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Techniques to produce 
and evaluate realistic multivariate 
synthetic data
John Heine 1*, Erin E. E. Fowler 1, Anders Berglund 2, Michael J. Schell 2 & Steven Eschrich 2

Data modeling requires a sufficient sample size for reproducibility. A small sample size can inhibit 
model evaluation. A synthetic data generation technique addressing this small sample size problem 
is evaluated: from the space of arbitrarily distributed samples, a subgroup (class) has a latent 
multivariate normal characteristic; synthetic data can be generated from this class with univariate 
kernel density estimation (KDE); and synthetic samples are statistically like their respective samples. 
Three samples (n = 667) were investigated with 10 input variables (X). KDE was used to augment the 
sample size in X. Maps produced univariate normal variables in Y. Principal component analysis in Y 
produced uncorrelated variables in T, where the probability density functions were approximated as 
normal and characterized; synthetic data was generated with normally distributed univariate random 
variables in T. Reversing each step produced synthetic data in Y and X. All samples were approximately 
multivariate normal in Y, permitting the generation of synthetic data. Probability density function and 
covariance comparisons showed similarity between samples and synthetic samples. A class of samples 
has a latent normal characteristic. For such samples, this approach offers a solution to the small 
sample size problem. Further studies are required to understand this latent class.

Data modeling requires sufficient data for exploration and reproducibility purposes. This is especially relevant to 
biomedical-healthcare research, where data can be limited; although this field is broad, a few examples include 
risk prediction1, response to therapy2 and benign malignant classification3–5. Unfortunately, data can be limited 
for variety of reasons: the study of low-incidence diseases or underserved/underrepresented subpopulations6; 
clinic visitation hesitancy7,8; the inability to share data across facilities9; cost of molecular tests; and study time-
frames. We, the authors, have worked in biomedical-healthcare research for many years and have experienced 
this persistent problem over decades.

Multivariate modeling is often exploratory that can decrease model stability in various ways. Here we explain 
frequent approaches that we have experienced or witnessed. The process starts by analyzing data from the target 
population for a variety of goals such as: open-ended analyses by studying many different data characteristics 
searching for correlations and patterns; subgrouping the dataset; testing hypothesis feasibilities with varying 
endpoints; exploring multiple hypotheses simultaneously; feature selection; selecting the most suitable model; 
or estimating model parameters with an optimization procedure. In practice, there are virtually unlimited ways 
to search through a given data sample. Data mining of this sort may not always be viewed in the most positive 
light10, but on the other hand it is also the nature of discovery, noting there is often a compromise between these 
positions. Extensive subgroup analyses can effectively deplete the sample. When this applies, we term it the 
small sample problem. In the final stage, the fully specified model (i.e., the model with its parameters fixed) is 
validated with new data to prove its generalizability. Both the exploration and final stages depend critically on 
having an adequate sample size.

Determining the adequate sample size in the multivariate setting is a difficult task11 and has relevance to the 
small sample problem. Adequate multivariate sample size is a function of both the analysis technique and covari-
ance structure. For example, a multivariate two-sample test with normally distributed data and common covari-
ance, Hotelling’s T2, is appropriate when comparing mean vectors12. In a broad sense, when the variables under 
consideration tend to be more highly correlated, the adequate sample size decreases and vice versa. Adequate 
sample size is a function of the number of free model parameters, which does not necessarily correspond with 
the number of variables13. In ordinary linear regression modeling with d noninteracting variables, there are about 
d parameters that must be determined. In contrast when taken to the limit, partial least squares regression14 has 
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roughly d2 parameters, and deep neural network architectures have even greater number of parameters, requiring 
large sample sizes for a given design15 (see related table in15 for examples). These modeling techniques illustrate 
that an adequate sample size under one condition may not be optimal for another. It is our premise that the 
adequate sample size for a given multivariate prediction problem that allows independent validation deserves 
more attention beyond larger sample sizes are better, especially when normality assumptions do not hold. By 
hypothesis, a technique that can generate realistic synthetic data will provide benefits in modeling endeavors. 
Such an approach could be used to augment an inadequate sample size for modeling and validation purposes or 
to study sample size requirements for a given multivariate covariance structure.

Synthetic data applications in health-related research use a variety of techniques. Some methods are used for 
generating samples from large populations16–19. These approaches include hidden Markov models18, techniques 
that reconstruct time series data coupled with sampling the empirical probability density function of the rel-
evant variables16, and methods that estimate probability density functions (pdfs) from the data, not accounting 
for variable correlation19. Other work used moment matching to generate synthetic data but does not consider 
relative frequencies in the comparison analysis20. Discussions on synthetic data generation techniques indicate 
that the small sample size condition has received little analytical attention20,21.

Our synthetic data technique estimates a multivariate pdf for arbitrarily distributed data, including when 
normal approximations fail to hold22. This initial work, based on multivariate kernel density estimation (mKDE) 
with unconstrained bandwidths, was illustrated with d = 5 data from mammographic case–control data22. Syn-
thetic populations (SPs) of arbitrarily large size were generated from samples of limited size. However, mKDE 
has noted efficiency problems for high dimensionality23,24. As the dimensionality increases, the sample size 
requirement apparently becomes exceeding large, noting this area is under investigation. Although categorizing 
a problem as high or low dimensionality may be dependent on many factors, reasonable arguments suggest that 
high dimensionality may be defined as 3 < d ≤ 50, where d is the number of variables considered25; in that, density 
estimators should be able to address this range25. Here we let d = 10 so that many of the findings can be presented 
graphically or reasonably tabulated, and modeling problems in healthcare research can be within this range.

In this report, we present modifications to our method to mitigate the mKDE efficiency problem under 
specific conditions (latent normality) and address synthetic data generation in relatively higher dimensional-
ity (d = 10). This modified approach decomposes an arbitrarily distributed multivariate problem into multiple 
univariate KDE (uKDE) problems while characterizing the covariance structure independently26. We are evalu-
ating whether this approach can transform an arbitrarily distributed multivariate sample into an approximate 
multivariate normal form, which we define as a sample with a latent normal characteristic. In the universe of 
arbitrarily distributed samples, there is a multivariate normal subgroup. The technique for generating synthetic 
data for this normal subgroup is relatively straightforward and well-practiced. By hypothesis, our approach 
seeks to extend these straightforward techniques to the latent normal class by determining when (or if) it exists. 
Developing the analytics to detect this condition and then leveraging it to generate synthetic data are essential 
elements of our work26.

Methods
Overview.  Our modified synthetic data generation and analytic techniques have sequential components and 
many related analyses. Therefore, clear definitions, preliminaries, and a brief outline are given before the details 
are provided. Justifications are also discussed here when warranted.

Definitions.  Population is used to define a hypothetical collection of virtually unlimited number of either real or 
synthetic entities from which samples comprised of observations or realizations may exist or can be drawn. The 
exception for the use of population is when explaining differential evolution (DE) optimization27 used for uKDE 
bandwidth determination. The DE-population is limited and defined specifically. Sample defines a collection of 
n real observations with d attributes (variables) from the space of possible samples, represented mathematically 
as a n × d matrix (rows = observations, columns = attributes). Column vectors are designated with lower-case 
bold letters. For example, individual attributes are referred to as x, a column vector. Vector components are 
designated with lower-case subscripted letters. The components of x are referenced as xj for j = 1, 2, …, d and 
assumed continuous. The multivariate pdf for x is p(x). X refers to the input variable space, that is, x exists in 
the X representation. We assume p(x) exists at the population level, but not accessible. In practice, we evaluated 
normalized histograms throughout this work for all variables considered both univariate and multivariate (i.e., 
empirical pdfs), also referred to as pdfs for brevity; we use this term to refer to attributes at the population level 
as well as at the sample level. One-dimensional (1D) marginal pdfs for p(x) are expressed as pj(xj). Matrices are 
designated with upper case bold lettering. For example, X is the n × d matrix with n observations of x in its rows 
(i.e., the ith row contains the d attributes for the ith observation and the jth column of x has n realizations of xj). 
Double subscripts are used for both specific realizations and matrix element indices. That is, xij is the jth compo-
nent for the ith realization in X (also is the indexing for X). Variables in X are mapped to the Y representation. 
This creates the corresponding entities in Y: (1) the vector y with d components; (2) the multivariate pdf, g(y), 
and its marginal pdfs, gj(yj); and (3) the matrix Y defined analogously as X. We also work in the T representa-
tion (uncorrelated variables) as explained below, where t, tj, and T are defined similarly. Likewise, r(t) is the 
multivariate pdf in T with marginals, rj(tj). We define the cumulative probability functions (i.e., the indefinite 
integral approximation of a given univariate pdf) for pj(xj) and gj(yj) as Pj(xj) and Gj(yj), respectively. Covari-
ance quantities are calculated with the normal multivariate form: E(w − mw)(v − mv), where E is the expectation 
operator, w and v are arbitrary random variables with means mw and mv. The corresponding covariance matrices 
are expressed as Cx, Cy, and Ct, respectively (or Ck generically). When an entity is given the subscript, s, it then 
defines the corresponding synthetic entity. Standardized normal defines a zero mean–unit variance normal pdf, 



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12266  | https://doi.org/10.1038/s41598-023-38832-0

www.nature.com/scientificreports/

used in both the univariate and multivariate scenarios. Parametric for this report refers to functions that can be 
expressed in closed form.

Preliminaries.  General biomedical healthcare data characteristics are discussed to overview some of their char-
acteristics. Measurements such as body mass index (BMI) and age, or measurements taken from image data can 
have right-skewed pdfs because they are often positive-valued and not inclusive of zero (see Figs. 1, 2 and 3 for 
examples). Such measures can bear varying levels of correlation (see lower parts of Tables 1, 2 and 3). Thus, an 
arbitrary p(x) may not lend itself to parametric modeling in X (i.e., normality and non-correlation assumptions 
do not apply in many instances). To render such data into a more tractable form, a series of steps (see Fig. 4) were 
taken to condition X; by premise, these steps will permit characterizing the sample with parametric means and 
then generating similar multivariate synthetic data without mKDE.

Outline of the processing steps.  When describing these steps, we also briefly discuss the analysis at a given step 
(also provided in detail in the methods). The process starts with a given sample in X (Fig. 4, top left). The pro-
cessing flow for the sample (X–Y–T) is illustrated in the top row of Fig. 4, and the reversed SP generation flow 
(Ts–Ys–Xs) in the bottom row.

Step 1 Univariate maps were constructed (Fig. 4, top-left) to transform a given X measurement to a standard-
ized normal, producing the respective marginal pdf set in Y (Fig. 4, top-middle). Maps were constructed with 

Figure 1.   Marginal Probability Density Functions (pdfs) for Sample 1 (DS1) in the X representation: each pdf 
for DS1 (solid) is compared with its corresponding pdf from synthetic data (dashes). The x-axis cites the variable 
name from its respective resource and its index name parenthetically (xj).
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an augmented sample size using optimized uKDE, addressing the small sample size problem. uKDE was used 
to generate synthetic xj. Here, we augmented the sample size with the goal of filling gaps in the input marginal 
pdfs of xj (sample) to complement the map constructions. By hypothesis, this step addresses the small sample 
size problem by guaranteeing continuous smooth maps that will produce standardized normal pdfs from the 
sample. Synthetic xj generated in this fashion do not maintain the covariance relationships in X and were not 
used further; only xj from the sample were mapped to Y, and KDE was not used beyond this point. There is no 
guarantee that a set of normal marginals in Y will produce a multivariate normal pdf. Although the reverse is 
always true because a multivariate normal has univariate normal marginals. In practice, g(y) from the sample 
could be assessed at this point to estimate how well it approximates normality. If the latent normal approximation 
is poor, another synthetic approach could be pursued, or the process could be discontinued. Here we forgo such 
testing at this step (normality was tested for in steps 3 and 4 instead) and move through all steps to illustrate the 
techniques. We will also discuss a possible modification that could be investigated when the sample has a poor 
latent normal characteristic approximation, later in the discussion.

Step 2 Principal component analysis (PCA) was used to decouple the variables in Y producing uncorrelated 
variables in T (Fig. 4, top-right).

Step 3 Synthetic data was generated in T (Fig. 4, bottom-left) as uncorrelated random variables. Here we 
assumed that each marginal in T from the sample could be approximated as normal with variance given by 
the jth eigenvalue of Cy. To generate synthetic data, the columns of Ts were populated as normally distributed 
random variables with these specified variances (noting, the columns lack correlation). We refer to the realiza-
tions in T as the SP (i.e., Ts), noting the column length (number of synthetic entities) can be arbitrarily large. 

Figure 2.   Marginal Probability Density Functions (pdfs) for Sample 2 (DS2) in the X representation: each pdf 
for DS2 (solid) is compared with its corresponding pdf from synthetic data (dashes). The x-axis cites the variable 
name from its respective resource and its index name parenthetically (xj).



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12266  | https://doi.org/10.1038/s41598-023-38832-0

www.nature.com/scientificreports/

To address the normal characteristic, univariate marginal and multivariate pdfs from the sample were tested for 
normality at this point.

Step 4 The inverse PCA transform (Fig. 4, bottom-middle) of Ts produced the SP in Y (Ys), thereby restoring 
the covariance relationships that were removed in Step 2. We note, this technique (steps 3 and 4) of producing 
multivariate normal data is a practiced approach when the sample is multivariate normal or well approximated 
as such. For reference, the multivariate standardized normal in Y is expressed as

where Cy can be approximated as the covariance matrix from a given sample. If synthetic samples are poor 
replicas of their sample, it follows the sample’s g(y) will be a poor approximation of multivariate normality (i.e., 
the sample is not in the latent normal class).

We evaluated how well the inverse PCA transformation preserved the covariance (Cy) and the method’s 
capability of restoring the univariate/multivariate pdfs in Y (i.e., normality comparisons) rather than in Step 2.

Step 5 Each synthetic variable in Y is inverse mapped to X (Fig. 4, bottom left). This reversed Step 1, thereby 
producing the SP in X (Xs), and restoring the covariance relationships by hypothesis. The respective pdfs and 
covariance matrices in X were compared with those from synthetic samples; pdfs were also tested for normality.

It is important to clarify a few aspects of this work. The univariate mapping from X to Y creates a set of 
univariate marginals normally distributed that can produce a multivariate normal, but not guaranteed. The 
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Figure 3.   Marginal Probability Density Functions (pdfs) for Sample 3 (DS3) in the X representation: each pdf 
for DS3 (solid) is compared with its corresponding pdf from synthetic data (dashes). The x-axis cites the variable 
name from its respective dataset and its index name parenthetically (xj).
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a

P1 (x1) P2 (x2) P3 (x3) P4 (x4) P5 (x5) P6 (x6) P7 (x7) P8 (x8) Age (x9) BMI (x10)

 P1 (x1)
2.27E+02 7.27E+01 3.61E+01 1.97E+01 1.18E+01 8.16E+00 5.76E+00 4.27E+00 − 4.13E+01 − 1.98E+01

(1.69E+02, 
2.88E+02)

(5.38E+01, 
9.44E+01)

(2.54E+01, 
4.83E+01)

(1.47E+01, 
2.58E+01)

(9.17E+00, 
1.53E+01)

(6.16E+00, 
1.04E+01)

(4.30E+00, 
7.19E+00)

(3.21E+00, 
5.26E+00)

(− 5.15E+01, 
− 2.20E+01)

(− 2.59E+01, 
− 1.18E+01)

 P2 (x2)
0.9150 2.78E+01 1.41E+01 7.78E+00 4.68E+00 3.21E+00 2.25E+00 1.66E+00 − 9.34E+00 − 5.59E+00

(1.97E+01, 
3.62E+01)

(9.42E+00, 
1.89E+01)

(5.55E+00, 
1.01E+01)

(3.52E+00, 
5.96E+00)

(2.35E+00, 
4.06E+00)

(1.64E+00, 
2.81E+00)

(1.23E+00, 
2.05E+00)

(− 1.49E+01, 
− 4.84E+00)

(− 7.08E+00, 
− 2.12E+00)

 P3 (x3)
0.8570 0.9600 7.82E+00 4.30E+00 2.58E+00 1.77E+00 1.22E+00 8.95E−01 − 4.22E+00 − 2.29E+00

(4.78E+00, 
1.10E+01)

(2.89E+00, 
5.73E+00)

(1.87E+00, 
3.35E+00)

(1.25E+00, 
2.31E+00)

(8.75E−01, 
1.59E+00)

(6.61E−01, 
1.16E+00)

(− 6.83E+00, 
− 1.60E+00)

(− 2.92E+00, 
− 2.31E−01)

 P4 (x4)
0.8230 0.9270 0.9660 2.53E+00 1.52E+00 1.04E+00 7.18E−01 5.32E−01 − 1.65E+00 − 1.33E+00

(1.81E+00, 
3.28E+00)

(1.15E+00, 
1.93E+00)

(7.74E−01, 
1.32E+00)

(5.41E−01, 
9.14E−01)

(4.09E−01, 
6.73E−01)

(− 3.25E+00, 
− 3.05E−01)

(− 1.63E+00, 
− 9.54E−02)

 P5 (x5)
0.8020 0.9060 0.9410 0.9760 9.59E−01 6.48E−01 4.47E−01 3.32E−01 − 9.87E−01 − 8.59E−01

(7.51E−01, 
1.20E+00)

(5.03E−01, 
8.07E−01)

(3.52E−01, 
5.63E−01)

(2.65E−01, 
4.17E−01)

(− 1.96E+00, 
− 1.37E−01)

(− 1.03E+00, 
− 6.19E−02)

 P6 (x6)
0.8030 0.9040 0.9380 0.9720 0.9810 4.54E−01 3.12E−01 2.33E−01 − 6.05E−01 − 5.83E−01

(3.49E−01, 
5.67E−01)

(2.42E−01, 
3.90E−01)

(1.84E−01, 
2.89E−01)

(− 1.23E+00, 
2.02E−02)

(− 6.93E−01, 
− 2.55E−02)

 P7 (x7)
0.8100 0.9040 0.9230 0.9570 0.9690 0.9820 2.22E−01 1.65E−01 − 4.09E−01 − 4.28E−01

(1.73E−01, 
2.78E−01)

(1.30E−01, 
2.04E−01)

(− 8.82E−01, 
− 8.18E−03)

(− 4.93E−01, 
− 2.36E−02)

 P8 (x8)
0.8000 0.8900 0.9050 0.9450 0.9590 0.9750 0.9900 1.25E−01 − 2.62E−01 − 3.10E−01

(9.99E−02, 
1.54E−01)

(− 5.91E−01, 
5.92E−02)

(− 3.64E−01, 
− 1.00E−02)

 Age (x9)
− 0.2330 − 0.1510 − 0.1290 − 0.0884 − 0.0859 − 0.0765 − 0.0739 − 0.0631 1.38E+02 − 4.74E+00

(1.30E+02, 
1.57E+02)

(− 1.09E+01, 
7.87E−01)

 BMI (x10)
− 0.1950 − 0.1580 − 0.1220 − 0.1240 − 0.1300 − 0.1290 − 0.1350 − 0.1300 − 0.0600 4.52E+01

(3.72E+01, 
5.31E+01)

b

P1 (y1) P2 (y2) P3 (y3) P4 (y4) P5 (y5) P6 (y6) P7 (y7) P8 (y8) Age (y9) BMI (y10)

 P1 (y1)
1.00E+00 9.48E−01 9.07E−01 8.78E−01 8.59E−01 8.49E−01 8.43E−01 8.31E−01 − 2.35E−01 − 2.29E−01

(9.03e−01, 
1.12e+00)

(8.52e−01, 
1.06e+00)

(8.11e−01, 
1.02e+00)

(7.85e−01, 
9.86e−01)

(7.67e−01, 
9.66e−01)

(7.54e−01, 
9.56e−01)

(7.47e−01, 
9.46e−01)

(7.34e−01, 
9.35e−01)

(− 3.18e−01, 
− 1.60e−01)

(− 3.08e−01, 
− 1.53e−01)

 P2 (y2)
0.9480 1.00E+00 9.71E−01 9.49E−01 9.34E−01 9.22E−01 9.16E−01 9.03E−01 − 1.78E−01 − 1.54E−01

(9.01e−01, 
1.11e+00)

(8.70e−01, 
1.09e+00)

(8.52e−01, 
1.06e+00)

(8.38e−01, 
1.05e+00)

(8.25e−01, 
1.03e+00)

(8.17e−01, 
1.03e+00)

(8.08e−01, 
1.01e+00)

(− 2.56e−01, 
− 1.02e−01)

(− 2.33e−01, 
− 8.02e−02)

 P3 (y3)
0.9070 0.9710 1.00E+00 9.78E−01 9.68E−01 9.61E−01 9.54E−01 9.43E−01 − 1.45E−01 − 1.00E−01

(9.01e−01, 
1.12e+00)

(8.79e−01, 
1.09e+00)

(8.69e−01, 
1.08e+00)

(8.63e−01, 
1.07e+00)

(8.55e−01, 
1.07e+00)

(8.45e−01, 
1.05e+00)

(− 2.26e−01, 
− 6.76e−02)

(− 1.77e−01, 
− 2.53e−02)

 P4 (y4)
0.8780 0.9490 0.9780 1.00E+00 9.85E−01 9.79E−01 9.74E−01 9.65E−01 − 1.05E−01 − 9.38E−02

(9.01e−01, 
1.11e+00)

(8.86e−01, 
1.10e+00)

(8.82e−01, 
1.09e+00)

(8.75e−01, 
1.09e+00)

(8.67e−01, 
1.08e+00)

(− 1.85e−01, 
− 2.75e−02)

(− 1.73e−01, 
− 1.72e−02)

 P5 (y5)
0.8590 0.9340 0.9680 0.9850 1.00E+00 9.86E−01 9.82E−01 9.74E−01 − 9.71E−02 − 9.27E−02

(9.00e−01, 
1.11e+00)

(8.87e−01, 
1.10e+00)

(8.81e−01, 
1.09e+00)

(8.73e−01, 
1.08e+00)

(− 1.76e−01, 
− 2.39e−02)

(− 1.73e−01, 
− 1.88e−02)

 P6 (y6)
0.8490 0.9220 0.9610 0.9790 0.9860 1.00E+00 9.89E−01 9.82E−01 − 8.20E−02 − 8.90E−02

(9.01e−01, 
1.11e+00)

(8.89e−01, 
1.10e+00)

(8.80e−01, 
1.10e+00)

(− 1.62e−01, 
− 7.43e−03)

(− 1.72e−01, 
− 1.48e−02)

 P7 (y7)
0.8430 0.9160 0.9540 0.9740 0.9820 0.9890 1.00E+00 9.89E−01 − 8.48E−02 − 9.07E−02

(8.95e−01, 
1.11e+00)

(8.83e−01, 
1.10e+00)

(− 1.65e−01, 
− 1.01e−02)

(− 1.72e−01, 
− 1.52e−02)

 P8 (y8)
0.8310 0.9030 0.9430 0.9650 0.9740 0.9820 0.9890 1.00E+00 − 6.30E−02 − 8.84E−02

(8.96e−01, 
1.11e+00)

(− 1.43e−01, 
8.14e−03)

(− 1.68e−01, 
− 9.24e−03)

Continued
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comparison of univariate marginal pdfs, however, is no guarantee that the respective multivariate pdfs are rea-
sonable facsimiles because the covariance structure has been removed. Many univariate pdf comparisons are 
provided between samples and synthetic samples in addition to multivariate comparisons, because these allow 
visualizing similarities with the above stipulations. When a given sample has the latent normal characteristic, 
the SP generation is greatly simplified, and then it is defined by Eq. (1). The work below shows how to generate 
synthetic data when this characteristic holds. We use three datasets that were selected pseudo-randomly. In the 
space of samples (virtually unlimited), we do not know the probability that a sample selected at random will have 
this latent normal characteristic. The main objectives are to present the analysis components with the methods 
for testing for the latent characteristic, give a thorough investigation, demonstrate that the synthesis produces 
realistic data when this latent condition exists, and then discuss further analyses.

Study data.  Samples were derived from two sources of measurements: (1) mammograms and related clini-
cal data (n = 667), and (2) dried beans (n = 13,611)28. Most technical aspects of these data are not relevant for this 
report. Mammography data included all observations with mammograms from a specific imaging technology, 
thereby defining n = 667. We used the dried bean data to add variation to the analyses as the variable nomencla-
tures are very different from the mammogram data, noting at this point the source of data is not germane. From 
mammograms, we considered two sets of measurements each with d = 10 variables referred to as Sample 1 (DS1) 
and Sample 2 (DS2). DS1 has 8 double precision measurements from the Fourier power spectrum in addition to 
age and BMI, both captured as integer variables. The Fourier attributes are from a set of measurements described 
previously29; the first 8 measurements from this set are labeled as Pi for i = 1–8. These Fourier measures are con-
secutive and follow an approximate functional form30, and thus represent variables that are very different than 
those in DS2 (or Sample 3 below). To cite the covariance quantities and correlation coefficients, we used a modi-
fied covariance (covariance for short) table format for efficiency because Ck is symmetric. In these tables, entries 
below the diagonal are the respective correlation coefficients, whereas the elements along the diagonal (variance 
quantities) and above are the covariance quantities. The covariance table for DS1 is shown in Table 1a. DS2 
contains 8 double precision summary measurements derived from the image domain: mean, standard deviation 
(SD); SD of a high-pass (HP) filter output, SD of a low-pass (LP) filter output; local SD summarized; P20 Fourier 
measure (from the set described for DS1 measurements); local spatial correlation summarized31; and breast (Br) 
area measured in cm2. Age and BMI (from DS1) were also included in this dataset. These variables were selected 
virtually at random to give d = 10 and possibly provide a different covariance structure than DS1. The covari-
ance table is shown in Table 2a. Neither DS1 nor DS2 were used in our related-prior mKDE synthetic data work. 
Selected measures and realizations from the dried bean dataset28 are referred to as Sample 3 (DS3). The bean 
data has 17 measurements (floating point) from 7 bean types. We selected 10 measures at random to make the 
dimensionality of DS3 compatible with the other two datasets giving this set of variables: area (1); minor axis 
(5); eccentricity (6); convex area (7); equivalent diameter (8); extent (9); solidarity (10); roundness (11); shape 
factor 3 (15), and shape factor 4 (16). Here, parenthetical references give the variable number listed in the respec-
tive resource (see28). Both bean type (bean type = Sira, with n = 2636) and n = 667 observations were selected at 
random to create DS3. Keeping n = 667 constant across datasets permits consistent statistical comparisons. For 
example, confidence intervals (CIs) and other comparison metrics are dependent upon the number of observa-
tions. The covariance table is shown in Table 3a. The analysis of three samples supports the evaluation of the 
processing scheme under generalized scenarios. The means and standard deviations for xj in each dataset are 
provided in Table 4. Note, the dynamic range of the means and standard deviations within a given sample vary 
widely in some instances.

KDE, optimization, and mapping.  The mapping (Step 1) relies on generating synthetic xj with uKDE. 
Each bandwidth parameter was determined with an optimization process wherein synthetic data from uKDE 
was compared with the sample. There is a continued feedback loop between the sample, synthetic data genera-
tion, and comparison during the optimization process. When the optimization was completed, a given map was 
constructed.

b

P1 (y1) P2 (y2) P3 (y3) P4 (y4) P5 (y5) P6 (y6) P7 (y7) P8 (y8) Age (y9) BMI (y10)

 Age (y9)
− 0.2350 − 0.1780 − 0.1450 − 0.1050 − 0.0971 − 0.0820 − 0.0848 − 0.0630 1.00E+00 − 6.64E−02

(8.88e−01, 
1.11e+00)

(− 1.44e−01, 
1.88e−02)

 BMI (y10)
− 0.2290 − 0.1540 − 0.1000 − 0.0938 − 0.0927 − 0.0890 − 0.0907 − 0.0884 − 0.0664 1.00E+00

(8.87e−01, 
1.11e+00)

Table 1.   Covariance and correlation for Dataset 1: in both tables, entries on the diagonals and above 
give covariance quantities. Entries below the diagonals (bold) provide the respective Pearson correlation 
coefficients. Table 1a gives the X representation quantities and 1b the Y representation quantities. The 
covariance quantities were generated from the respective sample. Parenthetically, 95% confidence intervals 
generated from synthetic samples are cited below the respective covariance quantity. Variables are cited with 
the names used in their respective resource and with the names used in this report parenthetically.
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a

Mean (x1) SD (x2) HP filter (x3) LP filter (x4) Local SD (x5) P20 (x6)

Local 
correlation 
(x7) Br area (x8) Age (x9) BMI (x10)

 Mean (x1)
1.53E+04 2.80E+03 1.23E+00 1.73E+02 2.02E+03 7.09E+00 − 8.77E−02 1.20E+03 − 2.30E+02 1.29E+02

(1.37e+04, 
1.71e+04)

(2.43e+03, 
3.54e+03)

(1.07e+00, 
1.41e+00)

(1.57e+02, 
1.99e+02)

(1.70e+03, 
2.36e+03)

(6.09e+00, 
8.35e+00)

(− 1.38e−01, 
− 3.02e−02)

(7.05e+02, 
2.28e+03)

(− 3.31e+02, 
− 1.03e+02)

(9.72e+01, 
2.24e+02)

 SD (x2)
0.5170 1.91E+03 4.40E−01 2.55E+01 1.05E+03 1.40E+00 − 1.07E−01 − 4.02E+02 − 8.94E+01 − 3.38E+01

(1.50e+03, 
2.28e+03)

(3.71e−01, 
5.21e−01)

(2.55e+01, 
3.94e+01)

(9.20e+02, 
1.32e+03)

(1.32e+00, 
2.14e+00)

(− 1.39e−01, 
− 9.85e−02)

(− 6.93e+02, 
− 2.05e+02)

(− 1.56e+02, 
− 7.61e+01)

(− 4.56e+01, 
− 2.62e+00)

 HP filter (x3)
0.7500 0.7610 1.75E−04 1.46E−02 2.74E−01 7.72E−04 − 3.54E−05 − 2.17E−01 − 1.50E−02 − 1.37E−02

(1.57e−04, 
1.98e−04)

(1.30e−02, 
1.73e−02)

(2.42e−01, 
3.27e−01)

(6.64e−04, 
9.15e−04)

(− 4.16e−05, 
− 2.91e−05)

(− 2.64e−01, 
− 1.08e−01)

(− 2.80e−02, 
− 2.94e−03)

(− 1.60e−02, 
− 3.26e−03)

 LP filter (x4)
0.8540 0.3560 0.6760 2.68E+00 1.97E+01 1.01E−01 4.61E−04 2.00E+01 − 2.59E+00 1.47E+00

(2.36e+00, 
2.97e+00)

(1.79e+01, 
2.61e+01)

(8.51e−02, 
1.17e−01)

(− 3.44e−04, 
1.08e−03)

(1.40e+01, 
3.57e+01)

(− 4.11e+00, 
− 1.20e+00)

(1.21e+00, 
2.99e+00)

 Local SD (x5)
0.5890 0.8670 0.7460 0.4340 7.70E+02 1.15E+00 − 9.14E−02 − 4.69E+02 − 8.12E+01 − 3.36E+01

(6.53e+02, 
8.85e+02)

(9.51e−01, 
1.44e+00)

(− 1.04e−01, 
− 7.88e−02)

(− 5.89e+02, 
− 2.84e+02)

(− 1.12e+02, 
− 6.19e+01)

(− 3.89e+01, 
− 1.15e+01)

 P20 (x6)
0.7750 0.4340 0.7910 0.8320 0.5630 5.46E−03 − 8.46E−05 − 2.26E−01 − 4.60E−02 − 1.95E−02

(4.15e−03, 
6.39e−03)

(− 1.08e−04, 
− 4.57e−05)

(− 4.08e−01, 
4.41e−01)

(− 1.27e−01, 
8.43e−03)

(− 1.87e−02, 
5.41e−02)

 Local  
correlation 
(x7)

− 0.1250 − 0.4310 − 0.4720 0.0497 − 0.5800 − 0.2020 3.22E−05 2.41E−01 1.58E−02 1.56E−02

(2.93e−05, 
3.65e−05)

(1.99e−01, 
2.82e−01)

(1.11e−02, 
2.21e−02)

(1.20e−02, 
1.91e−02)

 Br area (x8)
0.1230 − 0.1170 − 0.2090 0.1560 − 0.2160 − 0.0390 0.5420 6.15E+03 5.26E+00 3.25E+02

(5.50e+03, 
7.01e+03)

(− 7.34e+01, 
6.33e+01)

(2.84e+02, 
4.00e+02)

 Age (x9)
− 0.1580 − 0.1740 − 0.0966 − 0.1350 − 0.2490 − 0.0530 0.2380 0.0057 1.38E+02 − 4.74E+00

(1.30e+02, 
1.57e+02)

(− 1.17e+01, 
8.82e−01)

 BMI (x10)
0.1550 − 0.1150 − 0.1540 0.1330 − 0.1800 − 0.0393 0.4070 0.6170 − 0.0600 4.52E+01

(3.81e+01, 
5.34e+01)

b

Mean (y1) SD (y2) HP filter (y3) LP filter (y4) Local SD (y5) P20 (y6)

Local 
correlation 
(y7) Br area (y8) Age (y9) BMI (y10)

 Mean (y1)
1.00E+00 6.03E−01 7.56E−01 8.86E−01 6.24E−01 8.39E−01 − 1.25E−01 1.53E−01 − 1.48E−01 1.97E−01

(8.96e−01, 
1.11e+00)

(5.18e−01, 
6.83e−01)

(6.62e−01, 
8.46e−01)

(7.85e−01, 
9.91e−01)

(5.32e−01, 
7.04e−01)

(7.39e−01, 
9.37e−01)

(− 1.96e−01, 
− 4.65e−02)

(7.79e−02, 
2.34e−01)

(− 2.24e−01, 
− 7.16e−02)

(1.21e−01, 
2.73e−01)

 SD (y2)
0.6030 1.00E+00 8.14E−01 4.90E−01 9.47E−01 5.83E−01 − 5.64E−01 − 1.49E−01 − 2.46E−01 − 9.86E−02

(8.95e−01, 
1.10e+00)

(7.20e−01, 
9.08e−01)

(4.06e−01, 
5.70e−01)

(8.41e−01, 
1.05e+00)

(5.00e−01, 
6.68e−01)

(− 6.50e−01, 
− 4.70e−01)

(− 2.24e−01, 
− 7.63e−02)

(− 3.24e−01, 
− 1.68e−01)

(− 1.74e−01, 
− 2.62e−02)

 HP filter (y3)
0.7560 0.8140 1.00E+00 7.05E−01 7.96E−01 8.44E−01 − 4.89E−01 − 1.86E−01 − 9.96E−02 − 1.14E−01

(8.89e−01, 
1.10e+00)

(6.09e−01, 
7.94e−01)

(6.99e−01, 
8.87e−01)

(7.44e−01, 
9.43e−01)

(− 5.75e−01, 
− 3.98e−01)

(− 2.61e−01, 
− 1.09e−01)

(− 1.77e−01, 
− 2.22e−02)

(− 1.87e−01, 
− 4.23e−02)

 LP filter (y4)
0.8860 0.4900 0.7050 1.00E+00 5.12E−01 8.84E−01 3.63E−02 2.00E−01 − 1.43E−01 2.01E−01

(8.91e−01, 
1.12e+00)

(4.25e−01, 
5.94e−01)

(7.80e−01, 
9.91e−01)

(− 3.58e−02, 
1.16e−01)

(1.21e−01, 
2.85e−01)

(− 2.13e−01, 
− 6.31e−02)

(1.21e−01, 
2.79e−01)

 Local SD (y5)
0.6240 0.9470 0.7960 0.5120 1.00E+00 6.27E−01 − 6.51E−01 − 2.18E−01 − 2.79E−01 − 1.52E−01

(8.90e−01, 
1.10e+00)

(5.38e−01, 
7.11e−01)

(− 7.43e−01, 
− 5.54e−01)

(− 2.96e−01, 
− 1.42e−01)

(− 3.55e−01, 
− 2.01e−01)

(− 2.33e−01, 
− 7.82e−02)

 P20 (y6)
0.8390 0.5830 0.8440 0.8840 0.6270 1.00E+00 − 2.07E−01 1.29E−03 − 7.42E−02 3.86E−02

(8.93e−01, 
1.11e+00)

(− 2.83e−01, 
− 1.27e−01)

(− 7.33e−02, 
8.16e−02)

(− 1.53e−01, 
9.28e−04)

(− 3.55e−02, 
1.12e−01)

 Local  
correlation 
(y7)

− 0.1250 − 0.5640 − 0.4890 0.0363 − 0.6510 − 0.2070 1.00E+00 5.36E−01 2.50E−01 4.22E−01

(8.89e−01, 
1.11e+00)

(4.50e−01, 
6.33e−01)

(1.70e−01, 
3.29e−01)

(3.35e−01, 
5.08e−01)

 Br area (y8)
0.1530 − 0.1490 − 0.1860 0.2000 − 0.2180 0.0013 0.5360 1.00E+00 − 5.66E−03 6.57E−01

(8.90e−01, 
1.12e+00)

(− 8.17e−02, 
6.83e−02)

(5.63e−01, 
7.54e−01)

 Age (y9)
− 0.1480 − 0.2460 − 0.0996 − 0.1430 − 0.2790 − 0.0742 0.2500 − 0.0057 1.00E+00 − 6.70E−02

(9.00e−01, 
1.11e+00)

(− 1.48e−01, 
7.79e−03)

Continued
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uKDE.  For the map construction in Step 1 and as a modification to our previous work22, uKDE was used to 
generate realizations from each pj(xj) given by

where xj is the synthetic variable for this discussion, xij are observations from a given sample, kj is a normalization 
factor, and hj is the univariate bandwidth parameter.

Optimization.  Differential evolution optimization27 was used to determine each hj in Eq. (2). The population 
of candidate hj evolves over generations to a solution, as described in detail previously22. To form generation 
zero for a given xj, the DE-population (n = 1000) was initialized randomly (uniformly distributed) within these 
bounds: (0.0, 4 × the variance of xj) because a given range should span the solution for hj. The DE-population 
size stays constant across all generations. By expectation, the populations become more fit according to the fit-
ness function over generations. A given generation is found by comparing two-DE populations (1000 pair-wise 
competitions) of candidate hj solutions derived from the previous generation. For a given pairwise competition, 
two respective SPs were generated for each candidate hj. Synthetic samples (n = 667) were drawn from each SP 
and Pj(xj) from the sample was compared with each Pj(xj) derived from its synthetic sample using Eq. (2). The 
hj candidate [used in Eq. (2)] that produced a smaller Dj was used to populate the current generation, where 
Dj is the difference metric derived from the fitness function. This process was repeated for 30 generations. In 
summary, 30 × 2 × 1000 synthetic samples were compared with the sample via Pj(xj) comparisons for a given xj 
to derive its respective hj used in Eq. (2). A given X to Y map was then constructed with xj sampled from Eq. (2) 
with hj = E[terminal population of candidate hj].

As a modification, the Kolmogorov Smirnov (KS) test32 was used as the fitness function in the DE optimiza-
tion. This is a nonparametric test that can be used to compare two numerically derived cumulative probability 
functions or compare a numerically derived curve to a reference32. Here we compare the respective numerical 
univariate cumulative probability functions derived from synthetic samples with those derived from the sample. 
The difference metric, Dj, for the KS test is the absolute maximum difference between the two cumulative prob-
ability functions under comparison.

Mapping.  For each map in Step 1, we solve Pj(xj) = Gj(yj) numerically with interpolation methods described 
previously33,34, where Pj(xj) and Gj(yj) are assumed to be monotonically increasing. This solves the random variable 
transformation for each yj analogous to histogram matching with double precision accuracy. Synthetic yj (n = 106) 
were generated as standardized normal random variables using the Box-Muller (BM) method. Maps from X to Y 
are expressed as yj = mj(xj), where mj is the jth map. The corresponding inverse maps, xj = m−1

j (yj) , were derived 
numerically by inverting a given map and solving for xj. The map construction was complemented by generating 
synthetic xj with Eq. (2) using hj derived from DE optimization. Synthetic xj generated here were not used further.

Synthetic population generation.  Synthetic populations (SPs) were generated in the uncorrelated T 
representation and converted back to X via Y. In Step 2, the PCA transform for the sample is given by

where P is a d × d matrix with uncorrelated normalized columns. These are the normalized eigenvectors of Cy that 
capture the sample’s covariance structure. Ct is diagonal with: cjj = σ2j (t) corresponding to the ordered eigenvalues 
of Cy. We make the approximation that r(t) from the sample has the multivariate normal form expressed as

When the multivariate normality approximation holds in Y, it should hold in T. In Step 3, synthetic tj were 
populated as zero mean independent normally distributed random variables with variances = σ2j (t) using the BM 
method, producing the SP in T (Ts). The row length of Ts defines the number of realizations in each SP and is 

(2)pj
(

xj
)
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1

kjn

n
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exp−
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b

Mean (y1) SD (y2) HP filter (y3) LP filter (y4) Local SD (y5) P20 (y6)

Local 
correlation 
(y7) Br area (y8) Age (y9) BMI (y10)

 BMI (y10)
0.1970 − 0.0986 − 0.1140 0.2010 − 0.1520 0.0386 0.4220 0.6570 − 0.0670 1.00E+00

(8.91e−01, 
1.11e+00)

Table 2.   Covariance and correlation for Dataset 2: in both upper and lower tables, entries on the diagonals 
and above give covariance quantities. Entries below the diagonals (bold) provide the respective Pearson 
correlation coefficients. Table 2a gives the X representation quantities and 2b the Y representation quantities. 
The covariance quantities were generated from the respective sample. Parenthetically, 95% confidence intervals 
generated from synthetic samples are cited below the respective covariance quantity. Variables are cited with 
the names used in their respective resource and with the names used in this report parenthetically.
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a

Area (x1)
Minor axis 
length (x2)

Eccentricity 
(x3)

Convex area 
(x4)

Equivalent 
diameter (x5) Extent (x6) Solidity (x7)

Roundness 
(x8)

Shape factor 
3 (x9)

Shape factor 
4 (x10)

 Area (x1)
1.94E+07 3.22E+04 5.28E+01 1.97E+07 5.19E+04 − 1.46E+01 7.32E−01 − 2.23E+01 − 6.35E+01 − 1.35E+00

(1.79e+07, 
2.21e+07)

(2.83e+04, 
3.63e+04)

(4.45e+01, 
6.85e+01)

(1.81e+07, 
2.23e+07)

(4.79e+04, 
5.88e+04)

(− 2.49e+01, 
3.36e+00)

(− 1.64e−01, 
1.76e+00)

(− 3.73e+01, 
− 1.93e+01)

(− 8.26e+01, 
− 5.40e+01)

(− 2.35e+00, 
− 4.87e−01)

 Minor axis 
length (x2)

0.8060 8.22E+01 − 7.09E−02 3.25E+04 8.61E+01 7.35E−03 2.49E−03 3.75E−02 8.55E−02 − 1.31E−03

(7.42e+01, 
9.12e+01)

(− 9.35e−02, 
− 4.78e−02)

(2.87e+04, 
3.68e+04)

(7.59e+01, 
9.72e+01)

(− 1.95e−02, 
4.00e−02)

(6.19e−04, 
4.68e−03)

(1.57e−02, 
5.04e−02)

(5.75e−02, 
1.13e−01)

(− 3.37e−03, 
2.79e−04)

 Eccentricity 
(x3)

0.3710 − 0.2420 1.04E−03 5.38E+01 1.41E−01 − 2.09E−04 − 5.90E−06 − 4.60E−04 − 1.24E−03 − 1.17E−05

(9.46e−04, 
1.19e−03)

(4.44e+01, 
6.82e+01)

(1.17e−01, 
1.82e−01)

(− 2.97e−04, 
− 8.59e−05)

(− 1.31e−05, 
1.13e−06)

(− 5.93e−04, 
− 4.24e−04)

(− 1.42e−03, 
− 1.14e−03)

(− 1.74e−05, 
− 4.76e−06)

 Convex area 
(x4)

1.0000 0.8040 0.3740 1.99E+07 5.24E+04 − 1.55E+01 3.40E−01 − 2.43E+01 − 6.48E+01 − 1.62E+00

(1.84e+07, 
2.26e+07)

(4.85e+04, 
5.94e+04)

(− 2.67e+01, 
1.89e+00)

(− 4.52e−01, 
1.48e+00)

(− 3.93e+01, 
− 2.07e+01)

(− 8.27e+01, 
− 5.41e+01)

(− 2.55e+00, 
− 6.21e−01)

 Equivalent 
diameter (x5)

0.9990 0.8070 0.3720 0.9990 1.38E+02 − 3.97E−02 2.04E−03 − 5.85E−02 − 1.70E−01 − 3.62E−03

(1.28e+02, 
1.57e+02)

(− 6.87e−02, 
6.85e−03)

(− 3.43e−04, 
4.86e−03)

(− 9.90e−02, 
− 5.13e−02)

(− 2.19e−01, 
− 1.42e−01)

(− 6.25e−03, 
− 1.23e−03)

 Extent (x6)
− 0.0765 0.0187 − 0.1500 − 0.0801 − 0.0777 1.88E−03 1.55E−05 2.82E−04 2.66E−04 5.62E−06

(1.75e−03, 
2.03e−03)

(5.88e−06, 
2.61e−05)

(1.78e−04, 
3.54e−04)

(1.12e−04, 
3.68e−04)

(− 6.97e−06, 
1.10e−05)

 Solidity (x7)
0.0565 0.0934 − 0.0623 0.0260 0.0589 0.1220 8.62E−06 3.92E−05 1.17E−05 5.32E−06

(6.71e−06, 
1.04e−05)

(2.42e−05, 
4.13e−05)

(1.57e−06, 
1.90e−05)

(2.90e−06, 
5.03e−06)

 Roundness 
(x8)

− 0.1990 0.1630 − 0.5610 − 0.2140 − 0.1960 0.2560 0.5250 6.46E−04 5.77E−04 2.10E−05

(4.70e−04, 
7.81e−04)

(5.28e−04, 
7.41e−04)

(1.25e−05, 
2.56e−05)

 Shaped factor 
3 (x9)

− 0.3720 0.2440 − 0.9960 − 0.3760 − 0.3730 0.1590 0.1030 0.5870 1.50E−03 1.96E−05

(1.38e−03, 
1.70e−03)

(9.74e−06, 
2.54e−05)

 Shape factor 
4 (x10)

− 0.1130 − 0.0533 − 0.1350 − 0.1340 − 0.1140 0.0480 0.6710 0.3060 0.1880 7.29E−06

(5.41e−06, 
8.93e−06)

b

Area (y1)
Minor axis 
length (y2)

Eccentricity 
(y3)

Convex area 
(y4)

Equivalent 
diameter (y5) Extent (y6) Solidity (y7)

Roundness 
(y8)

Shape factor 
3 (y9)

Shape factor 
4 (y10)

 Area (y1)
1.00E+00 7.94E−01 3.86E−01 9.98E−01 9.99E−01 − 5.43E−02 6.56E−02 − 2.66E−01 − 3.87E−01 − 1.30E−01

(8.98e−01, 
1.11e+00)

(6.95e−01, 
8.98e−01)

(3.06e−01, 
4.71e−01)

(8.96e−01, 
1.11e+00)

(8.97e−01, 
1.11e+00)

(− 1.32e−01, 
1.73e−02)

(− 1.04e−02, 
1.42e−01)

(− 3.50e−01, 
− 1.89e−01)

(− 4.71e−01, 
− 3.08e−01)

(− 2.09e−01, 
− 4.61e−02)

 Minor axis 
length (y2)

0.7940 1.00E+00 − 2.38E−01 7.97E−01 7.98E−01 2.91E−02 1.05E−01 1.51E−01 2.37E−01 − 6.76E−02

(8.94e−01, 
1.10e+00)

(− 3.15e−01, 
− 1.62e−01)

(6.98e−01, 
8.99e−01)

(6.98e−01, 
9.00e−01)

(− 4.55e−02, 
1.03e−01)

(2.92e−02, 
1.79e−01)

(7.92e−02, 
2.27e−01)

(1.61e−01, 
3.15e−01)

(− 1.44e−01, 
1.37e−02)

 Eccentricity 
(y3)

0.3860 − 0.2380 1.00E+00 3.81E−01 3.81E−01 − 1.39E−01 − 7.12E−02 − 6.64E−01 − 9.98E−01 − 1.40E−01

(8.92e−01, 
1.11e+00)

(3.03e−01, 
4.66e−01)

(3.02e−01, 
4.66e−01)

(− 2.17e−01, 
− 6.71e−02)

(− 1.46e−01, 
7.79e−03)

(− 7.61e−01, 
− 5.72e−01)

(− 1.11e+00, 
− 8.92e−01)

(− 2.15e−01, 
− 6.29e−02)

 Convex area 
(y4)

0.9980 0.7970 0.3810 1.00E+00 9.99E−01 − 6.17E−02 4.14E−02 − 2.80E−01 − 3.84E−01 − 1.44E−01

(8.96e−01, 
1.11e+00)

(8.96e−01, 
1.11e+00)

(− 1.40e−01, 
9.80e−03)

(− 3.58e−02, 
1.19e−01)

(− 3.62e−01, 
− 2.02e−01)

(− 4.68e−01, 
− 3.05e−01)

(− 2.24e−01, 
− 5.87e−02)

 Equivalent 
diameter (y5)

0.9990 0.7980 0.3810 0.9990 1.00E+00 − 5.74E−02 6.85E−02 − 2.65E−01 − 3.82E−01 − 1.27E−01

(8.97e−01, 
1.11e+00)

(− 1.36e−01, 
1.46e−02)

(− 8.13e−03, 
1.47e−01)

(− 3.48e−01, 
− 1.86e−01)

(− 4.66e−01, 
− 3.03e−01)

(− 2.07e−01, 
− 4.24e−02)

 Extent (y6)
− 0.0543 0.0291 − 0.1390 − 0.0617 − 0.0574 1.00E+00 1.35E−01 2.62E−01 1.43E−01 1.40E−02

(8.90e−01, 
1.11e+00)

(6.08e−02, 
2.15e−01)

(1.88e−01, 
3.42e−01)

(7.14e−02, 
2.23e−01)

(− 5.91e−02, 
9.98e−02)

 Solidity (y7)
0.0656 0.1050 − 0.0712 0.0414 0.0685 0.1350 1.00E+00 4.83E−01 9.87E−02 5.42E−01

(8.95e−01, 
1.11e+00)

(3.99e−01, 
5.75e−01)

(2.02e−02, 
1.73e−01)

(4.52e−01, 
6.35e−01)

 Roundness 
(y8)

− 0.2660 0.1510 − 0.6640 − 0.2800 − 0.2650 0.2620 0.4830 1.00E+00 6.79E−01 3.13E−01

(8.94e−01, 
1.12e+00)

(5.87e−01, 
7.77e−01)

(2.33e−01, 
3.97e−01)

Continued
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arbitrary. Here, we let n = 106 for all SPs. In Step 4 to construct the SP in Y (Ys), the inverse PCA transform was 
used by substituting Ts for T in Eq. (3) giving

With this process, g(y) = gn(y) for synthetic data. By premise, the covariance of Ys should be like that of Y. 
In Step 5 to produce the SP in X (Xs), synthetic yj were inverse mapped. Similarly, the covariance of X should be 
like that of Xs. An example is also provided to illustrate that Xs is densely populated in contrast with the sparse 
sample in X.

Statistical methods.  The goals are to evaluate the latent normal characteristic and to produce synthetic 
data that is statistically like its sample. This analysis is based on both multiple univariate/multivariate pdf and 
covariance comparisons. A given synthetic sample (n = 667) was drawn at random from its SP. The same realiza-
tions from a given synthetic sample were used for comparisons in X, Y, and T, when applicable.

Probability density function comparisons.  Univariate pdf comparisons.  The KS test (described in Step 1) was 
used for all univariate pdf comparisons. For such comparisons, we selected the test threshold at the 5% signifi-
cance level as the critical value. In X, pj(xj) from the sample were tested for normality and compared with their 
respective pdfs from synthetic samples created in Step 5. In Y, gj(yj) from the sample were compared with the 
respective pdfs from their synthetic samples produced by Step 4; this implicitly evaluated univariate normality 
in Y because synthetic yj were derived from a multivariate normal process in Ts. In T, we compared rj(tj) from the 
sample with their respective pdfs derived from zero mean normally distributed random variables (i.e., synthetic 
tj) with variances = σ2j (t) [from Step 3]. For each tj, the sample was compared with 1000 synthetic samples, and 
the percentage of times that measured Dj was less than the critical test value was tabulated.

Distribution free multivariate pdf comparisons.  To evaluate whether the sample and synthetic samples were 
drawn from the same distribution without assumptions, we used the maximum mean discrepancy (MMD)35 
test. This is a kernel-based (normal kernel) analysis that computes the difference between every possible vector 
combination between and within two samples (excluding same vector comparisons). To determine the kernel 
parameter for these tests, we used the median heuristic35,36. This analysis is based on the critical value (MMDc) 
at the 5% significance level and the test statistic (MMD2

u) . Both quantities are calculated from the two samples 
under comparison. This test has an acceptance region given the two distributions are the same: MMD2

u < MMDc 
(see Theorem 10 and Corollary in35). This test was applied in X, Y, and T. Note, when applying this test in either T 
or Y, it is implicitly testing the sample’s likeness with multivariate normality. In X, Y, and T, 1000 synthetic sam-
ples were compared with the sample. The test acceptance percentage was tabulated. MMD2

u and MMDc values 
are provided as averages over all trials because they change per comparison.

Random projection multivariate normality evaluation.  Random projections were used to develop a test for 
normality. The vector w with d components is multivariate normal if the scalar random variable, z = uTw, is 
univariate normal, where u is a d component vector with unit norm that is defined as a projection vector in this 
report37,38. As mentioned by Zhou and Saho38, we developed this formulism into a specific random projection 
test. To actualize such a test to probe the samples and synthetic samples similarity with normality, the projec-
tion vector u was generated randomly 1000 times, referenced as us. Here, s is the projection index ranging from 
[1,1000]. The projection equation is then expressed as

where  z|s defines the scalar z conditioned upon s. In Eq. (6), x, y, or t was substituted for w, and given projec-
tion was taken over all realizations (i.e., n = 667) of given sample. These realizations of z|s were used to form 
the normalized histogram that approximates the conditional pdf for the left side of Eq. (6) defined as f(z|s). A 

(5)Ys = TsP
T.

(6)z|s = u
T
s w,

b

Area (y1)
Minor axis 
length (y2)

Eccentricity 
(y3)

Convex area 
(y4)

Equivalent 
diameter (y5) Extent (y6) Solidity (y7)

Roundness 
(y8)

Shape factor 
3 (y9)

Shape factor 
4 (y10)

 Shaped factor 
3 (y9)

− 0.3870 0.2370 − 0.9980 − 0.3840 − 0.3820 0.1430 0.0987 0.6790 1.00E+00 1.82E−01

(8.94e−01, 
1.11e+00)

(1.04e−01, 
2.58e−01)

 Shape factor 
4 (y10)

− 0.1300 − 0.0676 − 0.1400 − 0.1440 − 0.1270 0.0140 0.5420 0.3130 0.1820 1.00E+00

(8.92e−01, 
1.12e+00)

Table 3.   Covariance and correlation for Dataset 3: in both tables, entries on the diagonals and above 
give covariance quantities. Entries below the diagonals (bold) provide the respective Pearson correlation 
coefficients. Table 3a gives the X representation quantities and 3b the Y representation quantities. The 
covariance quantities were generated from the respective sample. Parenthetically, 95% confidence intervals 
generated from synthetic samples are cited below the respective covariance quantity. Variables are cited with 
the names used in their respective resource and with the names used in this report parenthetically.
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different series of us was produced for each representation; once a given series was produced, us remains fixed. 
The components of us were generated as standardized normal random variables, where us was normalized to unit 
norm. For a given sample, f(z|s) was tested for normality using the KS test. This procedure was repeated for all 
random projections (all s), resulting in 1000 KS test comparisons for normality. The percentage of the times that 
the null hypothesis was not rejected was tabulated as the normality similarity gauge. We refer to this procedure 
as the random projection test. It is the percentage of times that w was not rejected when probed in 1000 random 
directions. This test was performed once for each sample and with 100 synthetic samples and averaged. Here, 
the same us series used to probe a given sample was also used to probe 100 of its respective synthetic samples. 
We note, synthetic samples are multivariate normal in Y and T by their construction. Tests were performed on 
synthetic samples (Y and T) to give control standards as normal comparators. Tests were also performed in X: 
(1) as control comparator for the test itself; and (2) to determine if a given sample was multivariate normal before 
undergoing the mapping.

To gain both insight into Eq. (6) and the test, expressions for both z|s and f(z|s) are developed. First, z|s results 
from a linear random variable transform given by

where uk are the components of us, and hk(wk) are the univariate pdfs for scaled wk. To check one endpoint, 
we assume wk are independent as a coarse approximation to our samples. Then, f(z|s) results from repeated 
convolutions given by

where c−1 = u1 × u2 × u3 × u4 × … × ud, and hk(wk) ~ hk. If some hk(wk) have relatively much larger variances (widths) 
than others, their functional forms can tend to predominate Eq. (8).

Mardia multivariate normality test.  This is a two component test that uses multivariate skewness and kurtosis 
for evaluating deviations from normality37, applied in X, Y and T. It produces a deviation measure for each com-
ponent as well as a combined measure; we cite the component-findings. This test was applied in X as a control. 
Outlier elimination techniques were not applied.

Covariance comparisons.  Two methods were used to evaluate the covariance similarity between samples and 
synthetic samples: with (CIs) and eigenvalue comparisons.

Comparisons with confidence intervals.  Each covariance matrix element between the sample and its respective 
synthetic samples was compared with CIs. We assumed the sample and synthetic samples were drawn from the 
same distributions. We used the elements from each Cx and Cy as point estimates from a given sample in both X 
and Y. One thousand synthetic samples (n = 667) were used to calculate 1000 covariance matrices (in X and Y). 
For each matrix element, the respective univariate pdf was formed, and 95% CIs were calculated. This procedure 
was repeated 1000 times. The percentage of times the sample’s point estimate (for each element in Cy and Cx) was 
within the synthetic element’s CIs was tabulated.

Comparisons with PCA.  The eigenvalues from Cy were used as the reference comparators under two condi-
tions. For condition 1, the PCA transform determined with the sample was applied to a synthetic sample (sam-
ple/syn test). Synthetic eigenvalues were estimated by calculating the variances of synthetic tj. For condition 

(7)z|s = u1w1 + u2w2 + ukwk + · · · + udwd,

(8)f (z|s) = c × ((((h1 ∗ h2) ∗ h3) ∗ h4) ∗ . . . ) ∗ hd,

Figure 4.   Processing Flow: the top row shows the processing flow for the sample. The reversed processing flow 
for the synthetic population generation is shown in the bottom row.
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2, the PCA transform determined with a synthetic sample selected at random was applied to the sample (syn/
sample test). Eigenvalues were estimated by calculating the variances of tj from the sample. For both conditions, 
each eigenvalue (or equivalently, variance) was compared to its respective reference (sample) using the F-test.

Ethics and consent to participate.  All methods were carried out in accordance with relevant guidelines 
and regulations. All experimental procedures were approved by the Institutional Review Board (IRB) of the 
University of South Florida, Tampa, FL under protocol #Ame13_104715. Mammography data was collected 
retrospectively on a waiver for informed consent approved by the IRB of the University of South Florida, Tampa, 
FL under protocol #Ame13_104715.

Results
Univariate normality analysis in the X representation.  Figures 1, 2 and 3 show the univariate pdfs 
(solid) for each sample in X. Of note, many pdfs are observably non-normal, usually right skewed. Each xj in 
DS1 showed significant deviation from normality (p < 0.0001) except for x9. In DS2, neither x1 or x9 (x9 is the 
same in DS1) showed significant deviation from normality, while the remaining xj exhibited significant devia-
tions (p < 0.0003) except for x3 (p = 0.0144). In DS3, x1 through x5 and x9 did not show significant deviations from 
normality, the remaining xj deviated significantly (p < 0.002).

Mapping and KDE optimization.  Mapping.  Figure 5 shows an example of the X to Y map for y9 in the 
left-pane and the inverse Y to X map in the right-pane. Red-dashed lines show the map and its inverse construct-
ed without synthetic xj. Staircasing effects are observable particularly in the tail regions, where sample densities 
are sparse. Black lines show the map and its inverse constructed with n = 667 (the sample) plus n = 106 synthetic 
realizations produced with optimized uKDE. Staircasing effects were removed when incorporating synthetic xj, 
which was common with all maps and inverses (not shown).

uKDE optimization.  The optimization produced bandwidth parameter solutions (hj) used in Eq. (2). Here, we 
illustrate the evolution of the solution with h9 from DS1 and DS2 as an example. Figure 6 shows the scatter plot 
between the candidate h9 population and the respective D9 (KS test difference metric) for DE generation = 1 
in the left-pane and for the terminal generation = 30 in the middle-pane. The solution space (middle-pane) is 
tightly clustered indicating DE convergence. A closer view of this cluster is shown in the right-pane of Fig. 6. This 
relatively tight-cluster characteristic was common among all variables and datasets (not shown).

Univariate comparisons between samples and synthetic samples.  Comparisons in T.  These 
findings are summarized first because they start the flow back to X and can show departures from normality. Fig-
ures 7, 8 and 9 show the pdfs for the samples (solid) compared with their corresponding synthetic pdfs (dashed). 
Table 5 shows the variances in T for each sample (i.e., eigenvalues for each sample). Due to (1) the normalization 
in Y, and (2) that d = 10, multiplying a given, σ2j (t) by 10% gives the percentage of the total variance explained by 
its tj. Table 6 shows the KS test findings for the univariate normality comparisons. Here we use a cutoff of < 65% 
to indicate deviation as most trends were well above this boundary. As shown in Table 6 (left column for each 
dataset): (1) the normal model did not deviate for any tj in DS1 (7 tj were < 94%); (2) the normal model deviated 
for t10 in DS2 (5 tj were < 94%); and (3) the normal model deviated for t7, t8, t9, and t10 in DS3 (3 tj were < 94%). In 
DS2, t10 explains about 0.2% of the total variance. Similarly, in DS3, the sum of the variances of the four variables 
(t7, t8, t9, and t10) constituted about 0.14% of the total variance.

Table 4.   Mean and standard deviations: this gives the univariate distribution means and standard deviations 
for all variables by dataset in the X representation. Variables are cited with the names used in their respective 
resource and with the names used in this report parenthetically.

DS1 DS2 DS3

Variable name Mean Standard deviation Variable name Mean Standard deviation Variable name Mean
Standard 
deviation

P1 (x1) 1.48E+01 1.51E+01 Mean (x1) 5.35E+02 1.24E+02 Area (x1) 4.48E+04 4.41E+03

P2 (x2) 5.83E+00 5.27E+00 SD (x2) 6.33E+01 4.37E+01 Minor Axis Length 
(x2)

1.91E+02 9.06E+00

P3 (x3) 3.23E+00 2.80E+00 HP Filter (x3) 4.01E−02 1.32E−02 Eccentricity (x3) 7.69E−01 3.23E−02

P4 (x4) 2.00E+00 1.59E+00 LP Filter (x4) 6.74E+00 1.64E+00 Convex Area (x4) 4.53E+04 4.46E+03

P5 (x5) 1.32E+00 9.79E−01 Local SD (x5) 4.67E+01 2.78E+01 Equivalent Diam-
eter (x5)

2.39E+02 1.18E+01

P6 (x6) 9.21E−01 6.74E−01 P20 (x6) 1.20E−01 7.39E−02 Extent (x6) 7.58E−01 4.33E−02

P7 (x7) 6.72E−01 4.71E−01 Local Correlation 
(x7)

3.02E−02 5.67E−03 Solidity (x7) 9.88E−01 2.94E−03

P8 (x8) 5.16E−01 3.54E−01 Br Area (x8) 1.77E+02 7.84E+01 Roundness (x8) 8.84E−01 2.54E−02

Age (x9) 5.83E+01 1.17E+01 Age (x9) 5.83E+01 1.17E+01 Shaped Factor 3 (x9) 6.35E−01 3.87E−02

BMI (x10) 2.79E+01 6.73E+00 BMI (x10) 2.79E+01 6.73E+00 Shaped Factor 4 
(x10)

9.95E−01 2.70E−03
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Comparisons in Y.  Figures 10, 11 and 12 show the pdfs in Y resulting from the mapped samples (i.e., mapped 
xj) for each dataset (solid) compared with their respective synthetic pdfs (dashed), which are normal by con-
struct. Comparisons in Y showed little departure from normality in any sample, as the tests were not rejected 
(about 99%) in most instances (Table 6, middle column for each dataset). Findings from DS2 and DS3 indicate 
that substituting normal pdfs in T whenever sample tj deviated from normality had little influence on this analy-
sis. This may be because these respective variables in total or isolation explained a minute portion of the variance 
in the respective PCA models.

Comparisons in X.  Figures 1, 2 and 3 show the pdfs in X for the samples (solid) compared with their corre-
sponding synthetic pdfs (dashed). The pdfs from the sample did not deviate from their corresponding synthetic 
pdfs in any dataset, as the tests were not rejected (< 99%) in most instances (Table 6, right columns). The paren-
thetical entries in Table 6 show the test findings without using synthetic data for the map/inverse constructions 
(using the samples only). These show that complementing the map constructions with uKDE is a necessary 
component of this methodology, although the degree of deviation from the KS tests varied across datasets. Note, 
the improvement held in D3 as well, which was normal in X (shown below).

Multivariate comparisons and normality comparisons.  MMD tests.  Testing was performed in X, 
Y, and T, and the test metrics are provided in Table 7. These show the samples and respective synthetic samples 
were drawn from the same distributions. In 100% the tests, measured MMD2

u values were less than the critical 
MMDc quantities. The MMD tests in Y and T were also proxy tests for sample-normality due to the SP con-
structs.

Random projection normality tests.  Testing was performed in X, Y, and T, and the findings are shown in Table 8. 
Test findings were mixed for the samples in X and were not rejected for approximately these instances: 40% in 
DS1; 74% in DS2; and 99% in DS3. Thus, DS3 is better approximated as normal in X compared to the other 
samples. The tests for synthetic samples in X tracked the findings for their respective samples: 44%, 74% and 
99% respectively. In Y, the tests for the samples were not rejected for about these instances: 99% in DS1, 97% in 
DS2, and 95% in DS3, whereas the test for the synthetic samples should no deviation from normality. Similarly 
in T, the tests for the samples were not rejected for about these instances: 99% in DS1, 94% in DS2, and 95% in 
DS3. There is a difference in the X and Y analyses because the mapping normalizes the variables in Y. In DS3, 
the standard deviations vary over many orders of magnitude (see Table 4). As shown by Eq. (8), variables in DS3 
with the larger standard deviations may wash out the other variables; the variables in X that had normal margin-
als compared with those that were not, indicates that a portion of the normal marginals had much larger stand-
ard deviations (in Table 4, see x1–x4). As another control experiment, we standardized all variables in X to zero 
mean and unit variance and performed the tests again. The tests for the samples gave: 32.9%, 76.4%, and 75.2% 
for DS1, DS2, and DS3, respectively. For synthetic samples, these tests gave: 33.6%, 80.1% and 89.1% for DS1, 
DS2, and DS3, respectively. Note, centering the means alone had no influence on the findings as expected (data 
not shown). Thus, normalizing the univariate measures can influence the likeliness with normality by virtue of 
Eq. (8). In sum, these tests show all samples resemble multivariate normality in both Y and T and that the sample 
for DS3 resembles normality in X without mapping (without first normalizing the variances).

Mardia normality tests.  Testing was performed in X, Y, and T. The findings are shown in Table 8. In X, the 
samples and synthetic samples all deviated from normality (both skewness and kurtosis). In both Y and T, the 
samples showed significant deviations from normally in all tests. In contrast, synthetic samples did not deviate 
significantly from normality in any test in Y or T, as expected.

Covariance comparisons.  Covariance matrix comparisons with confidence intervals.  Test findings are 
provided in Tables 1, 2 and 3 for the respective datasets. Part-a of each table shows the X quantities, and part-b 
shows the corresponding Y quantities. For DS1 (Table 1), covariance references (sample) were within the CIs 
of the synthetic data for 100% of the trials in both X and Y. For DS2 (Table 2), most references agreed with the 
synthetic elements except for two entries in X (Table 2a). From the 1000 trials, the x2x3 covariance was out of tol-
erance for 0.1% of the instances, and the x5x10 covariance was out for 18.7% of instances. For DS3, all covariance 
references were within tolerance except the x7x10 covariance, which was out of tolerance for 100% of the instanc-
es. In tests that showed more deviation (percentage > 0.1%), the reference covariances were approximately zero.

Eigenvalue comparison tests.  Eigenvalues are provided in Table 5. This table is separated into three sections ver-
tically. Reference eigenvalues are provided in the top row of each section. Eigenvalues calculated from the sam-
ple/syn (condition 1) and syn/sample (condition 2) are provided in the middle and bottom rows of each section, 
respectively. F-tests were not significant (p > 0.05) in any comparison with the references indicating similarity.

Sample sparsity and synthetic population space filling.  This illustration demonstrates that the 
approach fills in the multidimensional space with synthetic realizations derived from a relatively sparse sample. 
We selected a synthetic entity at random from DS1 giving this vector: xT = [4.20, 2.08, 1.61, 1.15, 0.85, 0.67, 0.54, 
0.44, 52.0, 23.6]. We selected x1 and x8 as the scatter plot variables. For the other 8 components, all synthetic 
realizations within xij ± ½ σj (the standard deviation for xj) were selected and viewed in the x1x8 plane as a scat-
ter plot. The same vector and limits were used to select realizations from the sample. The plots are provided in 
Fig. 13 for comparison. The sample (left-pane) produced n = 24 realizations, whereas the SP (right-pane) pro-
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duced n = 36,398 realizations. These plots illustrate the sample’s relative sparsity and that the synthetic approach 
produces a dense population with observations that did not exist in the sample.

Discussion
The work involved several steps to generate synthetic data from arbitrarily distributed samples. To the best of our 
knowledge, new aspects and findings from this work include: (1) demonstrating a class of arbitrarily distributed 
samples has a latent normal characteristic, as exhibited by two of the samples; (2) conditioning the input variables 
with sample size augmentation and then constructing univariate transforms so that known techniques could be 
applied to generate synthetic data; (3) deploying multiple statistical tests for assessing both normality and general 
similarity in both the univariate and multivariate pdf settings; (4) developing methods for comparing covariance 
matrices; and (5) incorporating differential evolution (DE) optimization for uKDE bandwidth determination 
based on the KS fitness function. The related findings are discussed below in detail.

A method was presented that converts a given multivariate sample into multiple 1D marginal pdfs by con-
structing maps. These X–Y maps were constructed by augmenting the sample size with optimized uKDE. Per-
forming the analysis with and without data augmentation improved the marginal pdf comparisons between 
the samples and synthetic samples; this also held in DS3 (four xj), which was approximately normal in X. PCA 
applied to standardized normal variables in Y produced uncorrelated variables in T, where synthetic data was 
generated. This approach essentially decouples the problem into the covariance relationships (in P and its inverse) 
and 1D marginal pdfs (i.e., approximate parametric models in Y and T). This decoupling is similar to the objec-
tive of Copula modeling that follows from Sklar’s work39,40. Copula modeling allows specification of marginal 
pdfs and the correlation structure independently41; in this approach, the marginals must be specified accurately 
and finding analytical solutions for d > 4 is difficult42. In contrast with Copula modeling, which is flexible, the 
covariance (or correlation) structure in our approach is fixed by the normal form and empirically derived; the 
marginals were forced to normality rather than specified. As a benefit, the CIs for Ck with our approach were 
estimated from the pdfs for each matrix element without assumption other than the normal calculation form. 
Additionally, the eigenvalue comparison technique results reinforced the CI comparison findings. Outside of 
the multivariate normal situation it is not clear when (1) comparing the marginals with one set of tests, and (2) 
comparing the covariance relationships separately with another set of tests results in a good overall empirical 
comparison-approximation between two multivariate samples. Such situations will require further analyses.

There are several other points worth noting about this work. An empirically driven stochastic optimization 
technique was used to estimate the uKDE bandwidth parameters for the map/inverse constructions. The relative 
efficiency of the approach is an important attribute in that it only requires multiple uKDE applications rather 
than mKDE. The number of generations in the optimization was fixed. This can be changed easily to a variable 
termination based on achieving a critical threshold or applying other appropriate fitness functions; for example, 
the stopping criteria could be based on the critical distance in the KS test or the change in this distance from 
one generation to the next. Likewise, there are plug-in kernel bandwidth parameters that can be used statically. 
These are derived by considering closed form expressions containing the constituent pdfs and minimizing the 
asymptotic behavior of either the mean integrated square error or mean squared error43. We explored such 
parameters44, but they did not perform as well as the KS test with DE, notwithstanding the number of compu-
tations used here to determine a given bandwidth parameter. Of note, the KS test has limitations, as it is more 
sensitive to the median of the distribution rather than the tails. As an alternative, the Anderson Darling test is a 
variant of the KS procedure that is sensitive to the distribution tails32. The mapping from X to Y standardized the 
problem at the univariate level, but in general there is no guarantee that collectively it produced a multivariate 
normal in Y. Testing performed in Y (Step 2) could be used to discriminate input samples that have the latent 
normal characteristic from those that do not. The random project test could be developed into a gauge at this 
step for assessing the deviation from normality. Moreover, comparing r(tj) from the sample against normality 
(following Step 3) also provides a basis for testing sample’s likeness to a multivariate normal (discussed below). 
When p(x) is approximately multivariate normal, as in DS3, the mapping is not required and generating syn-
thetic data based on PCA (without the mapping step) is a practiced technique; our approach addresses the case 
when this approximation fails to hold. The random projection tests changed the similarity with normality when 
standardizing the samples. Thus, the purpose for generating synthetic data should be considered before adjust-
ing the input sample.

There are several other limitations and qualifications worth noting. Several multivariate pdf tests were exam-
ined with mixed findings. MMD tests in X, Y, and T showed each sample was statistically similar with its respec-
tive synthetic sample(s). These tests also indicated normality in Y and T (by default). This MMD test is sensitive to 
changes in the mean. In our processing, all means were forced either to identically zero or to statistical similarity 
via mapping. Likewise, the heuristic used for the kernel bandwidth determination can be less than optimal under 
certain conditions, decreasing the MMD test performance45. Random projection tests in Y and T indicated that 
the samples did not deviate from normality in most instances, whereas synthetic samples showed essentially 
no deviation. Understanding the acceptable departure from normality for this test in the modeling context will 
require more work. This test also showed DS3 was approximately normal in X. In contrast, Mardia tests showed 
all samples deviated significantly from normality in X, Y and T. With the Mardia test, synthetic samples showed: 
(1) essentially no deviation in Y or T as expected; (2) and significant deviation in X. Here, we made no attempt 
to mitigate possible outlier interference when analyzing the samples46. Note, testing for multivariate normality 
is not a trivial task; many of the complexities are covered by Farrell et al.47

The conclusions we make from these tests indicated each sample was approximately multivariate normal in 
Y and T, noting the approach may not be dependent upon this characteristic as elaborated below. In planned 
research, these approximations will be tested in the modeling context to evaluate whether sample and synthetic 
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data are interchangeable. When this normality approximation holds, it implies that the original multivariate pdf 
estimation problem in X was converted to a parametric normal model described by Eq. (1), which simplifies 
the synthetic data generation. If this conversion generalizes to other datasets (at least in part), it implies that 
some class (subset) of the multivariate sample space can be studied with simulations by altering, n, d, and the 
covariance matrix to that of an arbitrary sample. Future work involves investigating arbitrary selected samples 
to understand how often this latent normal characteristic is present.

Alternatively, analyzing the samples in T may provide another method for comparing datasets, evaluat-
ing similarity, evaluating normality in Y, or generalizing our approach. The marginals from each sample were 
approximated as univariate normal in T, although there were noted variations. For example, and as noted, about 
99% of the total variance came from the first four variables in DS1 (see Table 5). DS2 and DS3 were found to be 
similar with the first four variables accounting for 90–92% of the total variance. Thus, DS1 is more compressible 

Figure 5.   Univariate Mapping Illustration: this shows the map (left) and inverse map (right) for age (x9) 
used in both DS1 and DS2. Maps using the sample only (red-dashes) are compared with maps augmented with 
synthetic data (black-sold).

Figure 6.   Kernel Density Estimation Optimization Illustration: this shows the differential evolution 
optimization to determine h9 (for x9, age from DS1 and DS2). These show the scatter plots of the Kolmogorov 
Smirnov test metric (measured D9 quantities for entire generation) versus the h9 quantities for two generations: 
generation = 1 (left); terminal generation = 30 (middle); and closeup view of the terminal generation (right). The 
terminal generation shows the candidate solutions for h9 are tightly clustered (compare left pane with middle 
and right panes).



17

Vol.:(0123456789)

Scientific Reports |        (2023) 13:12266  | https://doi.org/10.1038/s41598-023-38832-0

www.nature.com/scientificreports/

than the other two datasets as expected due to the high correlation from its approximate functional Fourier form. 
Although not the purpose of this report, the amount of compression is a likely metric for estimating the effective 
dimensionality (de) when de ≤ d, which could be useful for estimating sample size. When viewing the PCA trans-
form through the NIPALS algorithm14, it is clear when the total variance is explained by a number of components 
de << d, the remaining components are residue (noise, chatter, rounding errors). This effect could explain why 
deviations from normality in DS2 and DS3 in T did not influence the multivariate normal approximation in Y. 
Here, we did not encounter non-normal variables (from the samples) in T that explained a significant portion of 
the total variance. When a given sample is well approximated as multivariate normal in Y, the PCA transforma-
tion will produce univariate normal marginal pdfs in T. This step could be developed into the definitive test for 
multivariate normality in Y by understanding the residual error of the non-normal marginal pdfs in T. In this 
work, the analysis in T supports the normality findings for each sample because the residual non-normal errors 
were parasitic. Future work will investigate: (1) the impact of the residual error in T on normality in Y, and (2) 
causes for normality in T, i.e., possibly due to forced normality in Y, some characteristic of the X representation 
data, or the PCA transform. If required, the technique could be generalized to accommodate non-normal mar-
ginals in T. As a generalization, uKDE will be investigated for generating univariate non-normal distributions 

Figure 7.   Marginal probability density functions (pdfs) for DS1 in the T representation: each pdf for DS1 (sold) 
is compared with its corresponding pdf from synthetic data (dashes).



18

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12266  | https://doi.org/10.1038/s41598-023-38832-0

www.nature.com/scientificreports/

in T when called for with the same method used to augment X for the map/inverse constructions. In this sample 
scenario, the Y description will deviate from Eq. (1). Although, this premise will have to be investigated because 
the lack of correlation in T only guarantees tj independence when r(t) is multivariate normal. We speculate when 
the sample has low correlation between most of the bivariate set in X, this approximation may hold.

Choosing the most appropriate space to perform modeling or to analyze the samples deserves consideration. 
We have used the covariance form suitable for normally distributed variables. In Y, this form is likely appropriate. 
We used the same form in X as well; this form may not be optimal here because covariance relationships are not 
preserved over non-linear transformations. It is our contention that Y is best suited for modeling because the 

Figure 8.   Marginal Probability Density Functions (pdfs) for DS2 in the T representation: each pdf for DS2 
(solid) is compared with its corresponding pdf from synthetic data (dashes).
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marginals are normal. It is common practice in univariate/multivariate modeling to adjust variables (univariately) 
to a standardized normal form or apply transforms to remove skewness. The X to Y map converted each xj to 
unit variance. When the natural variation for xj is important, the mapping can be modified easily to preserve the 
variance. If the variable interpretation is not important, modeling can also be performed in T.

The method in this report addresses the small sample problem given the sample has the latent normal char-
acteristic or is normal. The approach will require further evaluation on different datasets to understand its 
general applicability and when the univariate mapping from X to Y approximately produces a multivariate nor-
mal. Multiple methods were explored to evaluate multivariate normality. These tests indicated that the samples 

Figure 9.   Marginal Probability Density Functions (pdfs) for DS3 in the T representation: each pdf for DS3 
(solid) is compared with its corresponding pdf from synthetic data (dashes).
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Table 5.   Eigenvalues and comparisons: within each dataset, the upper row (sample) gives the eigenvalues of Cy 
(sample) used as the reference (ref) for comparisons. The Sample/Syn (condition 1) rows give the eigenvalues 
(variances) determined by applying the PCA transform derived from the sample to a synthetic (Syn) sample. 
Syn/Sample (condition 2) rows give the eigenvalues (variances) determined by applying the PCA transform 
derived from Cy from a synthetic sample applied to the sample. An F-test was used to compare Sample/Syn tj 
with the reference (ref) tj and to compare Syn/Sample tj with the reference tj. In all tests, the null hypothesis 
was not rejected (i.e. p > 0.05).

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

DS1

 Sample (ref) 7.6178 1.0682 0.9634 0.2208 0.0544 0.0244 0.0166 0.0142 0.0116 0.0085

 Sample/Syn 7.6142 1.0700 0.9641 0.2213 0.0546 0.0244 0.0166 0.0145 0.0117 0.0087

 Syn/Sample 7.6189 1.0987 0.9377 0.2183 0.0520 0.0246 0.0162 0.0138 0.0109 0.0090

DS2

 Sample (ref) 4.8873 2.3806 1.1083 0.6618 0.3575 0.2579 0.1576 0.1064 0.0590 0.0235

 Sample/Syn 4.8857 2.3797 1.1072 0.6590 0.3565 0.2567 0.1647 0.1068 0.0596 0.0239

 Syn/Sample 4.9237 2.2832 1.1094 0.6908 0.3691 0.2564 0.1714 0.1079 0.0634 0.0248

DS3

 Sample (ref) 4.1932 2.6215 1.4759 0.9790 0.4877 0.2286 0.0116 0.0015 0.0009 0.0001

 Sample/Syn 4.1901 2.6125 1.4802 0.9837 0.4888 0.2294 0.0127 0.0015 0.0010 0.0001

 Syn/Sample 4.2638 2.6817 1.3871 0.9368 0.4851 0.2312 0.0118 0.0014 0.0009 0.0001

Table 6.   Univariate Kolmogorov Smirnov (KS) tests: in each representation, probability density functions 
(pdfs) derived from synthetic samples were compared with the respective pdfs derived from the sample 
for each variable. The KS test was applied 1000 times for each comparison. The number of times the null 
hypotheses was not rejected for a given test was tabulated as a percentage (all entries are percentages). Due to 
the experimental arrangements for yj and tj, each test is equivalent to testing for normality as well. Parenthetical 
entries show the results when not using kernel density estimation to supplement the X–Y map constructions.

Variable index

DS 1 DS 2 DS 3

ti yi xi ti yi xi ti yi xi

1 99.2 (0) 100 (0) 99.0 (0) 99.8 (51.6) 99.4 (98.6) 99.6 (99.2) 99.5 (99.6) 99.5 (99.4) 99.7 (99.6)

2 98.3 (92.2) 100 (0) 99.6 (0) 89.9 (94.6) 99.6 (0) 99.6 (0) 95.7 (79.6) 99.7 (98.2) 99.6 (97.3)

3 94.5 (90.3) 99.8 (0) 99.9 (0) 99.3 (99.1) 99.4 (64.9) 99.5 (62.8) 83.0 (1.6) 99.2 (97.1) 99.1 (96.5)

4 99.8 (4.0) 99.6 (0) 99.7 (0) 98.6 (78.1) 99.1 (26.9) 99.3 (26.3) 94.8 (10.9) 99.6 (99.3) 99.7 (99.5)

5 85.9 (0) 99.9 (0) 99.6 (0) 98.8 (61.4) 99.4 (0) 99.6 (0) 84.6 (0) 99.6 (98.5) 99.6 (99.2)

6 79.7 (0) 99.6 (0) 99.7 (0) 94.9 (76.1) 99.9 (0) 99.6 (0) 71.3 (64.2) 99.7 (0.7) 99.7 (0.7)

7 97.2 (0) 99.8 (0) 99.8 (0) 79.7 (60.8) 99.8 (32.0) 99.7 (29.1) 0 (0) 98.9 (0) 99.0 (0)

8 95.9 (0) 99.7 (0) 99.7 (0) 72.1 (0.9) 99.6 (47.0) 100 (41.7) 0 (0) 99.0 (27.4) 99.4 (29.8)

9 96.0 (0) 98.3 (87.4) 97.6 (73.5) 68.9 (70.6) 99.8 (88.0) 98.3 (84.4) 0 (0) 99.7 (99.7) 99.6 (99.2)

10 99.2 (0) 99.5 (3.1) 99.4 (0.5) 2.8 (8.7) 99.2 (4.2) 99.7 (3.6) 1.2 (0) 98.1 (0) 98.0 (0)
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Figure 10.   Marginal Probability Density Functions (pdfs) for DS1 in the Y representation: each pdf for DS1 
(solid) is compared with its corresponding pdf from synthetic data (dashes). Variables are cited with the names 
used in their respective resource and with the names used in this report parenthetically.
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Figure 11.   Marginal Probability Density Functions (pdfs) for DS2 in the Y representation: each pdf for DS2 
(solid) is compared with its corresponding pdf from synthetic data (dashes). Variables are cited with the names 
used in their respective resource and with the names used here parenthetically.
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Figure 12.   Marginal Probability Density Functions (pdfs) for DS3 in the Y representation: each pdf for DS3 
(solid) is compared with its corresponding pdf from synthetic data (dashes). Variables are cited with the names 
used in their respective resource and with the names used in this report parenthetically.
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approximated normality in both the Y and T but also showed some deviation from normality. The interpretation 
of these findings in the context of data modeling may aid in understanding the limits of both the multivariate 
SPs and normality approximations in this report’s data and beyond. For example, determining the limiting 
percentage of the random projection tests may be informative in the modeling context. In summary, we offer a 
definition for an insufficient sample size in the context of synthetic data. When considering a given sample with 
d attributes and specified covariance structure, a sample size that does not allow reconstructing its population 
can be considered as insufficient. In future work, we will apply the methods in this report to understand the 
minimum sample size, relative to d and a given covariance structure, that permits recovering the population.

Table 7.   Multivariate MMD tests: the MMD test was used to compare the sample with 1000 synthetic samples. 
MMD test quantities are averages over 1000 trials.

MMD test

x

 DS 1
MMDc 0.2673

MMD
2
u

0.0008

 DS 2
MMDc 0.2667

MMD
2
u

− 0.0002

 DS 3
MMDc 0.2681

MMD
2
u

− 0.0001

y

 DS 1
MMDc 0.2673

MMD
2
u

0.0005

 DS 2
MMDc 0.2667

MMD
2
u

− 0.0008

 DS 3
MMDc 0.2681

MMD
2
u

− 0.0007

t

 DS 1
MMDc 0.2673

MMD
2
u

− 0.0005

 DS 2
MMDc 0.2667

MMD
2
u

− 0.0006

 DS 3
MMDc 0.2681

MMD
2
u

0.0006
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Table 8.   Multivariate normality tests: for the random projection test, 1000 random projection vectors (1000 
tests) were applied to a given sample and each test result was compared against normality; the percentage of 
times the test was not rejected was tabulated. For synthetic (syn) data, the same 1000 projection vectors were 
used to test 100 synthetic samples from a given dataset. The percentage of times the test was not rejected was 
tabulated for each synthetic sample and percentages were averaged over the 100 synthetic samples. Mardia tests 
were applied to the sample and to a synthetic sample selected at random.

Random 
projection (%)

Mardia 
skewness

Mardia 
kurtosis

x

 DS 1
  Sample 40.2 < 0.0001 < 0.0001

  Syn 41.2 < 0.0001 < 0.0001

 DS 2
  Sample 74.3 < 0.0001 < 0.0001

  Syn 74.1 < 0.0001 < 0.0001

 DS 3
  Sample 98.9 < 0.0001 < 0.0001

  Syn 99.8 < 0.0001 < 0.0001

y

 DS 1
  Sample 98.9 < 0.0001 < 0.0001

  Syn 100.0 0.9445 0.4287

 DS 2
  Sample 97.4 < 0.0001 < 0.0001

  Syn 99.9 0.4520 0.4374

 DS 3
  Sample 94.8 < 0.0001 < 0.0001

  Syn 100.0 0.2865 0.0859

t

 DS 1
  Sample 99.0 < 0.0001 < 0.0001

  Syn 100.0 0.1620 0.2143

 DS 2
  Sample 94.1 < 0.0001 < 0.0001

  Syn 100.0 0.8516 0.1933

 DS 3
  Sample 94.5 < 0.0001 < 0.0001

  Syn 100.0 0.6390 0.4010
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Data availability
The link to publicly available data is provided in text. Mammography summary data can be obtained upon 
request to the corresponding author: John Heine (john.heine@moffitt.org). Kernel parameters are also available 
upon request.
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