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Abstract: Soybean (Glycine max L.) is an important food-grade strategic crop worldwide because of
its high seed protein and oil contents. Due to the negative correlation between seed protein and oil
percentage, there is a dire need to detect reliable quantitative trait loci (QTL) underlying these traits
in order to be used in marker-assisted selection (MAS) programs. Genome-wide association study
(GWAS) is one of the most common genetic approaches that is regularly used for detecting QTL
associated with quantitative traits. However, the current approaches are mainly focused on estimating
the main effects of QTL, and, therefore, a substantial statistical improvement in GWAS is required
to detect associated QTL considering their interactions with other QTL as well. This study aimed
to compare the support vector regression (SVR) algorithm as a common machine learning method
to fixed and random model circulating probability unification (FarmCPU), a common conventional
GWAS method in detecting relevant QTL associated with soybean seed quality traits such as protein,
oil, and 100-seed weight using 227 soybean genotypes. The results showed a significant negative
correlation between soybean seed protein and oil concentrations, with heritability values of 0.69
and 0.67, respectively. In addition, SVR-mediated GWAS was able to identify more relevant QTL
underlying the target traits than the FarmCPU method. Our findings demonstrate the potential
use of machine learning algorithms in GWAS to detect durable QTL associated with soybean seed
quality traits suitable for genomic-based breeding approaches. This study provides new insights into
improving the accuracy and efficiency of GWAS and highlights the significance of using advanced
computational methods in crop breeding research.

Keywords: data-driven; FarmCPU; genome-wide association study; soybean oil; soybean protein;
support vector regression

1. Introduction

Soybean is one of the most important dual-use leguminous crops and is the main
source of protein (~40%) and oil (~20%) for food [1]. Soybean is also an important source
of healthy plant-based food products in the human diet due mainly to its nutritional and
pharmaceutical properties [2]. Developing soybean cultivars with high oil and protein
concentrations has always been one of the major goals of soybean breeding programs [3].
However, these two traits are quantitative traits that are controlled by many minor and
major genes and are highly affected by environments [4,5]. Previous studies verified the
strong negative correlation between soybean oil and protein and recommended identifying
quantitative trait loci (QTL) that might inversely affect those traits [6,7]. Therefore, a deep
understanding of the genetic structure of soybean oil and protein concentration would be
pivotal in designing efficient molecular breeding approaches [8,9].
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Current remarkable progress in high throughput genotyping techniques has provided
breeders and geneticists with a unique opportunity to have access to thousands of single
nucleotide polymorphisms (SNPs) in a time and cost-effective manner [10,11]. One of the
most recommended genetic tools that has been frequently used by breeders and geneticists
to detect marker-trait associations (MTAs) for the trait of interest is the genome-wide as-
sociation study (GWAS) [12,13]. In the last ten years, a variety of statistical methods have
been created and applied to speed up computational analyses, enhance the accuracy and
statistical powers in GWAS by testing multiple hypotheses across an entire genome [14].
Two of the commonly used GWAS methods are the mixed linear model (MLM) and fixed
and random model circulating probability unification (FarmCPU) [14,15]. In addition,
several techniques have been suggested to determine genome-wide significance levels and
thresholds, such as the Bonferroni correction and false discovery rate (FDR), in order to
decrease the occurrence of erroneous discoveries [15,16]. The application of GWAS was
widely studied in different plant species, such as wheat [17], maize [18], soybean [19],
and sorghum [20], and the primary objective of all these studies was to accelerate the
breeding processes through using GWAS-derived molecular markers for the indirect se-
lection of superior genotypes with improved phenotypic values. However, these studies
demonstrated that the effectiveness of GWAS in identifying genetic markers linked to quan-
titative traits depended on the careful selection of GWAS methods and precise experimental
conditions [21].

With the availability of affordable next-generation technologies, researchers are now
able to capture much of the genetic variation in a given genome and generate large numbers
of genomic sequences and genetic properties even in large plant populations [22,23]. The
abundance of plant genetic sequences can be categorized as big data due to their compliance
with the three Vs, which are volume, velocity, and variety [24,25]. Efficient analysis of large
datasets significantly depends upon multiple processes involved in data collection, data
processing, and different management challenges identified in the context of big data [26,27].
Therefore, dealing with big datasets, such as high-density SNPs in GWAS, requires intensive
computation and the use of modern statistical approaches, such as artificial intelligence
(AI) algorithms [28]. Machine learning (ML) is a subset of AI that can be defined as
the development of mathematical models that can learn, educate, and make decisions
using available datasets [29,30]. The application of ML algorithms can be considered
as an alternative approach to current conventional statistical procedures for analyzing
SNP markers in a data-driven manner. One of the important ML algorithms is support
vector machines (SVM), developed by Vapnik [31], which is based on finding the optimum
hyperplane in the number of variables that classify data points within a dataset [32].
Support vector regression (SVR) as a subset of SVM is widely used to solve regression
problems [32]. The successful use of the SVR method was reported in phenomics [33],
genomics [34], plant tissue culture [35,36], and metabolomics [37]. The use of SVR in GWAS
was introduced by de Oliveira et al. [38] in animal science. They tested the efficiency of
SVR-mediated GWAS for selecting the most relevant MTAs using the Pearson universal
kernel as a fitness function [38]. However, the use of the SVR-mediated GWAS is less
studied in plant areas and requires more investigations.

This study aimed to (1) investigate the genetic structure of soybean seed composition
traits; (2) conduct a comparative analysis between FarmCPU, a well-known conventional
GWAS method, and SVR-mediated GWAS for detecting genomic regions associated with
soybean seed composition traits; and (3) identify genes and QTL co-localized with the
detected MTAs for soybean seed composition traits. The identified MTAs in this study
can be used in different soybean breeding programs for selecting value-added genotypes
through the simultaneous selection of all the target seed quality traits at early growth stages.
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2. Results
2.1. Phenotyping Evaluation

The phenotypic evaluations and collecting process of the soybean yield for the tested
panel are explained in detail in [21]. After adjusting the phenotypic plots for each genotype
based on spatial analysis, the tested GWAS panel showed significant variations for seed
protein, oil, and 100-seed weight across four tested environments (Figure 1A–C). The
100-seed weight had the highest spatial variation in the field, followed by seed protein and
seed oil (Figure 1C). The maximum and minimum values for 100-seed weight were 36.49 g
and 7.61 g, respectively, with an average of 18.68 g. Seed protein had an average of 39.90%
in the tested GWAS panel with maximum and minimum values of 48.77% and 14.51%,
respectively. Soybean seed oil also had the maximum and minimum values of 23.37% and
16.61% in the tested GWAS panel, respectively, with an average of 20.03%. Among all
the tested traits, seed protein had the highest heritability, with an estimated value of 0.69,
followed by seed oil and 100-seed weight with values of 0.67 and 0.60, respectively.
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Figure 1. Spatial distribution (A) of the tested GWAS panel across four different environments. The
scatter plot (B) shows the observed values of each soybean genotype, and the color-coded map
(C) represents the spatial variations in the performance of the genotypes across the environments.

The linear correlation coefficients (r) estimated among yield and the target seed traits
revealed a significant negative correlation (−0.67) between seed protein and oil concentra-
tions (Figure 2). In addition, 100-seed weight was negatively correlated with seed oil, with
a value of r = −0.33 (Figure 2). While seed yield had positive correlations with 100-seed
weight (r = 0.69) and protein concentration (r = 0.15), it showed a negative correlation with
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oil concentration (r = −0.10). However, the correlations between seed yield and protein as
well as seed yield and oil concentration were not significant (α = 0.05).
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Figure 2. The linear Pearson correlation coefficients between soybean seed protein, oil, 100-seed
weight, and yield in the tested GWAS panel across four tested environments. The intensity of the
colors represents the strength of the correlations, with red indicating a strong positive correlation.

2.1.1. Genotyping

Out of 250 soybean genotypes, 23 of them were eliminated because of the high level
of missing data, and a total of 17,958 high-quality SNPs were archived from a total of
40,712 SNPs from 227 soybean genotypes and mapped on 20 soybean chromosomes. For
the tested association panel, pairwise linkage disequilibrium (LD) between SNPs was
calculated based on the correlation coefficient (R2) of alleles using 17,958 high-quality SNPs.
The minimum number of SNPs (403) was found on chromosome 11, and the maximum
number of SNPs (1780) was found on chromosome 18. The average number of SNPs across
all the 20 soybean chromosomes was 898, with a mean density of 0.12 cM for every single
SNP across the genome.

2.1.2. Population Structure and Kinship

The genotypic evaluations conducted on the tested GWAS panel provided insights into
the population structure, revealing the presence of multiple subpopulations. The results
indicated the existence of four to seven distinct subpopulations within the panel. In order
to further analyze and consider the population structure as one of the potential cofactors
in GWAS analyses, a value of K = 7 was selected as the most appropriate parameter. The
population structure analysis, represented in Figure 3, allows for a visual representation of
the subpopulations and their distribution within the GWAS panel.
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Figure 3. Kinship (top) and structure (bottom) plots for the tested GWAS panel. The x-axis is the
number of genotypes used in this GWAS panel, and the y-axis is the membership of each subgroup.
SP1-SP7 stands for the seven subpopulations.

2.1.3. GWAS Analysis

GWAS analysis using the FarmCPU method identified 15 associated SNP markers for
seed protein located on chromosomes 3 and 15 (Figure 4, Table S1). Using SVR-mediated
GWAS, a total of 27 SNP markers located on chromosomes 1, 5, 6, 12, 14, 15, and 16 were
identified to be associated with soybean protein (Figure 4, Table S2). Genomic regions of
chromosome 15 were found to be associated with seed protein using both GWAS methods
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(Figure 4). In the FarmCPU method, the identified MTA on chromosome 15 was co-localized
with previously reported QTL for seed protein (Table 1). In SVR-mediated GWAS, detected
MTAs on chromosomes 5 and 16 were co-localized with previously reported QTL for seed
protein (Table 1).
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Table 1. The list of MTAs for seed protein identified using FarmCPU and SVR-mediated GWAS
methods in the combined environment dataset colocalized with reported QTL.

GWAS Method Chromosome MTA (Peak SNP
Position) Co-Located QTL Environments a Reference

FarmCPU S15

7068549 Shoot Fe 1-g43 NA [39]

7288161 SCN 5-g32 NA [40]

7705443

Seed protein 7-g13 NA [41]

Leaf carotenoid content 1-g11 NA [42]

WUE 2-g34 NA [43]

8304621 Shoot Zn 1-g24 NA [39]

8554284 Shoot Zn 1-g25 NA [39]

8620771 Shoot Zn 1-g26 NA [39]

SVR S01

50879523 Ureide content 1-g1.1 NA [42]

50933494 Ureide content 1-g1.2 NA [42]

50945345 Ureide content 1-g1.3 NA [42]

50947984 Ureide content 1-g1.4 NA [42]

51104169 First flower 2-g1 NA [44]

51797141 Canopy cover 1-g1 NA [45]

51104169 First flower 7-g1 NA [44]

51679239 Seed Trp 1-g1 NA [46]
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Table 1. Cont.

GWAS Method Chromosome MTA (Peak SNP
Position) Co-Located QTL Environments a Reference

S05

37483313 Shoot Mg 1-g4 2&4 [39]

37414768 Shoot Cu 1-g6 2&4 [39]

31380926 Seed oil 5-g1 2&4 [42]

35536817 Pod number 3-g4 2&4 [47]

31380926 Seed protein 4-g1 2&4 [48]

37297357 Shoot Zn 1-g10.1 2&4 [39]

37347763 Shoot Zn 1-g11 2&4 [39]

37289637
Shoot P 1-g7 2&4 [39]

Shoot Zn 1-g9 2&4 [39]

37297357 Shoot P 1-g8.1 2&4 [39]

37317508
Shoot P 1-g8.2 2&4 [39]

Shoot Zn 1-g10.2 2&4 [39]

37347763 Shoot P 1-g9 2&4 [39]

S14

2919862 First flower 2-g20 NA [44]

3198128 Sclero 3-g56 NA [49]

3419976 Sclero 3-g57 NA [49]

S16 28851611 Seed protein 7-g25 1,2&4 [41]
a Detected in separate environments in addition to the combined environment. (1) 2018Ridgetown, (2) 2019Rid-
getwon, (3) 2018Palmyra, (4) 2019Palmyra, (NA) not found in any separate environment. FarmCPU: fixed and
random model circulating probability unification, SVR: support vector regression.

A total of 12 SNP markers located on chromosomes 7, 8, 13, 15, and 19 were identified
to be associated with seed oil using FarmCPU (Figure 4, Table S3), while using SVR-
mediated GWAS, 13 SNP markers located on chromosomes 3, 12, 13, 14, 15, and 16 were
found to be associated with this trait (Figure 4, Table S4). Chromosome 15 was the only
chromosome in which some of the MTAs were found associated with the trait using both
GWAS methods (Figure 4). Most of the detected MTAs by SVR-mediated GWAS were
co-localized with six previously reported oil-related QTL such as seed long-chain fatty
acid and seed stearic (Table 2). However, most of the detected MTAs by FarmCPU were
co-localized with QTL related to leaf carotenoid content, soybean cyst nematode, seed
protein, water use efficiency, and soybean sudden death syndrome (Table 2).

Table 2. The list of MTAs for seed oil concentration identified by FarmCPU and SVR-mediated GWAS
methods in the combined environment dataset colocalized with reported QTL.

GWAS
Method Chromosome Peak SNP

Position Co-Located QTL Environments a Reference

FarmCPU

S08

18259484 SDS 1-g54 NA [50]

18404800
SDS 1-g40 NA [50]

SDS 1-g55 NA [50]

S13

27301888
Shoot Fe 1-g33 NA [39]

SCN 1-g11 NA [51]

27325073 Shoot Fe 1-g34 NA [39]

33018554 SCN 4-g11 NA [52]
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Table 2. Cont.

GWAS
Method Chromosome Peak SNP

Position Co-Located QTL Environments a Reference

S15

7705443

Seed protein 7-g13 NA [41]

Leaf carotenoid content 1-g11 NA [42]

WUE 2-g34 NA [43]

8304621 Shoot Zn 1-g24 NA [39]

8554284 Shoot Zn 1-g25 NA [39]

S19

40386502 Iron deficiency chlorosis 4-g27 NA [53]

40550665
Iron deficiency chlorosis 2-g9 NA [54]

Iron deficiency chlorosis 3-g14 NA [54]

SVR

S03

12702388 Seed long-chain fatty acid 1-g7.2 2 [55]

12704607 Seed stearic 1-g2.2 2 [55]

12917268 Seed long-chain fatty acid 1-g13.2 2 [55]

12954110 Seed stearic 1-g2.3 2 [55]

12958942 Seed long-chain fatty acid 1-g13.3 2 [55]

12989558 Seed long-chain fatty acid 1-g7.3 2 [55]

S13

30062400
Hilum color 2-g5.2 NA [55]

Hilum color 2-g5.3 NA [55]

30080662 Phytoph 3-g21 NA [51]

29941996 Soybean mosaic virus 1-g1 NA [51]

30037573 Salt tolerance 1-g9 NA [56]

30062400 Hilum color 2-g5.1 NA [55]

S14
3198128 Sclero 3-g56 3 [49]

3419976 Sclero 3-g57 3 [49]

S15
21479453 Iron deficiency chlorosis 4-g20 3 [53]

49067066 WUE 1-g5 3 [57]

S16 28851611 Seed protein 7-g25 3 [41]
a Detected in separate environments in addition to the combined environment. (1) 2018Ridgetown, (2) 2019Rid-
getwon, (3) 2018Palmyra, (4) 2019Palmyra, (NA) Not found in any separate environment. FarmCPU: Fixed and
random model circulating probability unification, SVR: Support Vector Regression.

For 100-seed weight, totals of 3 and 22 SNP markers were identified underlying the
trait using FarmCPU and SVR-mediated GWAS methods, respectively (Figure 4). Detected
SNP markers using FarmCPU were located on chromosomes 10 and 18 (Figure 4, Table S5),
whereas identified SNP markers using SVR-mediated GWAS were located on chromosomes
2, 3, 4, 9, 11, 14, 15, 16, 19, and 20 (Figure 4, Table S6). Most of the detected MTAs using SVR-
mediated GWAS were co-localized with previously reported QTL related to the first flower
formation, number of nodes, plant height, soybean cyst nematode, water use efficiency,
and maturity date (Table 3). Most of the detected MTAs using the FarmCPU method were
co-localized with previously reported QTL related to soybean cyst nematode and water
use efficiency (Table 3). Most of the detected chromosomes using SVR-mediated GWAS
were similarly detected for yield in the previous study [58].
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Table 3. The list of colocalized reported QTL with MTAs for 100-seed weight identified using
FarmCPU and SVR GWAS methods in the combined environment dataset.

GWAS
Method Chromosome Peak SNP

Position Co-Located QTL Environments a Reference

FarmCPU S18

703188 WUE 2-g47 NA [43]

713403 SCN 1-g16 NA [51]

822049 SCN 1-g17 NA [59]

SVR

S02
11045403 Seed Trp 1-g5 2&4 [46]

43004026 WUE 2-g7 2&4 [48]

S03

38932768 Canopy width 1-g1.1 NA [55]

38936586 Canopy width 1-g1.2 NA [55]

39088673 R8 full maturity 3-g4 NA [47]

S09
42132672 Al tolerance 1-g9 NA [60]

42351295 Shoot K 1-g19 NA [39]

S11 4572326 SCN 5-g22 4 [40]

S15 36329398 Ureide content 1-g42 NA [42]

S16

37330986 Seed linolenic 1-g10 2 [61]

37153578 Shoot Cu 1-g15 2 [39]

37330986

Seed palmitic 1-g14 2 [61]

Seed oleic 1-g23 2 [61]

Seed linoleic 1-g19 2 [61]

37046875
WUE 2-g38 2 [40]

Iron deficiency chlorosis 3-g10 2 [54]

37079553 Node number 1-g5.1 2 [55]

37079569 Node number 1-g5.2 2 [55]

33018083 BSR 1-g2 2 [51]

S19 47335622 Node number 1-g2.3 NA [55]

S20

276646
First flower 2-g25 1&2 [44]

First flower 7-g25 1&2 [44]

343016 Iron deficiency chlorosis 3-g15 1&2 [54]

376574
Plant height 1-g26 1&2 [44]

Plant height 6-g26 1&2 [44]
a Detected in separate environments in addition to the combined environment. (1) 2018Ridgetown, (2) 2019Rid-
getwon, (3) 2018Palmyra, (4) 2019Palmyra, (NA) not found in any separate environment. FarmCPU: fixed and
random model circulating probability unification, SVR: support vector regression.

2.1.4. Extracting Candidate Genes Undelaying Detected QTLs

Considering the 150 kbp upstream and downstream flanking regions for each peak
SNP with high allelic effect, the potential candidate genes were identified using gene
annotation, previous studies, and enrichment tools. For seed protein concentration, four
peak SNPs (Chr05_37399766, Chr14_2757199, Chr15_8453911, and Chr19_20046001) had the
highest allelic effect compared to other identified peak SNPs (Figure 5A). Five candidate
genes, Glyma.05G186700 (GO:0006865), Glyma.14G035100 (GO:0009888), Glyma.15G107800
(GO:0016926), Glyma.15G109300 (GO:0009658), and Glyma.19G068300 (GO:0010099), were
detected as the strong candidate genes governing seed protein, which encode amino acid
transport, tissue development, protein desumoylation, chloroplast organization, and reg-
ulation of photomorphogenesis, respectively (Figure 5). For soybean seed oil, two peak
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SNPs, Chr13_29958610 and Chr16_28926313, had the highest allelic effect compared to other
detected peak SNPs (Figure 5B). Based on the gene annotation and expression within QTL,
Glyma.13G187100 (GO:0008168), Glyma.16G133500 (GO:0009697), and Glyma.16G133600
(GO:0016887) were identified as the strong candidate genes underlying soybean seed oil,
which encode methyltransferase activity, salicylic acid biosynthetic process, and ATPase
activity, respectively (Figure 5B). The peak SNPs of Chr02_11159017, Chr02_42949884,
Chr04_18642977, and Chr04_49895660 had the highest allelic effect for 100-seed weight
among all the identified peak SNP (Figure 5C). The candidate genes of Glyma.02G113600
(GO:0042631), Glyma.02G115400 (GO:0006007), Glyma.02G240400 (GO:0005986),
Glyma.04G131700 (GO:0010182), and Glyma.04G228300 (GO:0005982) were selected as the
strong candidate genes associated with 100-seed weight, which encode cellular response to
water deprivation, glucose catabolic process, sucrose biosynthetic process, sugar mediated
signaling pathway, and starch metabolic process, respectively (Figure 5C).
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3. Discussion

Improving soybean seed composition traits has been an important criterion in most
soybean breeding programs [62]. It has been well documented that soybean seeds contain a
significant percentage of protein among all other legumes, with a range of 35–40% depend-
ing on the growing conditions and used cultivars [63]. However, the major impediment of
developing high-seed protein soybeans is the negative correlation between yield and seed
oil concentration. The linear Pearson correlation between soybean seed protein and seed
oil was estimated to be −0.67 in this study. Soybean seed compositions are derived from
glycolysis intermediates, which fuel the biosynthesis of protein and oil [64]. Glycolysis is
known as the most important metabolic pathway that provides free energy by converting
glucose into pyruvic acid to form the reduced nicotinamide adenine dinucleotide (NADH)
and adenosine triphosphate (ATP) [65,66]. NADH and ATP are finally used to supply the
required acetyl-CoA available for oil and protein synthesis [67]. Several studies reported
that the seed oil and protein are synthesized at the seed development stage, and there is
significant competition between these two traits in receiving acetyl-CoA [64,68]. Although
simultaneous improvement in soybean seed protein and oil is still an important challenge
in cultivar development programs, better identification of associated molecular markers
with seed protein and oil is pivotal to breaking the existed negative correlations between
both traits to some extent [3].

GWAS is currently considered as the most common way to discover MTAs for com-
plex traits of interest [58]. However, more and more research is required to investigate the
transferability and reproducibility of GWAS results across different genetic backgrounds
and environments [69]. Several studies have reported inconsistent QTL identified for quan-
titative traits in different genetic backgrounds and across different environments. More
specifically, several QTL have been found and reported for soybean seed protein, oil, and
100-seed weight [3,70], whereas a limited number of the detected QTL are currently used
for marker-assisted selection in plant breeding programs due mainly to their inconsistent
effects on the traits [69]. In general, there are several gaps in the use of the conventional
GWAS methods for detecting MTAs for complex traits [71]. One of the major challenges
with conventional statistical procedures is the “large p, small n” problem, which occurs
when these methods are applied to datasets in which the number of markers is larger
than the number of genotypes [16,69]. It is widely acknowledged that conventional GWAS
methods are in general powerful for detecting common SNPs with large main effects that
reach the level of significance [28]. Therefore, current conventional GWAS approaches are
underpowered for discovering SNPs with minor effects underlying a given trait [72]. This
study confirmed the efficiency of using an SVR-mediated machine learning algorithm in
GWAS to detect reliable SNP markers associated with soybean seed composition traits. The
use of SVR was investigated in predicting soybean yield and fresh biomass [73], wheat re-
sistance [74], and in vitro breeding base methods [75]. The effectiveness of SVR in detecting
more relevant MTAs for a trait of interest was demonstrated by de Oliveira et al. [38]. They
compared different kernel types in SVR with other GWAS methods for detecting associated
SNPs using simulation and real data in milk-related traits in cattle. The results showed that
SVR had high potential to select associated SNPs markers for a trait of interest [38].

There are probable reasons why SVR was able to better detect the genomic regions
associated with a trait of interest than FarmCPU. One of the important reasons is the ability
of SVR to estimate significance levels for identifying SNP–trait associations using variable
importance methods instead of the statistical methods used in conventional GWAS [71].
Variable importance allows for the consideration of interaction effects between SNPs,
which is advantageous in identifying associations for complex traits. Conventional GWAS
methods are better at detecting SNPs with large main effects on traits but are not as effective
in considering the complex biological processes that shape these traits [23]. Recent studies
have shown that SNPs with high importance scores may not necessarily have significant
p-values from single SNP analyses [71,76,77]. Therefore, using variable importance values
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in SVR can improve the power of GWAS in discovering variant–trait associations with
higher resolution [13].

In this study, SVR-mediated GWAS detected MTAs that were co-localized with two
QTL directly related to soybean seed protein [48,55]. Most of the detected QTL for seed
protein were also detected in separate environments. By selecting an appropriate GWAS
method, the rate of detecting unstable MTAs will decrease, which can pave the way for
using more MTAs in the MAS breeding strategy [78,79]. For soybean oil, most of the
co-localized QTL with detected MTAs using SVR-mediated GWAS were related to the seed
long-chain fatty acids reported previously by Fang et al. [55]. Seed long-chain fatty acids
commonly contain 18–20 carbons, which can be categorized into different families based
on the position of their first double-bound methyl end groups [80]. Triacylglycerols (TAGs),
as important components of seed oil, are mostly composed of long-chain fatty acids [81].
Recent studies revealed the TAG biosynthesis pathway in soybean seeds [67,82,83]. There-
fore, regulating the long-chain fatty acids may affect the overall seed oil percentage. In
soybean 100-seed weight, SVR-mediated GWAS could find different MTAs co-localized
with previously reported QTL related to this trait. 100-seed weight can be affected by
several intrinsic and extrinsic factors, such as abiotic and biotic stresses, the total number
of nodes and pods, and nutrition uptake [84,85]. Therefore, many genomic regions were
involved in determining the ultimate 100-seed weight [84]. This study found that SCN and
WUE related QTL in 100-seed weight, which shows the importance of biotic and biotic
stresses in shaping this trait. It can be hypothesized that by improving the resistance to
abiotic and biotic stress in new genotypes, a significant improvement in 100- seed weight
can be achieved.

Several candidate genes related to seed protein (Glyma.05G186700, Glyma.14G035100,
Glyma.15G107800, Glyma.15G109300, and Glyma.19G068300) were detected via SVR-mediated
GWAS, which seems to have a direct influence in seed protein concentration. As an ex-
ample, Glyma.05G186700 encodes amino acid transport, which plays an important role in
distributing essential nitrogen for plant growth and development [86]. Glyma.14G035100
encodes tissue development which depends on the nitrogen distribution as encoded by
Glyma.05G186700. Glyma.15G107800 and Glyma.15G109300 were other candidate genes
for seed protein, which encode protein desumoylation and chloroplast organization, re-
spectively. Those genes play important roles in maintaining energy production sites for
supplying the required energy for storing seed compositions [87,88]. Three candidate
genes (Glyma.13G187100, Glyma.16G133500, and Glyma.16G133600) were found to be strong
candidate genes for soybean seed oil. Glyma.13G187100 encodes methyltransferase activity,
which plays a vital role in regulating tocopherols, an important component in the stability
of soybean seed oil [89]. Another strong candidate gene for oil was Glyma.16G133500,
which encodes salicylic acid biosynthetic process. Salicylic acid regulates the nitrate re-
ductase activity in the plant, which plays an important role in increasing the protein
and decreasing the oil percentages in seed [90,91]. Therefore, this gene may be useful
in breaking the negative correlations between seed protein and oil percentage. From all
the detected candidate genes for 100-seed weight, Glyma.02G113600, Glyma.02G115400,
Glyma.02G240400, Glyma.04G131700, and Glyma.04G228300 were selected as the strong
candidate genes governing the trait. The candidate genes seem to be involved in glucose
metabolism, specifically sugar catabolic processes. The breakdown of sugars is essential for
providing energy during seed maturation and development. This gene may play a role in
regulating the balance between glucose and other sugar molecules in the seed, contributing
to the overall 100-seed weight. During the soybean seed maturity stages, the glucose level
decreases significantly, while the levels of sucrose, sugar, and starch increase in the full
mature soybean seed yield [92]. Glyma.02G113600 encodes the glucose catabolic process
responsible for breaking down the glucose to produce the primary sources of energy for the
cellular production of ATP [93]. The produced ATP may be used in different biosynthesis
(e.g., starch, sugar, and sucrose) and physiological processes [94,95].
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Overall, the detected candidate genes for 100-seed weight are mostly involved in
sugar, glucose, and starch metabolism. This suggests that the regulation of carbohydrate
metabolism is crucial for determining seed size and weight. The breakdown of glucose and
starch molecules provides the necessary energy and building blocks for seed development
and growth. The balance between these different carbohydrate molecules is important
for achieving optimal seed weight and size. Such information can be useful for soybean
breeders to selectively breed for plants carrying favorable alleles of these candidate genes,
resulting in soybean varieties with desired seed weight characteristics. Further research
can be conducted to elucidate the precise roles of these genes in regulating carbohydrate
metabolism and seed weight. This knowledge can contribute to a better understanding of
plant physiology and can potentially be applied to other crops as well.

4. Materials and Methods
4.1. Plant Materials and Field Experiments

The GWAS panel, which consisted of 250 soybean genotypes, was grown in field condi-
tions at the University of Guelph, Ridgetown campus in four environments
(two locations × two years) in 2018–2019 at Ridgetown (42◦27′14.8′′ N 81◦52′48.0′′ W,
200 m above sea level) and Palmyra (42◦25′50.1′′ N 81◦45′06.9′′ W, 195 m above sea level),
Ontario, Canada. The tested genotypes were derived from the core soybean germplasm,
Ridgetown soybean breeding programs, that have been used for genetic studies and culti-
var development activities. Field experiments were conducted using randomized complete
block designs (RCBDs), with two replications in each tested environment. Each pheno-
typic plot consisted of five rows, which were 4.2 m long each, and the seeding rate was
50–57 seeds per m2. Nearest-neighbor analysis (NNA), as one of the well-known error
control methods [96–98], was used to reduce the spatial variation and increase the accuracy
of measured phenotypic data in each phenotypic plot.

4.2. Phenotypic Data and Analysis

Soybean seed yield (ton ha−1) was measured by harvesting three middle rows of each
plot and adjusted based on days to maturity and 13% seed moisture. The total percentage
of oil and protein in soybean seeds was measured via near-infrared reflectance (NIR) using
a DA 7250 NIR analyzer (Perten Instruments Canada, Winnipeg, MB, Canada) on a dry
weight basis. The used instrument was calibrated based on Perten Instruments [99,100].
Each NIR measurement was achieved by averaging three technical replicates. 100-seed
weight was also measured based on adjusting to zero percent moisture (The raw pheno-
typic data is available at https://github.com/MohsenYN/Available-Datasets (accessed on
15 July 2023)). In order to estimate the average phenotype of the tested traits, the best linear
unbiased prediction (BLUP) was used for each soybean genotype [101] using packages
lme4 [102] and AllInOne Pre-processing [103] in R software version 4.1.1. The possible
outliers were detected using the proposed protocol by Bowley [98] and treated as missing
data points. Overall, the following statistical model was used in this study (Equation (1)):

Y = µ + Ax + Bz + Ci + εij (1)

where Y stands for the trait of interest as a function of an intercept µ; µ is equal to the
overall mean (fixed); x stands for the vector of block effects; z is the vector of the genotype
effects (random), in which z ~ N(0, σ2

G); i stands for the vector of random GxE interaction
effects; and ε is equal to the vector of residuals, in which e ~ N(0, σ2

E). A, B, and C represent
the incidence matrices of x, z, and i effects, respectively.

In addition, the heritability (Equation (2)) of each tested trait was calculated based on
the following equation:

H2 =
σ2

G
σ2

G + σ2
E

(2)

where σ2
G is the genotypic variance and σ2

E stands for the environmental variance.

https://github.com/MohsenYN/Available-Datasets
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4.3. Genotyping

For extracting DNA, the collected trifoliate leaf tissues from the first rep of phenotyping
plots at the Ridgetown location were freeze-dried for 72 h using a Savant ModulyoD
Thermoquest (Savant Instruments, Holbrook, NY, USA). DNA of each soybean genotype
was extracted using NucleoSpin Plant II kit (Macherey–Nagel, Düren, Germany), followed
by a quality check through a Qubit® 2.0 fluorometer (Invitrogen, Carlsbad, CA, USA). The
genotyping-by-sequencing (GBS) step was performed using ApeKI [104] as one of the most
common enzymatic digestions for soybean genotypes. Achieved SNPs were called from a
total of 210 M single-end Ion Torrent reads using the Fast GBS pipeline [105], considering
Gmax_275_v2 as the reference genome. The filtering process for SNPs was assessed using
the (1) Markov model, (2) minor allele frequency less than 0.05, and (3) removing SNPs
with more than 50% heterozygosity.

4.4. Analysis of Population Structure

The population structure analysis for the tested 227 soybean genotypes was conducted
from a total of 17,958 high-quality SNPs using fastSTRUCTURE [106]. For this aim, five runs
were performed for the number of population (K) from 1 to 15, and the optimum number of
populations was selected via the K tool in fastSTRUCTURE software. Additionally, kinship
was estimated and considered between genotypes to reduce the confounding in the tested
GWAS population.

4.5. Association Analysis

Different GWAS methods may provide different results based on the population
diversity, number of SNPs, and statistical power linked with each method [107]. Therefore,
two different GWAS methods were tested to investigate their efficiency in detecting the most
relevant MTAs for traits of interest. FarmCPU, as the most common GWAS method, divides
the multi-locus mixed model into a random effect model (REM) and a fixed-effect model
(FEM), then employs them iteratively to achieve the best results in a given dataset [108]. For
setting a threshold in the FarmCPU method, the FDR was used properly [109]. A, rMVP
package [110] in R software version 3.6.1 was used for all FarmCPU analyses. In general,
FEM and REM equations are as follows:

FEM(Yi) = Ci1D1 + Ci2D2 + Ci3D3 + · · ·+ CitDt + MijKj + ei (3)

REM(Yi) = Ui + ei (4)

where Yi represents the observation on the ith sample; Ci1, Ci2, . . . , Cit is equal to the
genotypes of the t pseudo-QTNs; D1, D2, D3, . . . , Dt stands for the corresponding effect for
the pseudo-QTNs; Mij is equal to the genotype of the jth SNPs and ith sample; Kj stands for
the corresponding effect of the jth SNPs; Ui is the total genetic effect of the ith sample; and
ei is the residual.

SVR is based on creating a set of hyperplanes used in regression problems [32]. This
algorithm was implemented in GWAS based on estimating the variable importance pro-
posed by Weston et al. (2001) [111], where SNPs and traits of interest consider as input and
output variables, respectively (Equation (5)):

Y = Wβ(c) + b (5)

where Y stands for the output, W is the weight for each high-dimensional input variable (β)
which is considered non-linearly on the input space of (c). The lower and upper borderlines
are created as Y = Wβ(c) + b− e and Y = Wβ(c) + b + e, respectively.

For SVR-mediated GWAS, the scaled method (0–100) was used for estimating the
importance of each SNP associated with traits of interest. In order to implement the SVR
method in GWAS, a five-fold cross-validation strategy with ten repetitions was applied
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to estimate the variable importance of each SNP [112]. Still, there is no confirmed way to
set the significance threshold in the SVR-mediated GWAS. Therefore, the global empirical
threshold [113,114] was used based on fitting the SVR algorithm, storing SNPs with the
highest variable importance score, repeating the process 1000 times, and selecting the
associated SNPs based on α = 0.5. SVR-mediated GWAS was conducted using the Caret
package [115] in R software version 3.6.1.

4.6. Extracting Candidate Genes Undelaying Detected QTLs

One of the most common ways to verify QTL and candidate genes co-localized with
MTAs detected using the tested GWAS methods is to investigate the functional annotation
of candidate genes. The potential genes and QTL were retrieved based on the G. max
William 82 reference gene models 2.0 in SoyBase (https://www.soybase.org (accessed
on 15 July 2023)) on 150 k bp flanking regions of each MTA, identified using LD decay
distance (Figure 6). Previous studies, gene ontology, and Go term enrichment (https:
//www.soybase.org (accessed on 15 July 2023)) were used as three criteria to detect the
most relevant over-represented QTL and genes with a trait of interest.
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5. Conclusions

This study suggests that improved GWAS methods, such as SVR-mediated GWAS, can
enhance the understanding of the genetic basis of seed composition traits in soybeans. This
understanding can be used by food-grade soybean breeders to develop more reliable and
efficient cultivars. The study also identified a candidate gene, Glyma.16G133500, that could
potentially break the negative correlation between seed oil and protein concentrations. Fur-
ther investigation of the identified candidate genes and their differential gene expressions
could lead to the development of gene-specific markers for marker-assisted selection (MAS)
in soybean breeding programs. Overall, the results highlight the potential of advanced
computational methods for improving the accuracy and efficiency of identifying MTAs and
developing new soybean varieties with desired seed composition traits.

https://www.soybase.org
https://www.soybase.org
https://www.soybase.org
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12142659/s1, Table S1: The full list of detected MTAs for
seed protein using FarmCPU in the tested soybean population. Table S2: The full list of detected
MTAs for seed protein using SVR in the tested soybean population. Table S3: The full list of detected
MTAs for seed oil using FarmCPU in the tested soybean population. Table S4: The full list of detected
MTAs for seed oil using SVR in the tested soybean population. Table S5: The full list of detected
MTAs for seed oil using FarmCPU in the tested soybean population. Table S6: The full list of detected
MTAs for 100-seed weight using SVR in the tested soybean population.
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