Skip to main content
. 2023 Jul 11;23(14):6302. doi: 10.3390/s23146302

Table 5.

CNN model training results.

Dataset Without Sampling CallBacks Random under Sampler SMOTE SMOTE Tomek Borderline SMOTE ADASYN
Accuracy CTU13 0.997520 0.998044 0.971556 0.997805 0.995140 0.993538 0.993538
IoT23 0.952365 0.945287 0.892822 0.896551 0.945287 0.892836 0.896751
Precision CTU13 0.886515 0.868871 0.195595 0.761460 0.588351 0.701167 0.517816
IoT23 0.736959 0.845727 0.995560 0.995560 0.997780 0.999970 0.999989
Recall CTU13 0.736959 0.845727 0.995560 0.995560 0.997780 1 1
IoT23 0.991621 1 0.886644 0.890587 1 0.886660 0.890785
F-Score CTU13 0.804848 0.857143 0.326955 0.862915 0.740222 0.824337 0.682317
IoT23 0.975221 0.971874 0.939904 0.942116 0.971874 0.939912 0.942233
FPR CTU13 0.000659 0.000892 0.028612 0.002179 0.004879 0.002978 0.006507
IoT23 0.725878 1 0.000437 0.000402 1 0.000455 0.000175