptation over the 
performance of myoelectric control in dexterous and intui-
tive activities, real-time experiments were performed on 
able-bodied individuals as well as disabled individuals (with 
transradial amputation) [92]. It was shown that significant 

improvements in performance occur due to user experience. 
In another work [93], the signal acquisition and investigation 
for recognizing numerous movements of the hand pertaining 
to their use in prostheses was investigated. Along with the 
indispensable movements for grasping action, five move-
ments for the wrist-hand mobility were also analyzed. Also, 
sEMG data acquisition and handling for smart identifica-
tion of prosthetic action was presented in [94] for realizing 
the exact and proficient controlling action of the restoration 
apparatus or smart prosthesis in sports. Nine actions were 
used for extracting sEMG signals, and these are abbreviated 
as rest (Re), closing of hand (HC), opening of hand (HO), 
pronation (PR), extension of wrist (WE), flexion of wrist 
(WF), thumbs up (TU), contact of thumb with index finger 
(TI), contact of thumb with middle finger (TM).

Moreover, algorithms such as Adaptive threshold 
method for processing of sEMG signals have been used 
which assist in the design of more accurate and compe-
tent controllers for users with upper limb amputation [95]. 
Shared control of EMG-controlled prosthetic hand [96], 
recognition and categorization of simple and intricate 
movements associated with finger flexion via sEMG [97] 

Table 2   Summary of some important advancements in upper limb prosthesis

Type Highlights/Key points Refs Year

Anthropomorphic prosthetic hand sEMG-based control using flexure hinges via two electrodes only
Prehensile stances for daily activities and carrying objects is possible by the sEMG-controlled 

prosthetic hand (4-DOF) with efficient performance

[71] 2017

Myoelectric prosthetic arm Design and development of sEMG-based myoelectric prosthetic arm for arm amputees [72] 2012
Biomechanical hand prosthesis A firsthand sEMG-controlled biomechanical hand prosthesis for amputees

Aim: to deliver a trial product of sEMG-controlled active power-driven hand prosthesis having 
a high DOF in finger extension as well as flexion, which was regulated via sEMG signals at 
residual limb

[73] 2007

An efficient demonstration of sEMG-based control of distinct fingers of hand prosthetic
The decoding of sEMG via hand in addition to movements of fingers with adequate precision

[47] 2007

sEMG-pattern recognition based control of prosthetic hand
The signals were acquired from an armband with 8-channel electrodes
Implementation of the onboard EMG training and decoding of real-time sEMG signal for con-

trolling a 6-DOF prosthetic hand
The experimental results promised the rapid translation of prosthetic arm for day-to-day activi-

ties
Dialing a telephone
Taking a spoon to eat ice-cream
Grasping a bottle of water
Pinching an egg
Paring a cucumber

[74] 2016

Dexterous prosthetic hands sEMG-based decryption of distinct movements of the finger (flexion and extension) in healthy 
as well as disabled individuals (transradial amputees)

[25] 2009

Powered thumb Investigating the thumb rotation via high density sEMG of extrinsic hand muscles by analyzing 
various thumb positions. Different positions of thumb that were studied are:

Opposition to the index finger (secundus digitus manus),
Opposition to the middle finger (digitus medius),
Opposition to the ring finger (digitus annularis), and
Opposition to pinky finger (digitus minimus manus)
This analysis claimed to assist in the proposal and fabrication of advanced ULP integrating the 

control of powered thumb

[75] 2013
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Table 3   Different classification techniques for classifying sEMG signals

Type Highlights/Key points Refs Number 
of chan-
nels

Num-
ber of 
motions

Classifier accuracy

Grey relational analysis A manageable and convenient hand motion 
classifier for recognition of sEMG signals 
acquired from multiple channels

The classifier was recommended for further 
enactment in prosthesis control, robotic 
manipulator or hand motion classification 
applications

[78] 7 11 95.9%

Discriminant analysis and Support Vector 
Machine classifier

Classifying sEMG signals for prosperous 
arm prosthesis control

[79] 8 4 Discriminant 
analysis: 96–98%; 
SVM: 99%

Support vector machine classifier Usage of sEMG signals acquired from the 
forearm (via twelve channels) to classify 
the definite hand movements

[80] 12 102  > 80%

Wavelet statistical classifier Classification as well as disintegration of 
sEMG signal for control of myoelectric 
prostheses by performing four independent 
movements of the upper arm (including 
extension and flexion of the elbow; along 
with abduction and adduction) for biceps 
and triceps

[81] 2 4 85%

Artificial neural network classifier sEMG signal analysis and classification 
towards the development of effective 
prosthetic designs

at different upper arm muscles

[82] 2 4 92.5%

Prostheses control for identification of 
movements of the hand (flexion and exten-
sion of the wrist; along with pronation and 
supination of the forearm) via sEMG sig-
nals acquired from the flexor carpi radialis 
and the extensor carpi ulnaris

[83] 4 4 95%

Assessment of the angle and force of the 
thumb-tip by means of the sEMG signals 
for the control of a prosthetic thumb

[84] 5 5 90%

Recurrent Log-Linearized Gaussian Mixture 
based on the HMM (i.e., Hidden Markov 
Model)

A novel approach for discrimination of 
EMG patterns for prosthetic control

Successful discrimination capability and 
accuracy of forearm motion

Flexion
Extension
Supination
Pronation
Hand grasping
Hand opening

[85] 6 6  > 89%

Parallel binary classifications via Linear 
Discriminant Analysis

Development of clinically feasible and 
robust control strategy for prostheses based 
on sEMG and pattern recognition

[86] 3 7  > 90%

Deep learning with convolutional neural 
networks

Classifying the hand movements for control-
ling the prosthetic hands

[87] 12 50 90—95%

Innovative classifier centered on Bayesian 
theory

Classifying real-time and concurrent move-
ments for progressive ULP control which 
are competent to trigger multiple DOFs

[88] 6 8  > 60%
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along with the neural network aided pattern examination 
and classification [98] have also been reported. Also, clas-
sification of movements of the fingers for sEMG-based 
control of prosthesis has been presented [99]. Upper 
Extremity Limb Function Discrimination via sEMG 
analysis proved useful in the generation of control signals 
for prosthetic devices [100]. Another work employed an 
investigation of the configuration of electrodes for Tar-
geted Muscle Reinnervation (TMR) centered on the Neu-
ral Machine Interface platform [101]. The investigational 
results provided significant strategies for real-world place-
ment of the EMG electrodes so as to stimulate promising 
clinical uses of TMR and sEMG-pattern recognition in 
multifunctional prostheses control. Also, nonlinear feature 
extraction as well as classification techniques have been 
recommended and evaluated for identification of numerous 
sEMG-based hand manipulations [102].

Many feature extraction techniques are available for 
extracting features from the acquired sEMG signals. In 
general, sEMG feature extraction can be categorized into 
three methods: (1) time domain, (2) frequency domain, 
and (2) time–frequency domain. The most common fea-
tures used for sEMG pattern recognition are time domain 
features. The reason is that time domain features are easy 
and quick to calculate as they do not require any trans-
formation. Time domain features assume the data as a 
stationary signal, i.e., the time domain features are com-
puted based on the amplitude of input signals. Thus, they 
are advantageous when the signals are recorded in low-
noise environments. Any interference acquired through the 
recording becomes the disadvantage of the time-domain 
features. Common time domain features include Mean 

Absolute Value, Mean Absolute Value Slope, Zero Cross-
ings, Slope Sign Changes, Waveform Length, Root Mean 
Square, Histogram, etc.

Frequency domain features are usually obtained by 
transforming the raw sEMG signal from the time domain to 
the frequency domain. In principle, most of the frequency 
domain features are normally based on the signal's power 
spectral density (PSD). Frequency domain features include 
mean frequency, median frequency, peak frequency, mean 
power, total power, the 1st, 2nd, and 3rd spectral moments, 
frequency ratio, power spectrum ratio, the variance of cen-
tral frequency, etc. Compared to time domain features, fre-
quency domain features are computationally expensive in 
terms of resources and time. However, they are sometimes 
approximations of the time domain features. They are only 
beneficial if the feature space quality in class separability 
is better than that obtained with the time domain features.

Time–frequency domain features provide signal infor-
mation in both time and frequency domains. The signal is 
non-stationary, with different frequency components vary-
ing with time. Thus, time–frequency domain features are 
more advantageous than time and frequency domain fea-
tures alone. These features are richer in information and, 
therefore, guarantee a more satisfactory performance of 
the classifier. However, the drawback is that these features 
require more resources and time for their computation. The 
features from the time–frequency domain include, but are 
not limited to, short-time Fourier Transform, wavelet trans-
form, and wavelet packet transform. A detailed discussion 
of sEMG feature extraction methods is beyond the scope of 
this review. We refer interested readers to work by existing 

Table 3   (continued)

Type Highlights/Key points Refs Number 
of chan-
nels

Num-
ber of 
motions

Classifier accuracy

Adaptive Neuro-Fuzzy Logic Analysis For multifunction prosthesis control
Classification of sEMG signals based on 

five arm movements (contraction of the 
hand, extension of the wrist, flexion of the 
wrist along with rotation and flexion of the 
forearm) using merely three sets of sEMG 
electrodes placed at specific sites

[89] 3 5  ~ 98%

Heuristic fuzzy logic approach For multifunctional prosthesis control
For pattern identification
Seamless supervision of multiple DOFs in a 

multifunctional prosthesis

[5] 8 4  ~ 99%

Wavelet transformation and artificial neural 
network classifier

Ease, computational cost and effectiveness 
of single channel sEMG over multichannel 
sEMG,

A novel technique for identification of low-
level hand movement was proposed

Improved classification and analysis of 
sEMG signal

[90] 1 3  > 89%
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extensive reviews on sEMG feature extraction for in-depth 
study.2

Some of the research works utilized PCA (Principal 
Component Analysis) for processing sEMG to control the 
prosthetic device. These works have been summarized in 
Table 4. PCA is an unsupervised feature extraction scheme 
commonly used in sEMG-based prosthetic applications. It 
reduces the dimensionality of the sEMG data to make it 
appropriate for various myoelectric applications. The strong 
preference for the PCA algorithm for sEMG data preprocess-
ing over other algorithms is due to the following reasons: 
(1) In essence, the PCA recognizes a typical temporal pat-
tern across large datasets of sEMG signals, and describes 
a low-dimensional space wherein the original signals can 
be expressed as vectors and then classified. Thus, the PCA 
is beneficial in processing the sEMG activity of individual 
muscles recorded during several variants of one motor action 
(or even different motor behaviors), and then characterizing 
the temporal patterns linked with various components of 
the motor action. (2) PCA-based sEMG data decomposition 
fosters unraveling the intrinsic coordinative structures in the 
correlated patterns of variation among joints or body seg-
ments. Such structures (e.g., walking and gait) might yield 
helpful information on body control mechanisms and conse-
quently assist in correlating walking patterns with injuries. 
(3) PCA can assist in identifying spatial–temporal neuro-
muscular synergies underlying the motor behavior, when 
the sEMG activity is recorded via multi-electrode systems 
from many muscles throughout the body during one or more 
motor actions. (4) Principal Components that explain a con-
siderable proportion of the data variation is usually linked 
to the control signal outputs of spinal pattern generators. 
On the other hand, the remaining principal components are 
likely to be associated with the system-related random noise. 

Thus, the analysis of the sEMG activity becomes more man-
ageable, and higher performance accuracy can be achieved. 
In summary, PCA captures features from sEMG signals that 
can provide insight into the activation state of motor neurons 
and the nature of the premotor control signals. Such rich 
features may improve the existing technologies in clinical, 
neurophysiological, and rehabilitation domains.

3.1.5 � Other works

A prototype of concurrent hand prostheses driven by sEMG 
signals using PID controlled DC motor was presented 
wherein the signal acquisition was performed over the 
biceps and triceps brachii muscles [108]. In another work, 
the utilization of pattern recognition for torque estimation 
of the torque and its realistic enactment for controlling a 
unique two DOF wrist exoskeleton was done [109]. Also, 
another investigative analysis presented the concept of syn-
ergy matrices with the intention of extracting fluid wrist 
movement intents by sEMG, thereby permitting users with 
wrist amputations to efficiently make use of wrist prostheses 
[110]. Another work proposed a technique to classify the 
movements of the fingers to achieve dexterous control of 
hand prostheses via the sEMG signals recorded from the 
forearm [111]. Moreover, a two-part inspection was per-
formed to investigate the application of forearm sEMG sig-
nals for instantaneous supervision of a robotic arm [112].

In another work, a Knit band sensor has been presented 
for myoelectric control of hand prostheses based on sEMG 
signals [113]. Moreover, the control of multi-purpose tran-
sradial prostheses by means of pattern recognition has been 
investigated [31]. Self-regulating pattern recognition scheme 
for sEMG-based ULP control [114], extraction of real-time 
and relational data associated with neural control for pros-
theses with multiple DOF via sEMG signals [115] and 
sEMG-based estimation of clench force for neural prosthe-
sis hand [116], have also been reported. Moreover, constant 
hand prosthesis control via non-linear incremental learning 
has been presented in [117]. A novel approach for extract-
ing sEMG features centered on muscle active region had 

Table 4   PCA-based processing of sEMG signals for prosthesis control

Type Description Refs

Prostheses assessment Extensive assembly of sEMG usage based on Principal components analysis (PCA) [103]
Underactuated hand prostheses (UAPH) PCA-based control with multiple DOFs

a 16 DOF UAPH prototype (known as CyberHand) driven by PCA for performing the three 
prehensile forms frequently employed in accomplishing the daily tasks

[104]

Simultaneous myoelectric control Control of hand prosthesis with multiple fingers [105]
Myoelectric hand controller Proposal and validation of PCA-based morphing myoelectric hand controller for grasping 

activities
[106]

Powered ULP Enriched accuracy in classification in myoelectric control of powered ULP based on pattern 
recognition

[107]

2  Burhan, N., & Ghazali, R. (2016, October). Feature extraction of 
surface electromyography (sEMG) and signal processing technique 
in wavelet transform: A review. In 2016 IEEE International Confer-
ence on Automatic Control and Intelligent Systems (I2CACIS) (pp. 
141–146). IEEE.
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been anticipated wherein an experiment was designed for 
classifying four hand movements via a number of sEMG 
features [118].

Another work recommended the commencement in the 
investigation and exploration of prosthetic bimanual manipu-
lation via sEMG in unilateral and bilateral amputees with 
upper limb amputation [119]. Also, the design concerns 
associated with wireless acquisition of sEMG signals from 
multiple channels in the control of hand prostheses have 
been explored in [120]. Additionally, a novel sEMG sensor 
has been projected for the disabled for prosthetic limb con-
trol (hand prostheses) in day-to-day activities [121]. Notably, 
apart from upper limb prostheses, the viability of using neck 
and face surface sEMG with the intention of controlling the 
commencement, compensation, and pitch of an Electrolar-
ynx controlled by EMG signals has been investigated [122]. 
For the prosthetic voice control, eight individuals who had 
undergone total laryngectomy were considered.

For the ULP control, the evolving opportunities and chal-
lenges associated with the abstraction of neural evidence 
from sEMG were discussed in [123] where the classical 
myoelectric control was eloquently described. Two sEMG 
channels are employed for controlling one DOF at once. 
For instance, the flexors of forearm and the extensors of 
the forearm may be utilized as two channels. At a given 
time, either the flexion as well as extension of the wrist; 
or opening and closing of hand can be controlled by the 
two channels. For each channel, a threshold is chosen so 
that whenever the threshold is surpassed, the activation of 
the corresponding DOF occurs. If both thresholds are sur-
passed simultaneously, switching of the mode of the control-
ler to the other DOF takes place. Though this method offers 
restricted functionality, it proves to be very important for 
control of prostheses.

3.1.6 � Integration of sEMG‑based ULPs with IMUs

In general, sEMG-based ULP devices are made position 
aware (POS) using inertial measurement units (IMUs) to 
monitor various movements of the upper limbs. Some of the 
recent works that have reported integration of sEMG based 
ULPs with IMUs are tabulated in Table 5. In prosthesis con-
trol in biomedical research, sEMG remains the gold stand-
ard for providing gesture-specific information, exceeding the 
performance of IMUs alone. However, the integration of 
IMUs for kinematic quantification with sEMG for muscle 
activity analysis offers manifold advantages: (1) Using these 
two sensor modalities (IMU and sEMG) provides statisti-
cally significant improvements over individual modality in 
terms of accurate and consistent classification results. (2) 
Combining these two sensing modalities can significantly 
enhance the gesture-based control of upper-limb and lower-
limb prosthetics. (3) Statistical features from IMU data can 
be advantageous in predicting motor function scores for 
assessing the quality of movement. (4) IMUs can be used 
for computing joint torques through inverse dynamics and 
integrated with sEMG activity to objectively assess patients' 
spasticity after stroke.

3.2 � Lower limb prosthesis

Most of the lower limb amputations belong to the catego-
ries of transtibial (below-knee) or transfemoral (above-knee) 
type. Accordingly, prosthetic devices encompassing knee 
joints and feet are the most common lower-limb prosthetic 
components that are envisioned to substitute the biomechan-
ical purpose of the foot in addition to ankle joint. Recently, 
robotic prostheses are finding immense applications among 
users with lower limb amputations.

Table 5   Integration of sEMG-based ULPs with IMUs

Type Description Refs

Multi-forearm movement Enhancing the performance for decoding the movements of multi-forearm via Hybrid IMU–sEMG 
interface

[124]

Prosthesis hand Novel method of recognizing hierarchical hand motions based on one IMU sensor and two sEMG 
sensors

[125]

ULP control End-to-end strategy for multi-grip, classification-based prosthesis control using only sEMG elec-
trodes and IMUs

[126]

Trans-humeral prostheses Novel control strategy for trans-humeral prostheses based on the coupled use of myoelectric and 
magneto-inertial sensors,

To manage simultaneous movements and more physiological reaching tasks

[127]

Upper Limb Exoskeleton Development of an upper limb exoskeleton using rapid prototyping for rehabilitation with feedback 
from the EMG and IMU sensor

[128]

Transradial Myoelectric Prosthesis IMU-Based Wrist Rotation Control
Six-axis inertial measurement unit to sense upper arm abduction/adduction for controlling wrist 

velocity

[129]
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3.2.1 � Basic concepts and preliminaries

The indispensable constituents of robotic leg prosthesis 
[130] have been presented in Table 6. Also, the general-
ized framework for active lower limb prostheses/orthoses 
(P/O) control [131] has been illustrated in Fig. 5. This sketch 
reveals the physical interface and signal-level feedback paths 
involved in the real-time application of powered assistive 
devices.

3.2.2 � Related work

A systematic and narrative evaluation on design con-
cerns and clarifications associated with active lower limb 
prostheses (LLP) has been presented [132]. Users with 
lower limb amputation have used novel LLP designs with 
enhanced stability and reduced energy requirements in 
level-ground walking [133]. The upgraded function of 

artificial legs through advanced computerized control and 
efficient prostheses have enabled the users to perform ver-
satile activities. In [134], the fabrication of a cost-effective 
prosthetic leg via EMG signals was proposed for amputees 
with lower limb amputation. The sEMG signal procure-
ment and processing for prosthetic legs was demonstrated 
in [135]. Also, an active above knee prosthesis was pre-
sented and described which was designed to compensate 
the movements of transfemoral amputees [136]. The use 
of sEMG-pattern recognition-based phase dependent strat-
egy was used for identification of user locomotion modes 
[137]. For successful recording of high quality sEMG sig-
nals to be acquired from the interior of the sockets of lower 
limb (transfemoral) amputees, four exemplary integrated 
socket–sensor designs were used [138]. The employment 
of EMG signals towards robotic ankle systems control 
in LLP (including knee-ankle prostheses and ankle–foot 

Table 6   The anatomy of a 
robotic leg prosthesis with its 
defining components and their 
biological equivalents

Component Function

Neural interface Enhances integration with CNS
Electric motors Knee motor Muscular function

Ankle motor
Sensors Knee angle sensor Afferent peripheral nervous system

Ankle angle sensor
Heel and toe ground force reaction 

sensors
Battery pack Metabolic power supply
Microcontroller Coordination of CNS

Fig. 5   Generalized supervisory structure for active lower limb prostheses and orthoses
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prostheses) has been explored in [139] and the summary 
of the control algorithms has been elucidated in Table 7.

3.2.3 � Notable advancements

Table 8 summarizes some of the notable works on lower 
limb prosthesis.

In [155], the authors shed light on the potential of sEMG 
control for enabling new functionalities in robotic LLP and 
discuss the pitfalls and prospects for future research for both 
human motor control and clinical practice. For incessant rec-
ognition of the locomotion mode for prosthetic legs on the 
basis of neuromuscular–mechanical fusion, an investigation 
was performed on patients with transfemoral amputations 
[156]. The findings of [157] assisted in the design of the 
state-of-the art lower limb assistive devices of the future 
including prostheses. In a recent work [158], the authors 

proposed the sEMG-based real-time motion pattern recogni-
tion to assist hemiplegia patient in walking. Another study 
focused on the proposal of an effective algorithm to identify 
the terrain type over which the person who uses prosthetic 
leg moves [159]. In [160], the authors presented a sEMG-
based online adaptive prediction of human motion intention. 
In another notable work [161], a standard machine learning 
approach was presented sEMG-based intention-detection 
systems of lower limb to intelligently boost human–robot 
interaction systems and detect subject’s walking direction 
prior-to or during walking. Further, a neural network-based 
control algorithm was proposed for sEMG-based control 
of ankle prosthesis [162]. In [163], the authors proposed a 
novel machine learning-driven neuromusculoskeletal model 
able to predict lower limb joint torque using sEMG sensors 
of LLP. Another work demonstrated the development and 
evaluation of an adaptive intent recognition algorithm for 

Table 7   Description of control procedures of robotic ankle systems [139]

a Ground-level walking, bFinite state machine, cMechanical signals, dHybrid Assistive Leg

Control scheme Control modes Coordination level (high-
level control)

Hardware level 
(low-level 
control)

Measured signals Control scheme

Motion intent recognition Gait control
Position control for an 

ankle–foot prosthesis 
[140]

– EMG signals processing 
using a model/neural 
network

– – EMG

Motion intent recognition in 
an ankle–foot prosthesis 
[141]

GLWa, stair descent Neural network based pro-
cessing of EMG signals

FSMb Torque, imped-
ance, and posi-
tion control

EMG, MECc

Control strategies for the 
HALd [142–146]

Standing up, standing, 
GLW

Processing and conditioning 
of EMG signals

FSM EMG torque 
generation, 
variable imped-
ance

EMG, MEC

Table 8   Summary of some important advancements in lower limb prosthesis

Type Highlights/Key points Refs

Knee prosthesis Volitional control of powered knee prosthesis for the period of nonweight-bearing activity (for instance, sit-
ting)

[147]

Terrain identification for prosthetic knees via sEMG features [148]
Prosthetic ankles Intelligent optimization of powered prosthetic ankles via sEMG [149]

Characterization of sEMG signals with the intention of governing a powered prosthetic ankle using pattern 
recognition algorithms

[150]

The use of sEMG signals to volitionally regulate the position of ankle joint for powered transtibial prostheses [151]
Knee and ankle prosthesis Co-contraction patterns of ankle and knee muscles of transtibial amputee during gait via sEMG [152]

Movement recognition for transfemoral prosthesis control [153]
The employment of EMG signals along with mechanical sensors (towards enhancement in intent identifica-

tion in powered LLP (knee/ankle)
Transfemoral amputees
The insertion of electrodes into the custom EMG socket based on the identified muscle locations
A custom socket (with dome electrodes embedded within): worn by a transfemoral amputee over the residual 

muscles for signal acquisition

[154]
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sEMG-based leg prosthesis [164]. However, attributable to 
some difficulties encountered in the sEMG field, the contem-
porary trends emphasize the cybernetic era of prostheses in 
the impending years [165].

3.2.4 � Integration of sEMG‑based LLPs with IMUs

Like ULPs, various sEMG-based LLPs have been integrated 
with IMUs to make them position aware and keep track of 
the movements of the lower limbs. Table 9 presents a list of 
some of the works that focus on coupling sEMG with IMUs 
for LLP control.

4 � Discussions on common Pitfalls 
and Challenges

Reviews on the challenges, complications and implications 
of robotic implantations and biological interfaces of pros-
thetic devices have been offered in the collected works [173]. 
As compared to the existing control methods, the sEMG 
interface delivers numerous advantages to user. The indirect 
and close communication, individuality of handy supervi-
sory devices, and no requirement of straight eye contact 
or profound user attentiveness are some of the advantages 
offered by sEMG interfaces which make them apt for pros-
theses control. However, the sEMG interfaces suffer from a 
number of challenges [174–180].

Some other important challenges have been listed below:

•	 The power-weight ratio of multifunctional prostheses is 
a significant challenge in their design. Due to the heavi-
ness and bulkiness of the actuation and control system 
[181] associated with the state-of-the-art non-prosthetic 
mechanical hands with 20 DOF, they cannot be used as 
prostheses in realistic applications. The realization of 
greater number of DOFs require sensor placement at 
highly complex sites which is difficult and burdensome 
[182].

•	 Relevant to the fabrication and assemblage of interfaces 
linked with sEMG signals, the maintenance of high clas-
sification accuracy poses a major challenge for long-term 
use.

•	 Due to the muscular contractions performed under several 
conditions, variations in signal properties may occur which 
may make them unrecognizable for the classifier. The vari-
ations in EMG signal due to the influence of limb orienta-
tion [183] as well as socket loading effects, fluctuations in 
muscle contraction [184] and electrode shifts [178] (due to 
donning, doffing, usage) may affect the performance of the 
classifier.

Researchers and technical minds working in the arena of 
ULP aim towards the development of simultaneous, autono-
mous, and proportional control of multiple DOFs with ade-
quate enactment along with proximate standard governing 
intricacy and response time [185]. Other prime challenges 
encountered in the prostheses design are the electromechani-
cal application, utilization of sEMG control signals and the 
synergy amongst robotic and clinical groups [186].

4.1 � Limitations

There are some limitations to this review. We excluded an in-
depth discussion of many of the main topics that were brought 
up in the text. For instance, a discussion of the following topics 
(in substantiative depth) was excluded from this review: pat-
tern recognition approaches, sEMG features and their extrac-
tion modes; types of EMG features used to drive the classifi-
cation algorithms, etc. Moreover, one conducted a literature 
search in some well-known electronic databases. However, this 
review might be missing additional relevant studies, as was the 
"gray" literature.

Table 9   Integration of sEMG-based LLPs with IMUs

Type Description Refs

Knee and Leg Initial assessment for the optimization of active biomechanical LLP [166]
Knee and ankle A CNN-based method for intent recognition using IMU and intelligent LLP [167]
Knee Gait sub-phase detection using a sEMG and knee angle (IMU sensor) [168]
Jump locomotion Effective recognition of human lower limb jump locomotion phases based on multi-sensor informa-

tion fusion and machine learning
[169]

Robotic transtibial prosthesis real-time human locomotion mode recognition study based on a trained model utilizing two IMUs [170]
Foot Force-sensitive resistor sensors and IMU sensors-based human gait phase detection and its correlation 

with sEMG signal for different terrain walk
Five different terrains: level ground, ramp ascent, ramp descent, stair ascent and stair descent

[171]

Leg Locomotion prediction for LLP in complex environments using sEMG and IMUs [172]
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5 � Conclusions and outlook for future 
research

This review presented an overview of the state-of-the-
art applications of sEMG in prostheses and an explora-
tory analysis of the essential elements in sEMG-based 
prosthesis research [187, 188]. Moreover, the challenges 
and future trends associated with sEMG interfaces were 
also discussed. Some of the essential aspects of sEMG-
based prosthesis applications were also highlighted. In a 
nutshell, this review offers a platform to researchers for 
facilitating the design and applications of sEMG-based 
prosthetic devices. Owing to the provision of an entirely 
new mode of communication, sEMG interface opens the 
prospective gateway to widespread human–device collabo-
ration. This review points out that sEMG plays a notewor-
thy role in prostheses on account of its practicability and 
non-invasiveness. It is believed that in the forthcoming 
years, our entire limbs can be replaced with prosthetics 
which has the ability to accurately imitate the biological 
functions and requires minimal maintenance. However, 
further explorations are necessary in the direction of mak-
ing a seamless mechanism of bio mechatronics for sEMG-
based prosthesis by cohesive efforts of robotic research-
ers and biomedical engineers. These robotic researchers 
and biomedical engineers are required to work together 
holistically and synergistically to create marvels in the 
domain of sEMG-based prostheses control. As a final note, 
we believe that the critical recommendations and our per-
spective would spark a dialogue among researcher—about 
further advancements for excellent sEMG-based prosthesis 
applications—and, therefore, help in improving the quality 
of life of amputees.
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