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THE BIGGER PICTURE Machine learning models are poised to be widely used in medical applications. This
raises important fairness considerations, since it has been observed that suchmodels often are better at pre-
dicting outcomes or diagnosing diseases in some patient groups compared with others. Here, we ask: why
do such performance differences occur, and what would it take to build models that perform equally well for
all patients?We point out that different factors can lead to underperformance in patient groups, including un-
derrepresentation in the training dataset, technical modeling choices, and differences in the difficulty of the
prediction task between groups. In addition, biased data collection may confound both learning and perfor-
mance evaluation. Narrow algorithmic fairness solutions cannot address all of these issues, and we find that
leveling up model performance may require not only more data from underperforming groups but also bet-
ter data.

Concept: Basic principles of a new
data science output observed and reported
SUMMARY

To ensure equitable quality of care, differences in machine learning model performance between patient
groups must be addressed. Here, we argue that two separate mechanisms can cause performance differ-
ences between groups. First, model performance may be worse than theoretically achievable in a given
group. This can occur due to a combination of group underrepresentation, modeling choices, and the
characteristics of the prediction task at hand. We examine scenarios in which underrepresentation leads
to underperformance, scenarios in which it does not, and the differences between them. Second, the optimal
achievable performancemay also differ between groups due to differences in the intrinsic difficulty of the pre-
diction task. We discuss several possible causes of such differences in task difficulty. In addition, challenges
such as label biases and selection biasesmay confound both learning and performance evaluation. We high-
light consequences for the path toward equal performance, and we emphasize that leveling upmodel perfor-
mance may require gathering not only more data from underperforming groups but also better data.
Throughout, we ground our discussion in real-world medical phenomena and case studies while also refer-
encing relevant statistical theory.
INTRODUCTION

The fairness of machine learning models has come under

increased scrutiny in recent years, with performance disparities

between different groups being one potential source of unfair-

ness.1 The discussion has also reached the medical machine

learning community,2–5 where the effects of group underrepre-

sentation have received much attention. In a recent study, Larra-

zabal et al.3 found improved discriminative performance of chest

X-ray-based thoracic disease classifiers for a given (gender-
This is an open access article und
based) group if that group was more strongly represented in

the training data. Puyol-Antón et al.6 and Lee et al.7 have

observed similar effects of racial representation on the perfor-

mance of cardiac magnetic resonance imaging (MRI) segmenta-

tionmodels. In a parallel development, themedical community is

increasingly recognizing the harms caused by medical research

focusing primarily on male and Western individuals.8,9 Together,

these developments have incited a commendablemovement to-

ward using diverse, representative datasets in medical machine

learning research. However, as we emphasize here (and as has
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been pointed out before), the relationship between a group’s

representation in the training dataset and the model perfor-

mance for that group is complex. Using similar amounts of

data from different groups does not ensure equal model perfor-

mance across groups, and group underrepresentation does not

necessarily result in poor model performance.

Consider the study by Larrazabal et al.3 on chest X-ray-based

thoracic disease classifiers. In this study, even when training a

model only on women, the model’s performance in women

was still worse than in men for some diseases, such as pleural

thickening and pneumothorax. The performance disparity for

these diseases was even greater in the case of a balanced data-

set consisting of 50% women and 50% men. Notably, a clear

case of the opposite pattern (worse performance in men) was

not observed for any disease. Similar observations were made

by Lee et al.7 in the context of cardiac MRI segmentation. These

results illustrate that a given estimation task may be intrinsically

harder in certain groups compared with others. In statistical

terms, the mutual information, or statistical dependence, be-

tween model inputs and outputs may differ between groups.

Clear trends relating relative group representation to relative

model performance are also not always observed. For instance,

Lee et al.,7 while observing a consistent relationship between

racial representation and model performance in such groups,

do not find such a relationship between gender representation

and model performance in those groups. Our recent study on

MRI-based Alzheimer’s disease (AD) classification10 provides

an even more perplexing example. In this study, we found that

increasing the relative representation of women in the training

dataset (while keeping the total dataset size fixed) slightly

improvedmodel performance in both women andmen. Although

the trends were not very strong, they were statistically signifi-

cant. This observation was surprising, considering that one

might expect model performance to decline inmale test subjects

as their relative representation in the training dataset is reduced.

How can we explain these seemingly contradictory observa-

tions? We argue here that two separate mechanisms may cause

a model to underperform in a given group compared with others.

First, the model may perform suboptimally in a group due to a

combination of the group’s (presumably low) representation in

the training dataset, the magnitude and character of the physio-

logical differences between the groups, the modeling choices,

and the selected training procedure. By optimality, we refer

here (and in the following) to the optimal model performance

achievable in this group and for this estimation task, given ac-

cess to infinitely many training samples and ideal modeling

choices. This corresponds to the notion of Bayes optimality.11

Second, this level of optimal achievable performance may differ

between groups due to differences in the intrinsic difficulty of the

estimation task, corresponding to differences in the irreducible

(or Bayes) error. We will discuss several possible causes of

such differences in intrinsic task difficulty and highlight conse-

quences for the path toward (more) equal model performance.

As a final introductory note, we focus here on amodel’s overall

discriminative performance. By this, we mean the model’s ability

to accurately predict the true outcome labels, as measured by,

e.g., the squared prediction error (also known as the Brier score),

the overall prediction accuracy, the area under the receiver-

operating characteristic curve (AUROC), and other similar mea-
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sures. (True and false positive rates individually are not of interest

to us as they can be trivially traded off against each other.) Of

course, other dimensions of model performance may be equally

relevant,5,12 but they are beyond the scope of this piece.
BACKGROUND: ESTIMATOR BIAS, VARIANCE, AND
IRREDUCIBLE ERROR

We begin by introducing a theoretical framework for the

following discussion, adapted from the work of Chen et al.13 In

the following, let X denote input data, G group membership, Y

the unobservable true labels distributed following pðyjx;gÞ, and
Yobs the observed but potentially noisy or biased labels. Assume

furthermore that

byD = hDðx;gÞ (Equation 1)

denotes a model’s prediction for a given input sample ðx; gÞ,
where themodel is learned from a training setD consisting of ob-

servations ðx;g;yobsÞ. Then, given a test sample ðx;gÞ, the expec-
tation ED½ bYD� = ED½hDðx;gÞ� denotes the average model predic-

tion for that test sample over draws of training sets D.

Moreover, given the same test sample ðx; gÞ, the expectation

EY jX = x;G = g½Y � denotes the Bayes optimal prediction for that

sample. Adapting the unified bias-variance decomposition of

Domingos,14 Chen et al.13 provide the following decomposition

(refer to the supplemental information for additional details on

this decomposition) of the expected mean squared prediction

error (or Brier score) for group G over draws of random training

sets D:

ED;XjG
h
ð bYD � YÞ2

i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Expected mean squared error

= EXjG
h
ðED½ bYD� � EY ½Y �Þ2

i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Squared estimator bias

+ ED;XjG
h
ðED½ bYD� � bYDÞ2

i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Estimator variance

+ EXjG
h
ðEY ½Y � � YÞ2

i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Irreducible ðBayesÞ error

:

(Equation 2)

In Equation 2, the first term on the right-hand side quantifies the

error related to the model’s expected deviation from the Bayes

optimal prediction. The second term quantifies the error due to

model variance over repeated training set draws, and the third

term captures the irreducible error that even a Bayes optimal

predictor will incur because Y cannot be perfectly predicted

from X andG. This last term captures what is known as ‘‘aleatoric

uncertainty’’ (or ‘‘data uncertainty’’), while the estimator variance

term captures ‘‘epistemic uncertainty’’ (or ‘‘model uncer-

tainty’’).15,16 Label errors will affect the learned model hDðx;gÞ
and thus influence the bias and variance terms of the decompo-

sition, but not the irreducible error term.

We will refer to back to the three components of Equation 2

throughout the following discussion. Note that for simplicity of

notation, we present the decomposition only for the case of

the mean squared prediction error here, but analogous decom-

positions hold for other losses, including overall error rate; refer

to Chen et al.13 for details. Finally, note that Equation 1 also
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Figure 1. Illustrations of different cases of binary classification
under group underrepresentation
Circles and crosses denote the two possible outcomes (values of y), blue
(majority) and red (minority), two patient groups of interest. The variables x1
and x2 denote model inputs.
(A) Group underrepresentation is not problematic if the same decision
boundary is optimal for all groups.
(B) If the optimal decision boundaries differ between groups, and either the
model or the input data are not sufficiently expressive to capture the optimal
decision boundaries for all groups simultaneously, standard (empirical risk
minimizing) learning approaches will optimize for performance in the majority
group (here, the blue group).
(C) An expressive model could learn a decision boundary (red) that is optimal
for both groups. In practice, however, it is unclear whether a training procedure
will indeed identify this optimal boundary. This is due to inductive biases,19

local optimization schemes, and limited dataset size for theminority groups, all
combined with standard empirical risk minimization, which prioritizes opti-
mizing performance for the majority group.

ll
OPEN ACCESSPerspective
covers the case of models that do not take explicit group mem-

bership into account, by simply constraining the class of permis-

sible models hð$; $Þ to those that ignore the second argument.

THE RELATIONSHIP BETWEEN GROUP
REPRESENTATION AND MODEL PERFORMANCE

When does underrepresentation cause disproportionate reduc-

tions in model performance? This depends on several factors,

including the size and composition of the dataset, the model

choice, the training procedure, and the underlying estimation

task. Note that, in terms of Equation 2, group underrepresenta-

tion can only ever influence the first two terms (estimator bias

and variance) and never the irreducible error term.

If the inputs are sufficiently informative and the selectedmodel

class is sufficiently expressive to simultaneously reflect the

optimal mapping between model inputs and outputs for all

groups, being a training dataset minority does not have to cause

suboptimal model performance (see Figures 1A and 1B). In terms

of Equation 2, this corresponds to a case in which estimator bias

is low—since the model is sufficiently expressive to not have to

decrease performance in one group to improve performance in

another—and estimator variance on the underrepresented

group is also low. With highly flexible models, the latter part is

the challenging one: if the model is too flexible and groups differ

significantly, majority samples cannot provide helpful regulariza-

tion for the minority class, and estimator variance on the minority

class will be high. Thus, the existence of a mapping that is

optimal for all groups simultaneously does not ensure that this

optimal decision boundary is indeed learned (see Figure 1C),

as can also be observed in the study of Larrazabal et al.3 The

models used in this study were highly expressive, and the patient

groups under consideration (based on biological sex) could be

clearly identified from chest X-ray recordings.17,18 As has been

pointed out elsewhere,18 this enables models to internally iden-

tify patient groups and then apply different decision models to
different patient groups. Thus, it would appear likely that the

models considered by Larrazabal et al.3 were capable of learning

a mapping that is simultaneously optimal for women and men.

Still, the authors observed significantly suboptimal model perfor-

mance in the respective minority groups compared with the per-

formance obtained when training only on that group, illustrating

that optimal decision boundaries are not always learned.

Technically, the fact that training dataset minorities tend to

exhibit suboptimal model performance is unsurprising. Standard

deep learning approaches perform ‘‘empirical risk minimization’’

(ERM), which optimizesmodel performance over the training dis-

tribution ptrainðxÞ. However, both the feature distribution pðxjgÞ
and the label distribution pðyjx; gÞ may differ between patient

groups g. If pðgÞ is imbalanced with respect to different patient

groups, the objective function optimized during model training

is thus most strongly affected by the model’s performance in

the majority group. Especially in combination with inductive

biases,19 explicit regularization schemes, and the use of a local

optimization method, this may prevent the training process

from converging toward a mapping that is optimal not only for

the majority but also for the minority groups.

The impact of differing group representation on model perfor-

mance for the different groups will, of course, depend on how

different the groups are, both in their input data distribution

pðxjgÞ and in their input-output mapping pðyjx; gÞ20. Referring
back to Equation 2, the estimator bias introduced by group un-

derrepresentation will be higher if a group differs more strongly

from the majority. This might explain, for example, why we

observed relatively weak trends in our previously mentioned

brain MRI-based AD classification study,10 compared with the

strong trends observed by Larrazabal et al.3 for chest X-ray-

based lung disease classification: male and female chest X-ray

recordings differ more strongly than male and female brain

MRI scans. This is especially true once the latter are registered

to a common atlas space, as we did in our study and as is stan-

dard procedure in the neuroimaging field.

Interestingly, it may even be preferable for a group to trade off

its own representation against another group, aswe also seem to

observe in our brain MRI-based study10: the weak trends that we

observe indicate that higher female representation at the

expense of lower male representation is beneficial for both

women andmen. This can occur if the optimal input-output map-

ping is similar across groups but noisier in one group. In this

case, examples from less noisy groupsmay provemore informa-

tive for the training process, resulting in lower estimator variance

without introducing additional estimator bias.

DIFFERING MEDICAL PREDICTION TASK DIFFICULTY

Even if an optimal model is indeed learned, i.e., an input-output

mapping that achieves optimal performance for all groups, there

is no reason to expect the model to perform equally well for all

groups. Performance disparities may still be observed due to dif-

ferences in the intrinsic difficulty of the estimation problem to be

solved for the different groups, corresponding to the irreducible

(or Bayes) error term in Equation 2. We here define the difficulty

of a medical prediction task via the Bayes optimal model perfor-

mance with respect to the true (but typically unobservable)

outcome labels Y on the target population. This differs
Patterns 4, July 14, 2023 3



A B C D Figure 2. Illustrations of different causes of
performance disparities in binary
classification
Circles and crosses denote the two possible out-
comes (values of y), blue and red mark two patient
groups of interest. The variables x1 and x2 denote
model inputs.
(A) Higher levels of input noise will lead to worse
classification performance in the red group
compared with the blue group. This might be a

symptom of an unobserved cause of the outcome that is more influential in the red group than in the blue group, cf. (B).
(B) Without knowledge of the additional variable v, the blue group can be correctly classified based just on x (dotted line). This is not possible for the red group,
however, which requires a decision boundary taking the additional variable v into account (dashed line).
(C) Completely random label noise will lead to worse performance metric estimates in the red group compared with the blue group, even though model per-
formance with respect to the true labels is identical. The empty circle indicates a true circle mislabeled as a cross; the star indicates the inverse.
(D) Systematic label errors will lead to worsemodel performance (with respect to the true outcome labels) in the red group comparedwith the blue group, because
a suboptimal decision boundary (red) is learned instead of the optimal one (gray). If the same systematic label errors are present in the test set, this is unde-
tectable.
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importantly frommodel performance with respect to the observ-

able labels Yobs on a given population, which may be subject to

label noise and selection biases (see ‘‘noisy labels, sample se-

lection biases, andmisleading performance estimates’’), compli-

cating both the learning process and the performance esti-

mation.

Differences in task difficulty have important and well-

known21,22 consequences for algorithmic approaches to fair

learning that enforce, e.g., equal error rates across groups: if

the optimal achievable model performance differs between

groups, such approaches will actively reduce model perfor-

mance for groups with lower task difficulty, an effect known as

‘‘leveling down.’’23,24 This appears especially undesirable in the

health-care context. Differences in prediction task difficulty

may arise for several different reasons, which we will discuss

below and categorize into two main groups: issues related to

input disturbances and issues related to unobserved causes of

the outcome.

The first group of causes of differing task difficulty concerns

differing input disturbance characteristics with regard to the un-

derlying physiological property of interest (see Figure 2A). As an

example, consider chest X-ray-based disease diagnosis. Breast

tissue represents a confounding occlusion in frontal chest X-ray

recordings, thus corresponding to more strongly disturbed mea-

surements of chest physiology in women.25 This might explain

why, as discussed above, Larrazabal et al.3 found model perfor-

mance for some diseases in women to be lower than inmen even

when using entirely female training sets. Similarly, abdominal ul-

trasound recordings26 and surface electromyographic measure-

ments27 of obese patients are known to be of lower quality.

Another potential cause of differing input disturbance levels is

the disparity in the interactions of different patient groups with

the medical system.28 Such disparities could lead to the typical

recording from one group being obtained using different equip-

ment, by a different type of doctor, in a different medical environ-

ment, and at a different stage of disease, all of which may influ-

ence input disturbance characteristics.

A second important source of differences in task difficulty is

given by unobserved causes of the outcome that affect out-

comes more strongly in one group compared with others (see

Figure 2B). As an example, fluctuations in female hormone levels

represent an important factor in many diagnostic tasks,29

whereas male hormone levels are more stable. Thus, in affected

prediction tasks, task difficulty will typically be higher in women,
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at least when hormone level measurements are not available. As

another example, the prevalence of comorbidities is often signif-

icantly higher in older cohorts compared with younger cohorts,

potentially complicating prediction in older patients.

NOISY LABELS, SAMPLE SELECTION BIASES, AND
MISLEADING PERFORMANCE ESTIMATES

Medical data are well known to be subject to various biases,

including label biases, choice of biased proxy variables, and

sample selection biases. How do such biases affect model per-

formance in different groups?

Label noise describes the situation in which the observed la-

bels Yobs differ from the true labels Y. Label noisemay be random

or systematic; in the latter case, it is often called label bias. In the

latter category, we include every type of label noise that, given a

patient group, is not noisy completely at random.30 This includes,

for example, systematic over- or underdiagnosis. As an example

of primarily random label noise, Zhang et al.22 report generally

high levels of label noise in standard chest X-ray datasets, with

the highest noise levels being observed in the oldest patient

group. Similarly, Daneshjou et al.31 observe high levels of label

noise in a dermatological dataset. Such random label noise

may have two distinct effects when training a model and assess-

ing its performance. First, the increased stochasticity of the

input-output relationship may lead to reduced sample efficiency,

such that more data are required to achieve the same level of

model performance. Second, random label noise leads to an in-

crease in the prediction error with respect to Yobs. Importantly,

however, this is not necessarily indicative of actualmodel perfor-

mance being reduced, i.e., performance with respect to the true

labels Y. If the label errors are truly noisy completely at random

given group membership g, the correct decision boundary may

still be learned.30 Model performance with respect to the true

outcome labels may then be higher than estimated on a test da-

taset affected by the same type of label noise (see Figure 2C). In

this case, empirical performance estimates will be unreliable for

assessing between-group differences in model performance.

Systematic label noise, or label bias, differs crucially from

random label noise in that—if not addressed properly—it results

in a biased decision boundary being learned (see Figure 2D). Ex-

amples of label biases in medicine abound, from gender biases

in mental health diagnoses32 to underdiagnosis of coronary

microvascular dysfunction33—believed to primarily affect



Table 1. A path forward for practitioners to help diagnose and mitigate the different causes of bias

Cause Effect Diagnosis Mitigation

Label noise, label biases, selection

biases

estimator bias,

uninformative

performance estimates

domain expertise, analyze label

correlation with proxy variables,35

gather higher-fidelity labels22,31

use other target variables,31,35

bias-robust learning

techniques44–46

Concept shift: differences

in pðyjxÞ between groups

estimator bias investigate effects of group balancing

and model stratification22,47
use stratified model,22,47

gather additional features

Low model expressivity,

differences in pðxÞ
between groups

estimator bias investigate effects of group

balancing22,47

and increasing model expressivity

increase model expressivity

Underrepresentation and

highly expressive model

high estimator variance epistemic uncertainty quantification,15,16

analysis of sample size-performance

relationship per group13,48

gather more samples,48,49

decrease

model expressivity, regularize

High task difficulty high irreducible error aleatoric uncertainty quantification,15,16

analysis of sample size-performance

relationship per group13,48

gather additional or alternative

features,31,50,51 reformulate

prediction task or target population

While these can help diagnose and mitigate bias in practice, they do not come with guarantees, and improved diagnostics and mitigation remain an

open research problem. The list of potential causes of performance differences is not exhaustive.
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women—and racial biases in pain assessment.34 Label bias can

also result from a poorly chosen proxy outcome variable. A

famous example of this category can be found in the study by

Obermeyer et al.,35 who analyzed a commercial clinical risk pre-

diction algorithm. This algorithm was trained using (past) health-

care costs as a proxy for health-care needs, thus neglecting dis-

parities in access to health care between racial groups and

learning a severely racially biased risk model.

Separate from issues related to label noise, sample selection

biases may also confound both the training process and the

model performance estimates.36,37 Sample selection biases

correspond to differences between the target population

ptargetðxÞ and the population ptrainðxÞ from which the training set

D is drawn, i.e., covariate shift. Selection biases resulting from,

for example, selecting subjects based on disease status, enroll-

ment in the health-care system, or being treated at specific hos-

pitals, have been widely discussed in medical statistics.38,39

Relatedly, as has recently been pointed out,40 confounding

factors may affect performance estimates. If, for example, a

model performs poorly in elderly subjects, and the fraction of

elderly subjects is higher in the female group, then a sex-strati-

fied performance might indicate that female subjects were

disadvantaged, when in reality, it would be elderly subjects

suffering from poor model performance. This is closely related

to notions of ‘‘infra-marginality’’ or ‘‘intersectionality’’41 and

points toward the importance of performing fine-grained sub-

group analyses.12,42

Label noise and selection biases raise a critical issue in the

context of our discussion: the equality of (discriminative) perfor-

mance metrics on a test set is neither necessary nor sufficient

for fairness in terms of discriminative performance.37,43,44 On

the one hand, differences in test-set predictive performance

need not be problematic if they are purely due to differing levels

of completely random label noiseor selectionbiases,whileperfor-

mance differences with respect to the true labels and true target

distribution are less grave.On theother hand, equal discriminative

performanceona test setmayobscure severepredictivebiases in

some groups; discriminative model performance with respect to

the true labels on the target populationmay still be highly unequal.
THE PATH FORWARD: LEVELING UP

Given what we now know about the origins of performance dif-

ferences, what may be a viable path toward equal performance

in medical machine learning? ‘‘Leveling down’’ by reducing per-

formance in top-performing groups to achieve equal perfor-

mance appears particularly questionable in the medical

context,24 thus ruling out many popular fairness mitigation tech-

niques.21–23 How can we instead level up performance? Table 1

provides an overview and summary of the following discussion of

possible solution approaches.

We consider it essential to note that, at least in theory, it will

often be possible to achieve (near) equal performance across

groups without artificially reducing performance in some

groups,43,44,46,52 even across multiple performance metrics of

interest simultaneously.12,53 This may, however, require moving

beyond algorithmic solutions and performing additional targeted

data collection or implementing changes to clinical practice.

Thus, it may not be easy to achieve. Nevertheless, in the authors’

opinion, this should be the aspirational goal.

Investigating the validity of performance estimates
Before investigating any potential remedies, practitioners should

assess whether observed performance differences are, indeed,

real or whether they are a consequence of, e.g., label

biases,43,44,46 selection biases,36–39 confounding factors,40 or

intersectional effects.41 To address the latter, comprehensive

subgroup performance analyses should be performed.12,42

Investigating the presence or absence of label noise and label

biases, however, is notoriously hard and will in almost all cases

require the consultation of domain experts. Label biases, in

particular, are fundamentally unobservable from purely observa-

tional data: are observed group differences due to biased labels

or due to real differences? Analyzing, e.g., diagnostic biasesmay

require conducting a dedicated and carefully planned experi-

mental study.31–34,54,55 Under certain mild assumptions, label

biases can sometimes be assessed by investigating the relation-

ship between the observed outcomes and alternative proxy

(health) outcomes.35 In other cases, a subset of the used data
Patterns 4, July 14, 2023 5
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(e.g., electronic health records) may be subjected to a more fine-

grained analysis to uncover potential label errors and biases.22 In

recent years, a series of algorithmic approaches has been pro-

posed as well, based on assumedmodels of the relationship be-

tween true and noisy labels and attempting to identify these re-

lationships from the observed data.44–46 However, the success

of any such method hinges on the correctness of the modeling

assumptions, which may not be satisfied in practical appli-

cations.

Addressing underrepresentation
Addressing the effects of group underrepresentation (corre-

sponding to the estimator bias and variance terms in Equation

2) requires differentiating between three main mechanisms

(also refer to Table 1). First, suppose the Bayes optimal predic-

tion for a test sample x differs between groups (see Figure 1B),

corresponding to concept shift between groups. This will lead

to increased estimator bias in less-represented groups. In this

case, the only viable solutions are either to implement group-

specific predictions (corresponding to stratified model training

and resulting in increased estimator variance due to reduced

training set size) or to gather additional input features to resolve

any differences in pðyjxÞ between groups. Second, estimator

bias in the underrepresented group may also result from low

model expressivity (see Figure 1C), which should be resolved

by choosing amore expressivemodel. Third, highmodel expres-

sivity in combination with group underrepresentation may result

in high estimator variance, which can be resolved only by gath-

ering more data samples from the underrepresented group,

decreasing model expressivity, or regularizing appropriately.

The problem of group underrepresentation can be framed as a

‘‘domain adaptation’’ or ‘‘domain generalization’’ problem: given

data from a group-imbalanced training distribution ptrainðxÞ, we

aim to train amodel that performswell on, e.g., a group-balanced

target distribution ptargetðxÞ (thus placing equal emphasis on

model performance in all groups), ideally even generalizing to

previously unseen patient groups. While the former corresponds

to a standard covariate shift adaptation problem56 (a type of

domain adaptation problem), the latter corresponds to asking

for domain generalization.57 These problems lie at the heart of

thequest formodel robustness andgeneralization, andproposed

solution approaches abound.57–61 So far, however, such

methods have achieved only limited empirical success in miti-

gating the effects of underrepresentation in the medical

domain22,47 and often result in leveling down overall model per-

formance.22–24 Given our analysis of the root causes of perfor-

mance differences, these negative results are not surprising:

such methods cannot address differences in task difficulty.

What are the consequences for dataset curation? The lessons

are complex, since the effects of including additional samples

from a particular group on themodel’s performance in that group

depend on a large number of factors. Promising approaches for

adaptively decidingwhich groups to sample from have been pro-

posed,48,49 attempting to automatically detect harder groups

during dataset construction and then sampling preferentially

from those. Such approaches will prove challenging to imple-

ment in medical practice, however. For now, the most practical

recommendation still appears to be the gathering of diverse

and representative datasets.
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Leveling up by addressing differing task difficulty
Truly leveling up performance requires addressing differences in

the difficulty of the prediction task between groups, correspond-

ing to differences in the irreducible (Bayes) error term in Equation

2. This is a task that can be solved only in close collaboration with

medical experts, as it will typically require identifying or even

newly developing appropriate additional (or alternative) mea-

surement modalities that may help resolve residual uncertainty

in patient groups affected by high task difficulty. Once such addi-

tional measurements have been identified, algorithmic ap-

proaches may help adaptively select patients (or patient groups)

that will benefit from gathering those (potentially costly) fea-

tures.50,51 To provide a positive example from this category, Da-

neshjou et al.31 were able to strongly reduce performance differ-

ences between skin colors in dermatological disease

classification models by fine-tuning the models on additional

data with biopsy-proven ground truth labels.

The need for improved root cause diagnosis methods
The targeted application of the mitigation techniques outlined

above is feasible only if the specific cause of an observed perfor-

mance disparity has been diagnosed in the first place. This is an

area in urgent need of further research, and we canmerely aim to

suggest possible approaches. Estimator variance in different

groups can be assessed using epistemic model uncertainty

quantification methods, while aleatoric uncertainty quantifica-

tion can help compare task difficulty between groups.15,16

Chen et al.13 and Cai et al.48 suggest analyzing the trajectory

of performance improvements in different groups as more sam-

ples are added, to identify groups that benefit the most from

additional samples. Similarly, if some groups benefit from group

balancing, this may indicate the presence of estimator bias due

to insufficient model expressivity. However, all of these ap-

proaches rely on the correctness of the observed labels; hence,

investigations of group-specific label noise and label biases are

crucial.

CONCLUSION

We have argued here that there is a path toward equal perfor-

mance in most medical applications. It may, however, be long

and winding. Starting with an assessment of potential biases in

the model’s performance evaluation, the path will lead past an

investigation of the root causes of performance differences

to tailoredmitigation approaches that address them.Whilemodel

choicematters59,62 and algorithmic approachesmay help,22,57,59

these cannot resolve differences in task difficulty between

groups without leveling down performance. To truly level up per-

formance, researchers must reconsider the setup of the estima-

tion task and the data collection procedure. Not only more data

may be needed to improve performance in underperforming

groups, but also different and better data.31 There is no simple

relationship between a group’s representation in the training da-

taset and model performance in that group, and performance

may or may not improve when including more examples of a

given group.

Crucially, none of the discussed root causes of performance

differences between groups indicate that such differences are

unsalvageable. However, the precise and principled
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identification of the most efficient mitigation approach in a given

application remains an important open problem. Finally, to be

very clear, we do not wish to detract in any way from the impor-

tance of ensuring broad representation in medical datasets.

Representation is important and does matter.3,8,9,31
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Fox, and R. Garnett, eds. (Curran Associates, Inc.). https://proceedings.
neurips.cc/paper_files/paper/2019/file/373e4c5d8edfa8b74fd4b6791d0
cf6dc-Paper.pdf.

44. Sharma, M., Deshpande, A., and Shah, R.R. (2023). On Testing and
Comparing Fair classifiers under Data Bias. Preprint at arXiv. https://doi.
org/10.48550/ARXIV.2302.05906.

45. Wang, J., Liu, Y., and Levy, C. (2021). Fair Classification with Group-
Dependent Label Noise. In Proceedings of the 2021 ACM Conference
on Fairness, Accountability, and Transparency (ACM). https://doi.org/10.
1145/3442188.3445915.

46. Blum, A., and Stangl, K. (2020). Recovering from Biased Data: Can Fair-
ness Constraints Improve Accuracy? In 1st Symposium on Foundations
of Responsible Computing (FORC 2020) vol. 156 of Leibniz International
Proceedings in Informatics (LIPIcs), A. Roth, ed. (Schloss Dagstuhl–Leib-
niz-Zentrum f€ur Informatik). https://doi.org/10.4230/LIPIcs.FORC.2020.3
https://drops.dagstuhl.de/opus/volltexte/2020/12019.

47. Pfohl, S.R., Zhang, H., Xu, Y., Foryciarz, A., Ghassemi, M., and Shah, N.H.
(2022). A comparison of approaches to improve worst-case predictive
model performance over patient subpopulations. Sci. Rep. 12, 3254.
https://doi.org/10.1038/s41598-022-07167-7.

48. Cai, W., Encarnacion, R., Chern, B., Corbett-Davies, S., Bogen, M., Berg-
man, S., and Goel, S. (2022). Adaptive Sampling Strategies to Construct
Equitable Training Datasets. In 2022 ACM Conference on Fairness,
Accountability, and Transparency (ACM). https://doi.org/10.1145/
3531146.3533203.

49. Shekhar, S., Fields, G., Ghavamzadeh, M., and Javidi, T. (2021). Adap-
tive Sampling for Minimax Fair Classification. In Advances in Neural In-
formation Processing Systems, 34, M. Ranzato, A. Beygelzimer, Y.
Dauphin, P. Liang, and J.W. Vaughan, eds. (Curran Associates, Inc.),
pp. 24535–24544. https://proceedings.neurips.cc/paper_files/paper/
2021/file/cd7c230fc5deb01ff5f7b1be1acef9cf-Paper.pdf.

50. Noriega-Campero, A., Bakker, M.A., Garcia-Bulle, B., and Pentland, A.
(2019). Active Fairness in Algorithmic Decision Making. In Proceedings
of the 2019 AAAI/ACM Conference on AI, Ethics and Society (ACM).
https://doi.org/10.1145/3306618.3314277.

51. Fong, H., Kumar, V., Mehrotra, A., and Vishnoi, N.K. (2022). Fairness for
AUC via Feature Augmentation. In 2022 ACM Conference on Fairness,
Accountability, and Transparency (ACM). https://doi.org/10.1145/
3531146.3533126.

52. Dutta, S., Wei, D., Yueksel, H., Chen, P.-Y., Liu, S., and Varshney, K.
(2020). Is There a Trade-Off Between Fairness and Accuracy? A Perspec-
tive Using Mismatched Hypothesis Testing. In Proceedings of the 37th In-
ternational Conference on Machine Learning, 119, H.D. III and A. Singh,
eds. (PMLR), pp. 2803–2813. https://proceedings.mlr.press/v119/
dutta20a.html.

53. Lazar Reich, C., and Vijaykumar, S. (2020). A Possibility in Algorithmic Fair-
ness: Can Calibration and Equal Error Rates BeReconciled? In 2nd Sympo-
sium on Foundations of Responsible Computing (FORC 2021)vol. 192 of
Leibniz International Proceedings in Informatics (LIPIcs), K. Ligett and S.
Gupta, eds. (Schloss Dagstuhl–Leibniz-Zentrum f€ur Informatik). https://doi.
org/10.4230/LIPIcs.FORC.2021.4https://drops.dagstuhl.de/opus/volltexte/
2021/13872.

54. FitzGerald, C., and Hurst, S. (2017). Implicit bias in healthcare profes-
sionals: a systematic review. BMC Med. Ethics 18, 19. https://doi.org/
10.1186/s12910-017-0179-8.

55. Chapman, K.R., Tashkin, D.P., and Pye, D.J. (2001). Gender Bias in the
Diagnosis of COPD. Chest 119, 1691–1695. https://doi.org/10.1378/
chest.119.6.1691.

56. Sugiyama, M., Krauledat, M., and M€uller, K.-R. (2007). Covariate Shift
Adaptation by Importance Weighted Cross Validation. J. Mach. Learn.
Res. 8, 985–1005.

57. Zhou, K., Liu, Z., Qiao, Y., Xiang, T., and Loy, C.C. (2022). Domain Gener-
alization: A Survey. IEEE Trans Pattern Anal Mach Intell. 45, 4396–4415.
https://doi.org/10.1109/tpami.2022.3195549.

https://doi.org/10.1111/j.1440-1673.1958.tb00882.x
https://doi.org/10.1111/j.1440-1673.1958.tb00882.x
https://doi.org/10.1177/8756479313476919
https://doi.org/10.3109/03093640309167976
https://doi.org/10.1186/s12913-020-05698-1
https://doi.org/10.1186/s12913-020-05698-1
https://doi.org/10.3390/jpm11090929
https://doi.org/10.3390/jpm11090929
https://doi.org/10.1109/tnnls.2013.2292894
https://doi.org/10.1126/sciadv.abq6147
https://doi.org/10.1177/1557988316630953
https://doi.org/10.1177/1557988316630953
https://doi.org/10.1038/nrcardio.2015.72
https://doi.org/10.1073/pnas.1516047113
https://doi.org/10.1073/pnas.1516047113
https://doi.org/10.1126/science.aax2342
https://doi.org/10.1145/1015330.1015425
https://proceedings.mlr.press/v80/kallus18a.html
https://doi.org/10.1002/sim.4780130518
http://refhub.elsevier.com/S2666-3899(23)00145-9/sref39
http://refhub.elsevier.com/S2666-3899(23)00145-9/sref39
http://refhub.elsevier.com/S2666-3899(23)00145-9/sref39
https://doi.org/10.1038/s41591-022-01847-7
https://doi.org/10.1038/s41591-022-01847-7
https://doi.org/10.1214/17-aoas1058
https://doi.org/10.1214/17-aoas1058
https://doi.org/10.1145/3531146.3533101
https://doi.org/10.1145/3531146.3533101
https://proceedings.neurips.cc/paper_files/paper/2019/file/373e4c5d8edfa8b74fd4b6791d0cf6dc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/373e4c5d8edfa8b74fd4b6791d0cf6dc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/373e4c5d8edfa8b74fd4b6791d0cf6dc-Paper.pdf
https://doi.org/10.48550/ARXIV.2302.05906
https://doi.org/10.48550/ARXIV.2302.05906
https://doi.org/10.1145/3442188.3445915
https://doi.org/10.1145/3442188.3445915
https://doi.org/10.4230/LIPIcs.FORC.2020.3
https://drops.dagstuhl.de/opus/volltexte/2020/12019
https://doi.org/10.1038/s41598-022-07167-7
https://doi.org/10.1145/3531146.3533203
https://doi.org/10.1145/3531146.3533203
https://proceedings.neurips.cc/paper_files/paper/2021/file/cd7c230fc5deb01ff5f7b1be1acef9cf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/cd7c230fc5deb01ff5f7b1be1acef9cf-Paper.pdf
https://doi.org/10.1145/3306618.3314277
https://doi.org/10.1145/3531146.3533126
https://doi.org/10.1145/3531146.3533126
https://proceedings.mlr.press/v119/dutta20a.html
https://proceedings.mlr.press/v119/dutta20a.html
https://doi.org/10.4230/LIPIcs.FORC.2021.4
https://doi.org/10.4230/LIPIcs.FORC.2021.4
https://drops.dagstuhl.de/opus/volltexte/2021/13872
https://drops.dagstuhl.de/opus/volltexte/2021/13872
https://doi.org/10.1186/s12910-017-0179-8
https://doi.org/10.1186/s12910-017-0179-8
https://doi.org/10.1378/chest.119.6.1691
https://doi.org/10.1378/chest.119.6.1691
http://refhub.elsevier.com/S2666-3899(23)00145-9/sref56
http://refhub.elsevier.com/S2666-3899(23)00145-9/sref56
http://refhub.elsevier.com/S2666-3899(23)00145-9/sref56
http://refhub.elsevier.com/S2666-3899(23)00145-9/sref56
https://doi.org/10.1109/tpami.2022.3195549


ll
OPEN ACCESSPerspective
58. Kouw, W.M., and Loog, M. (2018). An Introduction to Domain Adaptation
and Transfer Learning. Preprint at arXiv. https://arxiv.org/abs/1812.11806.

59. Subbaswamy, A., and Saria, S. (2020). From development to deployment:
dataset shift, causality, and shift-stable models in health AI. Biostatistics
21, 345–352. https://doi.org/10.1093/biostatistics/kxz041.

60. Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz, D. (2019). Invariant
Risk Minimization. Preprint at arXiv. https://arxiv.org/abs/1907.02893.

61. Adragna, R., Creager, E., Madras, D., and Zemel, R. (2020). Fairness and
Robustness in Invariant Learning: A Case Study in Toxicity Classification.
Preprint at arXiv. https://arxiv.org/abs/2011.06485.

62. Hooker, S. (2021). Moving beyond ‘‘algorithmic bias is a data problem’’.
Patterns 2, 100241. https://doi.org/10.1016/j.patter.2021.100241.

About the authors
Eike Petersen holds a PhD in engineering from the University of L€ubeck, Ger-
many; an MSc in industrial mathematics from the University of Hamburg, Ger-
many; and a BSc in computer science and engineering from the Hamburg Uni-
versity of Technology, Germany. Currently, he works as a postdoctoral
researcher at DTU Compute, Technical University of Denmark, investigating
fairness in the context of machine learning in medicine. His research interests
lie at the intersection of mathematical modeling, statistical inference, and the
responsible application of such techniques in medicine and society.
Sune Holm holds a PhD in philosophy from the University of St. Andrews and
is an associate professor at the Department of Food and Resource Economics
at the University of Copenhagen. He does research on the ethics of AI with a
focus on fairness, explainability, and trustworthiness.

Melanie Ganz is an associate professor at the University of Copenhagen,
Denmark. Her PhD in computer science is from the University of Copenha-
gen, following which she held postdocs at the A.A. Martinos Center for
Biomedical Imaging at Massachusetts General Hospital and Harvard Medi-
cal School in Boston, Massachusetts, USA, and at the Neurobiology
Research Unit at the Copenhagen University Hospital, Denmark. Melanie’s
research focuses on the application of medical image processing and ma-
chine learning to clinical medical image data, mostly neuroscientific data.
In addition, she aims to embrace Open Science principles in her research
and is hence involved in data sharing initiatives such as the Brain Imaging
Data Structure.

Aasa Feragen is a full professor at the Technical University of Denmark. Her
PhD in mathematics is from the University of Helsinki, following which she
held postdocs at the University of Copenhagen and the MPI for Intelligent Sys-
tems in T€ubingen. Aasa’s research sits at the intersection of machine learning,
applied geometry, andmedical imaging, where Aasa takes a particular interest
in the modeling of data with geometric constraints. Such data include uncer-
tainties and probability distributions, fairness constraints, graphs, trees, and
curves. Aasa enjoys contributing to community building, including as program
chair of MICCAI 2024, IPMI 2021, and MIDL 2019.
Patterns 4, July 14, 2023 9

https://arxiv.org/abs/1812.11806
https://doi.org/10.1093/biostatistics/kxz041
https://arxiv.org/abs/1907.02893
https://arxiv.org/abs/2011.06485
https://doi.org/10.1016/j.patter.2021.100241

	The path toward equal performance in medical machine learning
	Investigating the validity of performance estimates
	Addressing underrepresentation
	Leveling up by addressing differing task difficulty
	The need for improved root cause diagnosis methods
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References


