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ABSTRACT
The phenotype of schizophrenia, regardless of etiology, represents the most studied psychotic disorder with respect to
neurobiology and distinct phases of illness. The early phase of illness represents a unique opportunity to provide
effective and individualized interventions that can alter illness trajectories. Developmental age and illness stage,
including temporal variation in neurobiology, can be targeted to develop phase-specific clinical assessment, bio-
markers, and interventions. We review an earlier model whereby an initial glutamate signaling deficit progresses through
different phases of allostatic adaptation, moving from potentially reversible functional abnormalities associated with
early psychosis and working memory dysfunction, and ending with difficult-to-reverse structural changes after chronic
illness. We integrate this model with evidence of dopaminergic abnormalities, including cortical D1 dysfunction, which
develop during adolescence. We discuss how this model and a focus on a potential critical window of intervention in the
early stages of schizophrenia impact the approach to research design and clinical care. This impact includes stage-
specific considerations for symptom assessment as well as genetic, cognitive, and neurophysiological biomarkers.
We examine how phase-specific biomarkers of illness phase and brain development can be incorporated into current
strategies for large-scale research and clinical programs implementing coordinated specialty care. We highlight working
memory and D1 dysfunction as early treatment targets that can substantially affect functional outcome.
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NEURODEVELOPMENT OF PSYCHOTIC DISORDERS

In the late 20th century, phenomenological descriptions of
young persons characterized behavioral, motoric, and cogni-
tive alterations as antecedents of later development of psy-
chosis (1–3). While nonspecific, findings offered indirect
evidence of altered neurodevelopment in those at risk for
psychosis, in line with a neurodevelopmental model of
schizophrenia (SZ) (4–6). Psychosis, as a syndrome, is char-
acterized by symptoms including hallucinations, delusions,
and changes in behavior and communication; these can be
present in different disorders. However, the SZ phenotype, as
a disorder, is viewed as the representative psychotic disorder.
We acknowledge that the diagnosis of SZ is based on
expression of a common phenotypic pathway arising from
various possible genetic and environmental interactions. The
recent National Institute of Mental Health Research Domain
Criteria emphasis on dimensional biological and cognitive
processes that lead to mental health and illness does not result
in diagnostic classifications, which in the past have posed
limitations in elucidating neurobiology associated with psy-
chiatric symptoms. Indeed, there have been ongoing consid-
erations regarding alternatives to the SZ construct that may
lead to new nomenclature and novel phenotypic classifications
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(7). To accommodate the evolving shift away from viewing SZ
as a distinct disorder with unitary causality, we will refer to the
phenotype of SZ in this article. This phenotype of SZ has
provided the opportunity to study genetics and environment,
biomarkers, and phases of illness in an enriched sample.
Family studies led to the discovery of heritable markers of brain
processing associated with the SZ phenotype, for example,
smooth pursuit eye movement dysfunction (8,9), sensory
gating deficits (10), and certain cognitive deficits, such as
working memory (WM) (11,12), associated with familial
vulnerability for psychosis. Potential risk genes, such as single
nucleotide polymorphisms, copy number variants, and de
novo mutations, were associated with later development of
psychosis (13). A recently updated large genome-wide asso-
ciation study (14) in SZ phenotype cases and controls identi-
fied 270 risk loci. The role of environmental factors in
psychosis risk is also critical, including numerous nonspecific
influences during prenatal, perinatal, early childhood, and
adolescent development (15). In the diathesis–stress model,
genetic risk interacts with environmental influences to result in
altered brain development. According to this concept, transi-
tion to psychosis and subsequent chronic illness relates to
neurodevelopment mediated by common and/or rare gene
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alterations in interaction with various adverse environmental
influences at any time during brain development, starting in
utero up to close to onset of illness (16). Thus, early environ-
mental influences (e.g., infections, nutritional deficiency, and
neglect during intrauterine to early childhood period) may exert
influences that can alter neurodevelopment directly, or indi-
rectly through gene expression. Later events (e.g., drugs, brain
injury) more proximal to the onset of psychosis may disrupt
dopaminergic homeostasis. This model is neither unitary nor
discrete, and a person may undergo exposure to multiple risk
factors. This developmental perspective promotes under-
standing of how distinct phases in the pathophysiology of the
phenotype of SZ deviate from neurotypical brain development
spanning the prenatal period through adulthood.
EARLY PHASE OF ILLNESS

Alterations in behavior across various dimensions, lasting
from weeks to years, prior to emergence of psychosis have
been described. Nonspecific at-risk symptoms in childhood
and adolescence may include anxiety, depression, reduced
emotional experience, cognitive difficulties, and social with-
drawal (17). Specific syndromes identifying psychosis pro-
drome are embodied in clinical high-risk (CHR) (18) and ultra
high-risk (UHR) (19,20) constructs. CHR/UHR classifications
are primarily based on acute or increasing subthreshold
positive symptoms, including unusual thought content,
perceptual anomalies, and disordered thinking/speech, with
relatively intact reality testing. In individuals identified as
experiencing attenuated psychosis syndrome (APS), transi-
tion to threshold psychosis occurs in an estimated 20% to
35% within 2 to 3 years (21). Young persons who do not
transition may experience persistent symptoms, in some
cases consistent with schizotypy or another nonpsychotic
disorder, or may experience symptom resolution. Innovative
transdiagnostic clinical staging models developed in recent
years aim to provide conceptual frameworks for character-
izing risk, development, and progression of a broad array of
youth mental health outcomes (22–26). Risk calculator
(27–32) and machine learning (33,34) approaches, which
incorporate an array of risk factors, have been developed to
predict progression to first-episode psychosis (FEP). Thus,
the FEP outcome is inherently probabilistic rather than
determined (24), as delineated in a growing literature sup-
porting the construct of transdiagnostic pluripotential risk
(35).

The emergence of FEP is often associated with changes
in mood, anxiety, cognition, and substance use problems
resulting in uncertain/inconsistent endorsement of target
symptoms, phenomenological heterogeneity, and diag-
nostic uncertainty. Yet as the clinical course evolves over
time, eventual clinical diagnosis in FEP becomes evident
and remains relatively stable for SZ (36). In the United
States, about 100,000 young people experience FEP annu-
ally, with a lifetime prevalence of 3%. About one-third of
those with FEP develop the phenotype of SZ; the remainder
are diagnosed with a range of nonaffective, affective, and
substance-induced psychoses. Traditionally, SZ has been
viewed as an illness with limited recovery rates, high
disability-adjusted life years, and a 20% reduction in
Biological Psychiatry: Glob
average life expectancy, which underscores the need for
more effective interventions.
IMPORTANCE OF EARLY INTERVENTION

Intervention programs in young persons at CHR have been
implemented in numerous countries and aim to attenuate or
possibly prevent progression to psychosis, mostly through
nonspecific treatments and education (37). In FEP, early
intervention can preserve or improve functional abilities (38–40)
and potentially alter neurobiological progression of untreated
illness. Educational and social developments proceed rapidly
during adolescence and young adulthood, and even brief
disruption can produce enduring consequences for attaining
important maturational milestones. These, in turn, lead to
challenges for young persons and their supports, most
commonly their family. Consequently, individuals may experi-
ence emotional distress, social alienation, and stigma (41). It
has been postulated, although with inconsistent empirical
support, that the duration of untreated psychosis (DUP) ap-
pears to exert adverse or toxic effects on brain functioning (42).
DUP has been associated with poorer outcome (43), even
years later (44), leading the World Health Organization to
recommend constraining DUP to ,3 months. Long mean DUP
of several years in the representative North American FEP trial
(45) illustrates how far the field is from attaining the goal of
early intervention, particularly in community settings in the
United States. This critical delay is due to multiple contributors,
including limited mental health literacy in the general public,
absence of universal screening and mobile detection strate-
gies, limited access to dedicated care, and societal stigma. In
addition, lack of significant improvement within a few months
to years after onset is associated with limited long-term re-
covery (46,47). These harsh findings highlight the pressing
need to invest in effective prevention and early intervention
approaches to reduce rates of outcome and disability that
have not changed significantly in many years despite novel
antipsychotics and other treatment modalities.

Typical FEP treatment in general psychiatric settings makes
little differentiation between illness phases, and young persons
with FEP may receive similar treatment as individuals with
chronic illness. Consequently, individuals with FEP are
particularly sensitive to both therapeutic and side effects of
medications (48). They can easily experience excessive
exposure to antipsychotics and a failure to implement
recovery-oriented interventions. For young patients, traditional
intervention approaches in settings serving more chronically ill
persons can contribute to resistance to illness acceptance and
proposed treatment, demoralization, and enforced stigma of
serious mental illness, leading to poor outcome.

FEP-specific interventions in dedicated settings were
developed in Australia and Europe in the past 3 decades and
have been more widely implemented in the United States since
2015 through support of the Substance Abuse and Mental
Health Services Administration. FEP-specific interventions are
provided by a dedicated team of coordinated specialty care
(CSC), including case management, psychotherapy, medica-
tion management, supported employment and education, and
family support and education. A recent meta-analysis (49) of 10
randomized controlled trials in FEP provides empirical support
al Open Science July 2023; 3:340–350 www.sobp.org/GOS 341
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for improved outcomes in individuals engaged in 6 to 24
months of early intervention services, compared with treatment
as usual. However, 10-year outcome data from the OPUS trial
did not support sustained clinical and functional improvements
in individuals with CSC compared with usual care, highlighting
the need for additional longer-term outcome studies (50). CSC
programs in the United States remain scarce in many regions
(51) and are thus inaccessible to many individuals experiencing
FEP.
NEURODEVELOPMENTAL MECHANISMS

Prior Phase-Specific Model of SZ Pathophysiology

Individuals with FEP are more sensitive to standard D2 re-
ceptor (D2R)–blocking antipsychotics compared with those
with chronic illness (52,53). Similar early-stage sensitivity was
recently noted with respect to novel glutamatergic in-
terventions (54). Thus, treatment response appears greater in
early stages, suggesting that pathophysiology of illness differs
according to illness stage. Krystal and Anticevic (55) previously
outlined a model of stage-specific pathophysiology and its
dynamic evolution over time. In this model, the earliest illness
stage (predrome) is marked by minimally symptomatic gluta-
matergic hypofunction. Allostatic adaptations to this initial
excitatory deficit, particularly reduced GABA (gamma-amino-
butyric acidergic) signaling, lead to cortical disinhibition/over-
excitation during the prodromal phase. This, in turn, causes
abnormalities in neural tuning, oscillations, and functional
Allostatic Phase-Specific Pathophysiology
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hyperconnectivity, which produce frank psychotic symptoms,
and cognitive impairment including WM dysfunction. Further
adaptations to hyperexcitation and hyperconnectivity, such as
accelerated synaptic pruning, cause atrophy and worsening
neural circuit dysfunction over time, producing worsening
psychosis and potentially irreversible structural changes. One
limitation of this exciting model is that it addressed dopami-
nergic systems only in passing. Here, we expand this model
(Figure 1) to incorporate literature on developmental and
phase-specific changes in dopaminergic function, with a
particular focus on dopamine D1Rs in the prefrontal cortex
(PFC).

Normal and Abnormal Development, Focusing on
PFC Dopamine D1 System

The Krystal and Anticevic (55) model coheres with earlier
suggestions that SZ pathophysiology reflects abnormal early
neurodevelopmental vulnerability, with frank illness only man-
ifesting in the context of further adolescent brain development
(56,57). Adolescence is marked by profound normative
changes in dopaminergic innervation, receptor levels, and
signaling, and behavioral responses to dopaminergic agents
(e.g., stimulants) peak during adolescence (56–59). This con-
tributes to broader maturation of the PFC, which involves
synaptic pruning and myelination continuing well into the third
decade in humans (60,61). Indeed, adolescence has been
proposed as a neurodevelopmental critical window of height-
ened plasticity for PFC and its functions, including WM (58).
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Figure 1. Developmental schema for neurobio-
logical progression of schizophrenia, adapted from
Krystal and Anticevic (55) by incorporating dopami-
nergic components. D2R, D2 receptor; DA, dopa-
mine; E:I, excitatory-to-inhibitory balance; GABA,
gamma-aminobutyric acid; PFC, prefrontal cortex.
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Dopaminergic midbrain neurons continue to arborize into
the nucleus accumbens as well as into the PFC across
adolescence. While these changes affect the entire PFC,
dopaminergic innervation is particularly increased during
adolescence in cortical layer 3 of the dorsolateral PFC, which
is strongly implicated both in WM and SZ phenotype patho-
physiology (59,62,63). Human postmortem data indicate that
D1R levels increase from infancy through adulthood, while D2R
levels decrease (64). Response to dopamine receptor stimu-
lation in the PFC also changes dramatically during adoles-
cence. Dopamine effects on PFC neurons are complex, with a
mix of excitatory and inhibitory impacts varying across cell
types, subcellular components, and developmental stages.
D1R signaling at low levels directly increases PFC pyramidal
neuronal firing by enhancing NMDA response, while at higher
dopamine levels, the D1R has a net inhibitory effect on pyra-
midal cells via modulation of dendritic potassium channels
(63,65) as well as through excitation of interneurons, particu-
larly parvalbumin-positive fast-spiking interneurons (FSNs)
(63,66,67). D1R responsivity in PFC neurons generally in-
creases across adolescence (68–70). D1R and D2R signaling
have a complex interaction in PFC, with some similar and
some opposing effects (69,71). This interaction varies ac-
cording to basal dopamine levels, which can shift the direction
of D1R effects, contributing to inhibitory tuning (63). The
interaction also varies dramatically across adolescence, as
D2R effects change direction from inhibitory to excitatory on
FSNs during this period (thereby increasing cortical inhibition)
(56). FSNs, implicated in WM and in SZ pathophysiology, show
progressive increases in synaptogenesis throughout primate
development, including adolescence, and are also particularly
sensitive to dopamine modulation compared with other in-
terneurons (62,65). Dopamine also directly accelerates the
development of FSNs and their synapses (72). Dopaminergic
maturation in the PFC thus interacts with the maturing
GABAergic system, contributing to increased inhibition and
reduced excitatory-to-inhibitory balance across adolescence
(62,69). Developmental dopamine dysregulation can be
impacted by abnormalities of perineuronal nets, extracellular
matrix structures that increase across adolescence and pro-
tect parvalbumin interneurons from damage while also
reducing their plasticity and more broadly contributing to
closure of developmental critical windows (73,74).

In addition to indirect effects via GABAergic interneurons,
dopamine’s direct effects on glutamatergic neurons also
change across adolescence. In particular, the excitatory
component of D1R signaling on PFC pyramidal neurons in-
creases across adolescence, partly through alterations in
NMDA receptor function (56,69,75,76).

While we focus on the PFC here, PFC dopaminergic sys-
tems also interact with striatal dopamine systems and related
limbic circuitry (57,77). Activity of the striatal dopamine system
peaks during adolescence (78,79), and striatal hyper-
dopaminergia is strongly associated with psychosis (80). In
contrast, PFC dopamine is abnormally low in SZ (77,81).
Dopamine systems in the PFC and accumbens can have
reciprocal or antagonistic effects (82,83), and this interaction
changes dynamically across adolescence (84–86). Striatal
dopamine is already elevated in the prodromal phase,
increasing further with progression to frank psychosis (87).
Biological Psychiatry: Glob
Beyond direct corticostriatal interactions, the hippocampus
and amygdala also participate in circuits linking to the PFC as
well as the ventral striatum, and are likely to be important in
neurodevelopmental risks for psychosis. Early developmental
injury to the hippocampus recapitulates features of SZ in ani-
mal models in part through dysregulation of the PFC, and
disruption of the PFC may, in turn, cause dysregulated hip-
pocampal and amygdala function, particularly in the context of
elevated stress (57). Disturbance of PFC maturation may thus
contribute to progression of the striatal dopamine and limbic
dysfunction component of pathophysiology, and vice versa.

Adolescent neurodevelopmental vulnerabilities can be
exacerbated by adverse environments that produce anxiety
and stress. In animal models, nondopaminergic agents
including GABAergic modulators used clinically as anti-anxiety
medications, as well as metabotropic glutamate modulators,
demonstrate the ability to prevent development of hyper-
dopaminergic states (57,88). Such mechanisms may have
important interactions with environmental risk and resilience
factors—environmental enrichment also blocks development
of hyperdopaminergia (89), and adverse environmental effects
on psychosis risk are likely mediated at least in part by the
increase in anxiety and stress they cause (90–92).

Updated Model Incorporating Dopamine Systems

While many details remain unknown, the above literature
points to the need to incorporate dopaminergic systems into
the prior model of allostatic phase-specific pathophysiology.
Dopaminergic maturation in adolescence and early adulthood
represents a key illness phase vulnerability point in SZ path-
ophysiology, and PFC dopamine abnormalities contribute to a
disinhibited and hyperconnected PFC associated with WM
impairment (57,93). In models of SZ, the PFC dopamine sys-
tem appears to be shifted toward greater D1R sensitivity and
reduced D2R sensitivity. Reduced D2R sensitivity directly im-
pacts interneuron activity, leading to pyramidal disinhibition.
This disinhibition likely drives the PFC hyperglutamatergia and
hyperconnectivity found using magnetic resonance imaging
(MRI) in early-stage but not later-stage illness, perhaps owing
to progressive synaptic loss (94–96); D1R agonism reduces
PFC pyramidal cell hyperconnectivity in primates (97). The
impact of increased D1R sensitivity may depend on basal
dopamine levels, as D1R is more excitatory for pyramidal cells
when dopamine levels are low but is more inhibitory when
dopamine levels are high; the weight of the evidence indicates
that dopamine levels are low in the PFC in SZ. These dopamine
effects are likely to be greatest during adolescence and young
adulthood, although dopamine abnormalities may also impact
earlier stages of pathophysiology.

Application of the Developmental Model to Illness
Phase and Potential Interventions

This updated model integrates glutamatergic and dopami-
nergic abnormalities into a dynamic model of pathophysiology
that can guide biomarker development and therapeutic
development specific to illness phase and brain development.
An implication is that dopamine modulators other than D2R-
blocking antipsychotics should be considered in early illness
and for symptoms outside the positive symptom domain. The
al Open Science July 2023; 3:340–350 www.sobp.org/GOS 343
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combination of abnormally low dopamine, increased D1R
sensitivity, and reduced D2R sensitivity points to potential
benefits of a D1R agonist, which in the low-dopamine regime
would be expected to bring pyramidal neuronal firing into a
more optimal range, improving inhibitory tuning and reducing
hyperconnectivity. Given the inverted-U effects of D1R on PFC
physiology and WM (63,77), a partial D1R agonist would be
expected to have a similar effect but with reduced risk of
overshooting the optimal range, compared with a full D1R
agonist. Challenges of effective PFC D1R stimulation and se-
lection of a novel partial D1R agonist as a candidate to improve
WM have been described (77).

Another critical implication is that biomarker and treatment
studies should stratify according to illness phase, and further
work is needed to identify appropriate definitions of illness and
brain development phases. Initially, specific age or DUP cut-
offs may be selected, but eventually, biomarker-based staging
may specify an individual’s neurodevelopmental phase and
illness phase, providing more accurate stratification. The crit-
ical window hypothesis suggests that adolescence and early
adulthood represent a period in which treatments work differ-
entially and that aberrant plasticity developed may get
cemented once this window closes. This highlights the ur-
gency of implementing treatments specifically effective during
this critical window to prevent illness progression or even
reverse it. A more speculative implication of the critical window
concept is that treatments that reopen this window of neuro-
plasticity (for example, histone deacetylases) could potentially
reinstate sensitivity even during the chronic phase of illness
(92). Interventions to prolong neuroplasticity could be com-
bined with other treatments to normalize circuit functioning.

Advances in phase-specific treatment will depend critically
on biomarker development. These could include measures that
more precisely capture an individual’s developmental stage
and illness phase and/or different components of the patho-
physiological model and its behavioral sequelae, including
prefrontal dopamine levels, D1R sensitivity, prefrontal tuning,
and WM. These considerations have driven the design of the
TRANSCENDS (Translational Neuroscience Computational
Evaluation of a D1R Partial Agonist for Schizophrenia) study
including D1R intervention and a WM biomarker (77).
UNIQUE CHALLENGES AND OPPORTUNITIES IN
EARLY PSYCHOSIS ASSESSMENT AND TREATMENT

Stage-Specific Screening, Assessment, and
Ttreatment

Warning signs of early psychosis (EP) may arise in nonclinical
settings (e.g., school or work) or clinical settings without
proper recognition, and the condition often goes unaddressed,
contributing to DUP. Interventions for CHR/UHR persons
include different, mostly nonpharmacological, modalities and
may protect against transition to psychosis, which occurs in a
minority of persons. Reasons for nontransition remain to be
better elucidated (98) and may include protective behavioral,
environmental, and genetic factors. Young persons with FEP
commonly endorse changes in mood, anxiety, and cognition,
and may use substances, contributing to phenomenological
heterogeneity and delayed identification of psychosis. The
344 Biological Psychiatry: Global Open Science July 2023; 3:340–350
clinician needs to be comfortable with diagnostic uncertainty in
FEP (99,100). Initial diagnoses of affective psychosis (i.e.,
major depressive or bipolar disorder) may change to non-
affective psychotic disorders and (less commonly) vice versa.
Over time, considering clinical course, resolution of symptoms,
relapse, or chronic illness, the clinical diagnosis becomes
evident and remains relatively stable for SZ (36). Conveying
diagnostic fluidity to the person with EP and their family
members protects them from confusion and potential stigma
associated with premature diagnosis and allows treatment to
remain symptom focused.

Over the past 20 years, the psychiatric field has moved
toward implementation of CSC in persons with EP. Here, a
small interactive team of providers offers multiple treatment
components in settings dedicated to young persons. Longi-
tudinal assessment of psychosis and nonpsychosis symptom
domains represent an important component of CSC and al-
lows for more accurate eventual diagnosis. Stage-specific
assessments of core psychosis symptoms include brief
screeners (101–103) and structured assessments (18,104) for
CHR and FEP (105,106). Other important EP assessments
include mood, anxiety, cognition, substance use, and devel-
opmental disorders (e.g., attention-deficit/hyperactivity disor-
der, autism spectrum). Assessment of functional (role/social)
capacity informs an individualized treatment plan across CSC
components, minimizing disruption of the expected develop-
mental trajectory in this vital developmental period. For FEP,
the Early Psychosis Intervention Network Core Assessment
Battery (107) was specifically developed, incorporating vali-
dated and widely used instruments.

Increasingly, psychiatry has moved away from placing undue
emphasis on a single intervention in FEP (i.e., antipsychotic
monotherapy), instead embracing combination treatments of
mostly pharmacological interventions with different behavioral
modalities. CSC effectiveness and its longer-term effects
beyond CSC (108) may result from synchronized delivery of
multiple treatment components by a small team, albeit early
benefits may not be sustained (50). In the United States, FEP
services are modeled after the RAISE (Recovery After an Initial
Schizophrenia Episode) trial (45) and longstanding EP services in
other countries. Many young persons with EP make their own
treatment decisions but remain dependent on logistical, finan-
cial, and emotional support from their families. Including families
in formulating an individualized treatment plan can increase
implementation of services and potentially improve outcomes.
While we do not want to overstate the benefits of CSC, the
dedicated setting and treatment team are best positioned to
adopt new approaches.
Potential Role of Biomarkers in EP Assessment

For many years, the field has explored potential biomarkers
associated with psychosis. Biomarkers can improve our un-
derstanding of neuropathological mechanisms involved in
development of psychosis and assist in illness staging by
contrasting the clinical phenotype against static or illness-
phase dynamic biological markers, resulting in improved
diagnosis and prediction of clinical course. Biomarkers could
potentially be targeted for individualized treatment or serve as
endpoints in treatment studies. Candidates for biomarkers are
www.sobp.org/GOS
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derived from findings in genetics, electrophysiology, neuro-
imaging, neurocognition, inflammation, and neuroendocri-
nology (109). For example, in 40 individuals with CHR (110),
conversion to psychosis was predicted with high accuracy by
combining demographic and clinical data with blood bio-
markers and quantitative electroencephalography (EEG).
Similarly, a baseline panel of 15 serum analytes modulating
immune system function, hypothalamic-pituitary function, and
oxidative stress differentiated CHR persons who developed
psychosis from unaffected individuals with high predictive
validity (111). While promising, larger-scale and adequately
powered studies are necessary to explore the role of bio-
markers in psychosis detection and how they can inform
treatment course.

Cognition represents a strong predictor of functional
outcome and quality of life in SZ (112). The illness is associated
with dysfunction in multiple domains, including attention, WM,
semantic memory, executive functioning, and social cognition.
Cognitive difficulties may present in the predromal phase, can
worsen during prodomal and FEP phases, and respond poorly
to existing interventions. Even in EP patients whose positive
psychotic symptoms are effectively treated, cognitive diffi-
culties (113), particularly in WM, significantly affect indepen-
dent daily functioning and scholastic and occupational
advancement. PFC-dependent WM impairment (77) presents
an endophenotypic marker of psychosis, given its occurrence
irrespective of clinical acuity (114–116) and in unaffected first-
degree family members (117,118). In fact, WM may differen-
tiate between those who do versus do not transition to psy-
chosis (119). Thus, WM represents a highly suitable candidate
as a biomarker and target of novel interventions in EP. The
recently established Accelerating Medicines Partnership-
Schizophrenia represents a ground-breaking new phase in
EP research (120). The Accelerating Medicines Partnership–
Schizophrenia is a global partnership among the National In-
stitutes of Health, the U.S. Food and Drug Administration, and
multiple public and private organizations. The Accelerating
Medicines Partnership–Schizophrenia focuses specifically on
CHR to identify promising biological targets and biomarkers
and build an infrastructure for testing CHR-specific treatments
in over 2000 youths. Over 2 years, participants will undergo
clinical and biomarker assessments, including psychopathol-
ogy, cognition, genetics, behavior, language analysis, and
brain structure and function, to evaluate whether biomarkers
can predict individual clinical trajectories. The Early Psychosis
Intervention Network (121), through eight regional hubs
including over 100 FEP clinics in 17 states, represents a similar
but more intervention-oriented initiative to develop improved
CSC models.
Implementing Biomarkers Into CSC for EP and
Potential Novel Compounds

Large-scale networks focused on phenotyping EP provide a
promising platform to investigate specific and individualized
treatments, based on both conceptual models of neuro-
developmental staging and empirical findings provided by
biomarkers. During this stage of neurodevelopment and early
illness, a time-limited window of opportunity exists to change
the curve from poor outcome and prognosis commonly
Biological Psychiatry: Glob
associated with more chronic illness. This assertion is sup-
ported by neuroplasticity during brain development in
adolescence and early adulthood, which diminishes with aging
and illness chronicity. Higher rates of treatment response and
remission in EP (52) support temporary potential reversibility of
neurochemical brain changes associated with psychosis.

Recent biomarker studies in EP, including neuroanatomy
(122,123), neurochemistry (124,125), EEG (126), peripheral in-
flammatory markers (126–128), and oxidative stress (129),
were found to relate to conversion to psychosis (123), anti-
psychotic response (124,127), and functional outcome
(122,128–130). Current advances of in-depth phenotyping in
EP combining demographic, clinical, and stage-specific
biomarker findings offer the exciting potential for earlier
detection and more targeted treatment options improving
clinical and functional outcome. Potential biomarkers in EP
settings include digital phenotyping, serum analytes, genetic
markers, cognitive functioning, EEG, and MRI. Digital pheno-
typing in behavioral science (131) is rapidly expanding and has
been implemented in persons with psychosis (132), in partic-
ular actigraphy (133) and ecological momentary assessment
(134), to monitor mood and activity. Serum analytes can
include markers of stress, inflammation, and oxidative stress
(135). Molecular genetic studies (13,136) have identified vari-
ations in neurotrophic, serotonin, cell adhesion, and sodium-
channel systems and their association with neurocognition
and social cognition in SZ. Last, commercial pharmacogenetic
testing is rapidly expanding and provides information about
medication metabolism to tailor medication choices to in-
dividuals (137).

Cognitive testing, EEG, and MRI can monitor possible bio-
markers but are more labor intensive and costly, requiring
access to suitable equipment. Cognitive batteries exist in pa-
per and computerized format that can be administered online.
The MATRICS Consensus Cognitive Battery (138) has been
widely implemented in SZ. The PhenX Toolkit, a Web-based
catalogue of high-priority assessment measures (139) for
close to 1000 conditions, also includes neurocognition (140).
Promising biomarker paradigms in EEG include mismatch
negativity (141), steady-state responses (142), and resting EEG
(143). Structural brain MRI can reveal minor developmental
abnormalities or, rarely, clinically significant abnormalities;
multivariate patterns of subtle structural changes can help
predict psychosis transition risk and functional outcomes in
CHR (33). Potential utilization of biomarkers, either alone or in
combination, in identifying illness, monitoring progression, and
governing treatment choices remains a promising concept.

An area of particular promise is the incorporation of bio-
markers into interventional studies. Past studies have shown
that antipsychotics do not prevent psychosis (144), but mod-
ulation of the dopaminergic system remains a focus of psy-
chosis intervention. For example, as outlined above, selective
enhancement of prefrontal D1R signaling may enhance pre-
frontal cortical activity and downregulate mesolimbic hyper-
activity associated with psychosis symptoms. Over the past 20
years, multiple efforts have attempted to augment cortical
glutamate functioning based on the NMDA hypothesis in SZ
(145). While exploration of NMDA receptor hypofunctioning
has informed our understanding of SZ pathophysiology,
modulation of NMDA activity has produced variable success
al Open Science July 2023; 3:340–350 www.sobp.org/GOS 345
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using glycine, D-serine, and cycloserine (146) or allosteric
metabotropic glutamate receptor (147) agonists. Other po-
tential agents exist for addressing cortical excitatory-to-
inhibitory balance imbalance proposed by the model put
forth by Krystal and Anticevic (55) and warrant further investi-
gation. These include GABA agonists, N-acetylcysteine, a7
nicotinic acetylcholine receptor agonists, and D-amino acid
oxidase inhibitors. Potential candidate interventions via non-
dopaminergic mechanisms include fatty acids, modulation of
serotoninergic or cannabinoid systems, and immunomodula-
tors (e.g., nonsteroidal anti-inflammatory medications, antiox-
idants, nutrients, vitamins, and anti-inflammatory herbal
products). Beyond pharmacological approaches, cognitive and
neuromodulatory interventions, either alone or in combination,
also hold promise and may benefit from incorporation of
phase-specific biomarkers.

CONCLUSIONS

Development and dissemination of standardized CSC in EP
has been a fairly recent development. CSC care, providing an
individualized multimodal approach, represents our best op-
tion to retain patients in treatment and can be further enhanced
through implementation of biomarkers. Early years of illness
represent a critical and narrow window for potential recovery or
significant clinical improvement. CSC programs also offer ideal
settings to explore novel interventions in EP. In concert with
biomarkers, employing pharmacological or behavioral in-
terventions in EP before progression to more chronic or re-
lapsing illness offers the opportunity to stabilize or reverse the
proposed dynamically developing cortical dysfunction. WM
functions mediated by prefrontal physiology hold particular
promise as an early biomarker with a strong relationship to
outcome (77). Based on our conceptual model, WM provides a
promising target of specific interventions in early illness, before
PFC maturation is completed, and this impairment becomes
more difficult to modulate. Rapidly developing knowledge
regarding potential mechanistic biomarkers, linked with new
large-scale efforts toward standardized assessment in CHR/
UHR and EP, positions the field to discover developmentally
informed phase-specific interventions that are both standard-
ized and personalized. These efforts should ultimately
encompass a broad array of options for prevention and treat-
ment, including medications, neuromodulation, psychother-
apy, and cognitive remediation, to improve long-term
outcomes.
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