Skip to main content
. 2023 Jul 14;14:1217414. doi: 10.3389/fgene.2023.1217414

TABLE 4.

Performance of LogitDA and KNNDA compared to the other methods in terms of prediction AUC across four targeted therapies and six chemotherapies.

Method Geeleher et al. (2014) MOLI complete (expression data) MOLI complete (multi omics data) LogitDA KNNDA
Drug (test dataset)
Docetaxel (GSE6434) 0.74 a 0.31 a X 0.76 ± 0.019 0.87 b ± 0.010
Erlotinib (GSE33072) 0.60 0.73 X 0.94 ± 0.004 0.90 ± 0.004
Sorafenib (GSE33072) 0.45 0.65 X 0.70 ± 0.003 0.71 ± 0.044
Cetuximab (PDX) 0.58 0.51 0.53 0.93 ± 0.006 0.95 ± 0.018
Erlotinib (PDX) 0.67 0.39 0.63 1.00 ± 0.000 1.00 ± 0.000
Gemcitabine (PDX) 0.59 0.52 0.64 0.83 ± 0.015 0.62 ± 0.006
Paclitaxel (PDX) 0.52 0.69 0.74 0.68 ± 0.022 0.65 ± 0.073
Cisplatin (TCGA) 0.62 0.75 0.66 0.62 ± 0.012 0.67 ± 0.028
Docetaxel (TCGA) 0.59 0.63 0.58 0.81 ± 0.005 0.77 ± 0.041
Gemcitabine (TCGA) 0.53 0.64 0.65 0.62 ± 0.004 0.68 ± 0.031
a

The initial input genes of the work of Geeleher et al. (2014) and MOLI complete were the same as those of LogitDA and KNNDA, as we could not assess the input genes of the work of Geeleher et al. (2014). The parameters of MOLI complete were optimized using the training data.

b

The bold-faced values indicate the highest prediction AUC among the five methods for a drug.