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Abstract: Spiking neural networks (SNNs) have attracted considerable attention as third-generation
artificial neural networks, known for their powerful, intelligent features and energy-efficiency advan-
tages. These characteristics render them ideally suited for edge computing scenarios. Nevertheless,
the current mapping schemes for deploying SNNs onto neuromorphic hardware face limitations such
as extended execution times, low throughput, and insufficient consideration of energy consumption
and connectivity, which undermine their suitability for edge computing applications. To address
these challenges, we introduce EdgeMap, an optimized mapping toolchain specifically designed
for deploying SNNs onto edge devices without compromising performance. EdgeMap consists of
two main stages. The first stage involves partitioning the SNN graph into small neuron clusters
based on the streaming graph partition algorithm, with the sizes of neuron clusters limited by the
physical neuron cores. In the subsequent mapping stage, we adopt a multi-objective optimization
algorithm specifically geared towards mitigating energy costs and communication costs for efficient
deployment. EdgeMap—evaluated across four typical SNN applications—substantially outperforms
other state-of-the-art mapping schemes. The performance improvements include a reduction in
average latency by up to 19.8%, energy consumption by 57%, and communication cost by 58%.
Moreover, EdgeMap exhibits an impressive enhancement in execution time by a factor of 1225.44×,
alongside a throughput increase of up to 4.02×. These results highlight EdgeMap’s efficiency and
effectiveness, emphasizing its utility for deploying SNN applications in edge computing scenarios.

Keywords: edge computing; spiking neural networks; neuromorphic hardware; mapping

1. Introduction

The growing popularity of edge devices, such as wearable electronics, the Internet of
Things devices, industrial machinery, and smartphones connected to the internet, has been
driving the development of intelligent applications [1]. Edge computing has emerged as
a promising approach to optimize overall system performance by reducing latency and
conserving bandwidth through processing data closer to the source rather than relying on
centralized nodes. As a result, there is a growing interest in endowing edge computing
with greater intelligence [2].

Spiking neural networks (SNNs) demonstrate significant potential in providing edge
devices with intelligent capabilities due to their low energy consumption and powerful
biomimetic intelligence features [3]. An increasing number of SNNs have exhibited excep-
tional computational performance in various edge computing applications, including object
recognition [4], speech recognition [5], and robotics control [6]. Through the utilization of
SNNs, edge devices can be transformed into more intelligent nodes capable of executing
complex intelligent applications with enhanced accuracy and efficiency.
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Recently, neuromorphic hardware designs, such as TrueNorth [7], Loihi [8], and
SpiNNaker [9], have recently emerged. These designs feature multiple interconnected neu-
romorphic cores (NCs) through a network-on-a-chip (NoC), enabling the energy-efficient
and high-performance execution of SNNs [10]. To bridge the gap between SNNs and
hardware implementation, various mapping schemes have been proposed [11–13]. These
schemes typically involve two stages: partitioning and mapping. During the partitioning
stage, the computation graph of SNN neurons is divided into clusters under the constraints
of the neuromorphic hardware. The mapping stage then places these clusters onto physical
neuron cores to achieve different optimization objectives.

However, while these mapping schemes enhance the performance, scalability, and
accuracy of SNNs on neuromorphic hardware, they primarily focus on neuromorphic hard-
ware deployed at the server end at present. This approach assumes a stable environment
and unlimited computational resources, which is not reflective of edge computing scenarios.
Implementing SNNs on compact edge devices, thus, presents unique challenges, mak-
ing it a more complex and rigorous task than server-end deployments. These challenges
may include:

• Energy constraints: Edge computing devices, typically standalone units, operate
under stringent energy constraints, making power efficiency a critical factor in their
operation. Different mapping schemes can lead to substantial disparities in energy
consumption, significantly affecting the performance and viability of these devices.
These realities underscore the urgent need for mapping schemes that thoroughly
consider energy efficiency.

• Real-time processing: Many edge computing applications require real-time or near-
real-time processing, necessitating low latency and efficient network communication.
However, achieving these performance characteristics without compromising other
essential attributes, such as energy efficiency, is a challenging balancing issue.

• Complex environments: Edge computing scenarios are inherently complex and di-
verse, often with varying constraints and requirements. Edge environments, unlike
server-end environments, can have much more diverse and demanding constraints
and requirements.

Drawing upon the aforementioned challenges, this paper aims to explore the optimal
mapping toolchain for SNN applications under multiple edge computing environments.
We develop a partitioning algorithm for various SNNs to enable rapid and resource-
efficient partitioning on edge devices. The mapping optimization strategy is then applied
to meet edge computing requirements. The main contribution of this paper is to provide
a more efficient and flexible deployment of neuromorphic computing in edge computing
applications while also improving the overall system performance.

• We propose a novel partitioning method inspired by the streaming-based approach [14].
This method efficiently partition SNNs into multiple neuron clusters, significantly
reducing partitioning time while minimizing the number of spikes between clusters.
Importantly, our approach takes into account the fan-in and fan-out limitations of
neuromorphic hardware, ensuring compatibility with edge device constraints.

• We propose a multi-objective optimization method to place neuron clusters onto neu-
romorphic devices. This method addresses the diverse challenges in edge computing,
including bandwidth limitations, communication costs, and energy consumption. Our
approach, while successfully reducing energy consumption and latency, crucially en-
hances the overall performance of neuromorphic computation in edge environments.

• We propose a versatile mapping toolchain suitable for a wide range of neuromorphic
edge devices. By conducting extensive evaluations of various SNNs and scales on
NoC-based hardware, we demonstrate significant enhancements in edge computing
performance. In addition, our toolchain can accommodate the diverse constraints and
requirements of different edge computing scenarios.
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This paper is organized as follows: Section 2 provides a review of the related work. In
Section 3, we discuss the necessary background for understanding the subsequent sections.
Section 4 delves into the design methodology of EdgeMap. Section 5 outlines the setup
used for our evaluations. In Section 6, we present a detailed account of our experimental
results. Finally, in Section 7, we conclude this paper.

2. Related Work

Recently, SNNs have garnered interest due to their energy efficiency and computa-
tional capabilities [3]. However, executing SNNs on neuromorphic hardware is challenging
because of their complex connections and hardware limitations. Many efforts have been
made to bridge this gap, with current SNN mapping schemes generally falling into three
categories: dedicated hardware mapping, general mapping for crossbar-based hardware,
and other flexible mapping schemes.

The first category involves dedicated hardware design schemes specifically tailored for
specialized SNN solutions. Examples of such mapping schemes include SentryOS [15] for
µBrain [16], the Corelet toolchain [17] for TrueNorth [7], and the LCompiler [18] for Loihi [8].
These complete toolchains aim to optimize core utilization to the maximum extent. The
SentryOS toolchain comprises a SentryC compiler, which partitions SNN network structures
into multiple subnetworks, and a SentryRT real-time manager responsible for sorting
and computing different subnetworks in real-time. Corelet, a dedicated programmable
toolchain for TrueNorth, encapsulates biological details and neuron complexity before
proposing an object-oriented Corelet language to compose and then execute SNNs. The
LCompiler framework maps SNNs onto Loihi neuromorphic hardware by presenting a
data flow graph with logical entities describing an SNN instance, such as compartments,
synapses, input maps, output axons, and synaptic traces. The framework first transforms
SNNs into microcodes and translates SNN topology into a connection matrix. Next, it
employs a greedy algorithm to map logical entities to hardware before generating the
bitstream for Loihi cores. In the study by Wang et al. [19], they presented an innovative
mapping method specific to the Tianjic neuromorphic chip [20]. This approach comprises
two stages: logical mapping and physical mapping. In the logical mapping stage, the
authors introduce a closed-loop mapping strategy that employs an asynchronous 4D model
partition. For the physical mapping stage, a Hamilton loop algorithm is applied. The
advantage of this method is its ability to achieve high resource utilization and processing
efficiency, providing an interesting perspective for the efficient deployment of neural
networks on neuromorphic hardware. All of these mapping toolchains are designed for
specific targets, restricting their universal applications. This restricts their adaptability for
more general-purpose use.

The second category focuses on crossbar-based SNN topology schemes, which are
more general mapping techniques. These schemes include state-of-the-art mapping tech-
niques, such as NEUTRAMS [21], SpiNeMap [13], SNEAP [22], and DFSynthesizer [23].
NEUTRAMS is a co-design toolchain that partitions SNNs to meet hardware constraints
and optimizes their mapping onto neuromorphic hardware. SpiNeMap adopts a greedy
approach, loosely based on the Kernighan–Lin graph partitioning algorithm [24], to min-
imize inter-cluster spike communication, and it utilizes a PSO algorithm [25] to place
each cluster on a physical core. SNEAP [22] uses the METIS graph partition algorithm to
partition the SNN computation graph with the objective being the communication cost,
then it uses a greedy algorithm to become the final mapping results. DFSynthesizer [21]
is an end-to-end framework for mapping machine learning algorithms. It decomposes
and partitions SNNs into clusters before exploiting the rich semantics of synchronous data
flow graphs to explore different hardware constraints that influence mapping performance.
These existing toolchains are designed mainly for cloud servers and do not consider the
constraints of complex computing environments like edge computing. This could limit
their applicability in resource-constrained edge scenarios where environmental factors
come into play.
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Various works have been proposed to address specific challenges in mapping schemes.
For instance, Jin et al. [26] aimed to address the challenge of mapping large-scale SNNs
onto neuromorphic hardware. Their approach, which employs a Hilbert curve and a force-
directed algorithm to optimize the mapping stage, achieves remarkable time degradation
when deploying large-scale SNNs. Similarly, Nair [27] suggested mapping recurrent neural
networks to in-memory computing neuromorphic chips by modifying the ANN to an RNN
unit with an adaptive spiking neuron model and scaling it to fit the chip. Additionally,
Migspike [28] was introduced to address reliability concerns resulting from the probability
of accumulating faults, and it uses a node-level recovery mechanism for neuron failures by
placing spare neurons into each neuron core, implemented through a mapping method for
defective neurons.

In summary, various schemes have been proposed to optimize the mapping of neu-
romorphic hardware to achieve different optimization goals. To build upon these current
mapping schemes, the objective of this paper is to introduce a novel mapping toolchain that
is customized for complex edge computing scenarios with limited energy and computing
resources that also require low latency.

3. Background and Motivation

This section begins with a brief overview of SNNs, emphasizing their unique attributes
that facilitate highly efficient computational patterns and capabilities. Subsequently, we
provide an introduction to edge computing, delving into the complexities of its inherent
environments and the accompanying requisites.

3.1. A Brief Introduction to SNN

Inspired by mammalian brains, SNNs have become increasingly popular for use in AI
applications due to their ability to process data in a more efficient manner than traditional
neural networks. Moreover, SNNs are less prone to overfitting and are better at capturing
nonlinear patterns, making them well-suited for a wide range of artificial intelligence
applications [6,29,30].

A typical and fundamental SNN model, as illustrated in Figure 1, can be represented as
a directed graph consisting of a series of connected layers. The model might also incorporate
inter-layer connections, enhancing the network’s connectivity and learning capabilities.
Each neuron in an SNN is connected to a specific number of neurons, with adjustable
connection weights, allowing the network to learn from data. During computation, each
neuron in an SNN processes weighted stimulus spikes from neighbors, generating and
transmitting spike outputs to output neurons. This iterative process continues until the
output layer produces the final results.

In this paper, we focus primarily on the inference of SNNs rather than training. This is
because the training process is generally performed offline through powerful cloud data
centers and is typically delay-tolerant [31], which we do not consider in this paper.

3.2. Edge Computing

The edge–fog–cloud architecture, which has emerged as a popular paradigm in dis-
tributed computing, as depicted in Figure 2, has demonstrated its applicability across
various domains for its significant advantages in managing computational resources and
reducing communication latency [32]. This structure incorporates three layers: the edge,
fog, and cloud layers, with the fog layer serving as a bridge between edge and cloud
computing. Unlike traditional cloud computing, which predominantly depends on input
data from edge devices such as images [33], speech [34], and videos [35], edge computing
alleviates the burden on cloud computing centers by offering processing and storage ser-
vices closer to end-users. However, progressing from the edge towards the cloud usually
yields more sophisticated machine learning and data processing capabilities but introduces
higher latency and communication overheads. The fog layer, featured in contemporary
architectural designs, functions as a grid that mediates between the edge and the cloud,
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helping to balance the advantages and drawbacks of the other two layers. This layer
addresses concerns associated with reliability, load balancing, communication overhead,
and data sharing. Particularly, the fog layer acts as a data collector close to the edge layer
and as a data filter close to the cloud layer, streamlining the data flow in near real-time for
efficient processing, compression, and transformation.

Figure 1. A three-layer SNN topology.

Figure 2. Example of the edge–fog–cloud architecture.

Despite the potential of the edge–fog–cloud architecture, the increasing demands
of edge devices exert substantial pressure on the cloud and fog layers. This situation
underscores the need for enhancing intelligence at the edge. A significant step towards this
goal is the exploration and implementation of SNNs in edge computing. However, this
integration comes with unique challenges. While SNNs offer high computational efficiency
and biological realism, their inherent characteristics, such as temporal dynamics and spike-
based communication, complicate their deployment. Limited hardware resources and
the complexity of neuron connections pose additional difficulties in mapping SNNs onto
neuromorphic hardware. The balance between enhancing intelligence for edge computing
applications and navigating the constraints of edge devices forms the focal point of our
discussion in this paper.

In addition, the adoption of edge computing itself comes with a unique set of chal-
lenges, primarily due to the constrained resources and the need for real-time data analysis
and decision-making. The struggle is particularly evident in applications like IoT de-
vices [36], autonomous vehicles [37], and smart city infrastructure [38]. To balance the
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algorithm accuracy, energy consumption and communication efficiency amidst diverse
devices and complex scenarios are significant difficulties. Individual edge computing
scenarios with limited computational power were often unable to cope with large-scale
data processing. Conversely, collaborative edge computing scenarios require efficient
coordination schemes to manage variations in computational capabilities and device num-
bers. Consequently, conventional practices, such as deploying AI models or transferring
data to the cloud for processing, prove inadequate for applications demanding real-time,
high-intelligence performance.

These constraints and the limitations of current solutions underscore the necessity of
a novel approach. It is within this context that this work introduces a mapping toolchain
specifically designed for deploying SNNs on edge computing devices. This innovation aims
to bridge the gap between SNNs and edge computing, with an emphasis on low-latency
and high-intelligence performance.

4. Framework and Design Method

In this section, we present a comprehensive overview of EdgeMap, an optimized map-
ping toolchain specifically designed for SNNs in edge computing environments, which ad-
dresses the inherent limitations and challenges associated with edge computing scenarios.

4.1. Framework Overview

The EdgeMap framework aims to enhance the performance of SNNs on neuromorphic
hardware in edge computing scenarios. Current mapping approaches primarily focus on
the forward direction of neural network inference, as the learning phase can be latency-
insensitive and conducted through the cloud. As illustrated in Figure 3, the EdgeMap
toolchain deploys a specific neural network through the following stages:

Figure 3. A high-level overview of EdgeMap.

• Offline training stage: The design and training of models with different network
structures are crucial, considering the diverse application scenarios in edge computing.
These structures must meet varied accuracy and scale requirements. The training
process can be implemented using frameworks like Nengo [39], CARLsim [40], and
Brain2 [41]. For clarity, we use the commonly adopted convolutional SNNs for recog-
nition applications in Figure 3, primarily used for classification tasks [42].

• Processing stage: As shown in Figure 4, this stage is pivotal to the entire process.
We start by extracting information from trained SNNs, such as neuron connection
structure, weight information, and spike communication details. The SNN topol-
ogy is represented as a computing graph, as depicted in Figure 4a. Subsequently,
we divide the SNN into smaller neuron clusters for more manageable processing,
demonstrated in Figure 4b. Finally, we map these partitioned neuron clusters onto the
neuromorphic core, as illustrated in Figure 4c. This process forms the core function
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of our EdgeMap toolchain. It optimizes hardware resource utilization and ensures
computational efficiency.

• Edge computing stage: In this part, we briefly introduce two edge computing modes:
individual edge computing scenarios and collaborative edge computing scenarios.
The individual edge computing scenario involves a variety of computing modes and
different types of devices. As for collaborative edge computing scenarios, multiple
edge devices cooperate via network connections to accomplish more computing
require tasks.

Based on the above introduction, the EdgeMap toolchain covers the entire process
from training and processing to edge computing, adapting to the demands of various
scenarios, and effectively improving the performance of SNNs on neuromorphic hardware
in edge computing contexts.

Figure 4. Flowchart of the mapping. (a) The connection of SNNs. (b) The partitioned neuron clusters.
(c) Neuron cluster to NCs mapping.

4.2. Neuromorphic Edge Computing Hardware Model

In this paper, we focus on the deployment of SNNs on edge devices in two scenarios:
individual edge computing and collaborative edge computing. The individual edge com-
puting suits situations with a relatively small SNN scale or sufficient computing resources
on a single edge device. Conversely, when a single edge device’s computing resources are
insufficient, collaborative edge computing becomes necessary, requiring multiple devices
for computations.

To provide a clearer understanding of the edge computing modes, we devise a sim-
plified hardware model as depicted in Figure 5. For the sake of clarity, we assume that
each edge device consists of four neuromorphic cores interconnected through a 2D mesh.
Although actual devices may have more cores, our model seeks to effectively clarify the
system’s fundamental architecture. Additionally, to emulate collaborative edge computing,
we model four edge devices as interconnected via a mesh topology. The dashed lines in
the figure represent the communication pathways between devices within a cooperative
edge computing environment, with the fog layer being the primary facilitator for such
interactions. For the purposes of our study, we make the following assumptions:

• The spike communication latency and energy consumption between devices are
equivalent to those within the device’s neuromorphic cores.

• The energy required for spike processing is uniformly distributed across all edge devices.
• The NCs across different devices possess equal computational capacity, including

identical quantities of neurons and synapses.

By setting these assumptions, we establish a general framework to study the deploy-
ment of SNNs under various device and application scenarios. This enables us to gain a
better understanding of the key aspects of cooperative edge computing and provides a
more comprehensive evaluation of the performance of different mapping algorithms in an
edge computing environment.
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Figure 5. An illustration of the neuromorphic edge computing hardware model.

4.3. Streaming-Based SNN Partition

After training the SNNs, we use the resulting connectivity information to transform
the SNN models into a computing graph G = {V, E}, where V is the set of neurons and E is
the set of synapses. We then partition V into clusters C = (C1, C2, · · · , Ck) to accommodate
the constraints of neuromorphic hardware.

The partitioning process, as illustrated in Figure 4b and referred to as SNN partition,
aims to partition SNNs into smaller neuron clusters. Our proposed SNN partition algorithm
employs a streaming-based graph partitioning strategy, systematically assigning neurons
to various clusters using a tailored gain function g to optimize both inter and intra-cluster
communication costs based on the number of spikes transmitted.

In the context of our proposed SNN partition algorithm, k denotes the total number
of clusters, which is no more than the number of NCs or edge devices. The gain function
g(C) is the sum of all cluster gains h(Ci), where h(Ci) is the gain of cluster Ci. The term
∑e∈e(X,Y) w(e) represents the total number of spikes transmitted between X and Y. We use
a specific convex increasing function c(x) = αxγ, α ≥ 0, γ ≥ 1 to measure the cost of a
cluster, with c(x) = x2 in our implementation, which quantifies the cost associated with
the size of the cluster |Ci|. This approach allows us to balance the trade-off between the
communication cost and cluster size, contributing to the efficient utilization of the NCs or
edge devices.

g(C) =
k

∑
i=1

h(Ci)

=
k

∑
i=1

∑
e∈e(Ci ,Ci)

w(e)− c(|Ci|)

= (∑
e∈E

w(e)−
k

∑
i=1

∑
e∈e(Ci ,V\Ci)

w(e))−
k

∑
i=1

c(|Ci|)

(1)
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To illustrate the partitioning cost more clearly, we present a straightforward example
of our proposed method in Figure 6. Subfigure (a) showcases the original SNN graph with
the number of spikes indicated on each edge. Two distinct partition schemes are depicted
in subfigures (b) and (c). Neurons that are colored the same belong to the same cluster. The
gray dashed lines denote the connection edges that need partitioning, contributing to the
communication cost of the neuron cluster. Scheme (b) results in a communication cost of
165 and a cluster size cost of 18, yielding a total gain of 183. On the other hand, scheme
(c) incurs a communication cost of 155 and a cluster size cost of 12, resulting in a total gain
of 167. Therefore, scheme (c) achieves a superior gain g, indicating its greater efficiency as
a partitioning scheme.

Figure 6. Exhibition of partition strategies and corresponding cost analysis: (a) original SNN graph
displaying the number of spikes, (b) partition result producing 3 clusters consisting of 4 neurons,
1 neuron, and 1 neuron, respectively; (c) alternative partition result resulting in 3 clusters, each
containing 2 neurons.

In the partitioning process, a greedy approach is adopted. The gain of assigning
neuron vi to cluster Cj is defined as δg(vi, Cj). The objective is to allocate each neuron vi to
a cluster C f that maximizes δg(vi, C f ), for all Ci ∈ C.

δg(vi, Cj) =g(C1, . . . , Cj ∪ vi, . . . , Cm, . . . , Ck)

− g(C1, . . . , Cj, . . . , Cm, . . . , Ck)
(2)

In conclusion, our SNN partition algorithm provides an effective means of partition-
ing the SNN computation graph across multiple neuromorphic devices. By minimizing
communication costs and balancing the size of each cluster, it ensures optimal performance
while adhering to the device’s constraints. This carefully calibrated approach leads to
improvements in both computational efficiency and communication overhead, making
it particularly beneficial for applications, such as real-time data processing and decision-
making tasks. Examples of such applications include autonomous vehicles, smart home
systems, and various edge computing scenarios.

Delving into the specifics of our method, the SNN partitioning algorithm we propose
is detailed in Algorithm 1. Initially, k empty clusters are created, where k = d|V|/Ne, and
N is the maximum number of neurons a core can accommodate. Each neuron vi is then
allocated to its optimal cluster C f inal , considering the hardware limit of crossbars. The
canAllocate(vi, Cj) function checks the feasibility of allocating a neuron vi to a cluster vi,
and addVertexToCluster(vi, C f inal) subsequently adds the neuron to its assigned cluster.
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Algorithm 1: Flow-based SNN partition
Data: SNN computing graph G = {V, E}, neuromorphic core size N
Result: Clusters of neurons C = (C1, C2, · · · , Cn)

1 Function clusterNeurons(V, N):
2 k← d|V|/Ne; /* Initialize k empty clusters */
3 for i = 1→ k do
4 Ci ← empty cluster;
5 C ← C ∪ Ci;
6 g← 0 ; // g is the metric function of partition
7 end

/* Traverse all of the neurons */
8 for vi ∈ V do
9 f inal ← −1 ; // final cluster of vi

10 δgmax ← −∞; /* Traverse all of the clusters */
11 for Cj in C do
12 if canAllocate(vi, Cj) then
13 δgij ← Compute δg(vi, Cj);
14 if δgij > δgmax then
15 δgmax ← δgij ;
16 f inal ← j;
17 end
18 end
19 end
20 if f inal < 0 then

/* vi cannot be allocated to the existing clusters */
21 Ck+1 ← empty cluster ;
22 C ← C ∪ Ck+1 ;
23 f inal ← k + 1, k← k + 1;
24 end
25 addVertexToCluster(vi, C f inal);
26 end
27 return C

In the execution of our algorithm, we partition the SNN computation graph into
manageable clusters for individual neuromorphic devices. Optimizing the gain function
g reduces the communication overhead and ensures efficient utilization of hardware re-
sources. The algorithm selects the cluster with the largest gain δg for each neuron vi,
maintaining a time complexity of O(|V||C|), linear to the size of the neural network and
the cluster set.

4.4. Multi-Objective Optimization Mapping

In this paper, we operate under the assumption that a sufficient number of physical
cores are available on edge devices for the parallel processing of all neurons in the SNNs.
The mapping stage, which is vital for multi-core collaborative computing, especially in
edge scenarios, assigns partitioned neuron clusters to corresponding NCs as depicted in
Figure 4c. As shown in Figure 7, the choice of mapping schemes can significantly influence
energy consumption, average latency, and hop count. In Figure 7a, we display the neuron
clusters post-partitioning. Subfigures (b) and (c) present two different mapping schemes.
In scheme (b), the maximum communication throughput is 75 (spike). On the other hand,
scheme (c) increases the maximum communication throughput to 115 (total spike from 2 to
3 and 1 to 3). However, it also results in higher congestion in the cluster 2 node, leading to
increased latency. Therefore, the selection of the mapping scheme should strike a balance
between these various factors to achieve the most efficient outcome.
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Figure 7. Demonstration of neuron cluster mapping strategies for NCs: (a) partitioned neuron
clusters, (b) mapping scheme with low congestion, and (c) mapping scheme with high congestion.

To effectively simulate the communication between NoC-based multi-core or multi-
device neuromorphic computing, we developed a Noxim-based simulator [43]. This tool
not only provides an accurate model for communication within NoC-based multi-core
neuromorphic hardware but also supports various edge computing scenarios, facilitating
collaboration among multiple devices.

Mapping definition: Placing the neuron cluster set C = (C1, C2, · · · , Ck) onto the
physical computing hardware with a set of hardware computing cores P = (P1, P2, · · · , Pk).
This association can be denoted as C → P and is detailed through a logical matrix, mij,
belonging to {0, 1}k×k. The element mij within the matrix is defined as follows:

mij =

{
1 if partition Ci ∈ C is mapped to device Pj ∈ P
0 otherwise

(3)

and the mapping constraints are the following.

(1) A neuron cluster can be mapped to only one computing device, thereby establishing
a unique mapping relationship. Mathematically, this constraint can be expressed
as follows:

∑
j

mij = 1 ∀i (4)

(2) A computing device can accommodate, at most, one neuron cluster, ensuring exclusiv-
ity of the mapping process. This can be formally stated as follows:

∑
i

mij ≤ 1 ∀j (5)

In this paper, we primarily aim to maximize the performance of SNNs on edge devices
while bolstering their energy efficiency. These objectives are primarily driven by the need
to satisfy the stringent energy constraints and meet real-time processing demands, which
are discussed in Section 1. This is under the assumption provided in Section 4.2 that the
spike processing speed and energy consumption are constant. The real-time performance
and energy consumption are typically influenced by the mapping results in the context
of NCs. It should be acknowledged that optimizing one objective may degrade others,
leading to a multi-objective optimization problem. To address this, we consider several
optimization objectives concurrently, intending to meet the diverse resource requirements
that are characteristic of edge computing scenarios. The following are some of the critical
objectives:

(1) Total energy consumption: This objective captures the cumulative energy consumed
by all spikes on the hardware, providing a direct reflection of the energy consumption.
It is computed as

E =
Ns

∑
i=1

[(hi − 1) ∗ ew + hi ∗ es] (6)
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where Ns is the total number of spikes, ew and es represent the energy consumption of
spikes on the communication and cores, respectively.

(2) Communication cost: This is the total communication count of the NCs, acting as
a reflection of the system’s communication efficiency. This metric has substantial
implications for performance and power consumption. It is computed as

M =
k

∑
i=1

k

∑
j=i

sij ∗ hij (7)

where k is the number of clusters, sij is the number of spikes between clusters i and j,
and hij is the hop distance between clusters i and j (Manhattan distance).

(3) Throughput: This metric represents the maximum number of spikes traveling on a
link between any two neighboring clusters. As a pivotal metric directly influencing
the system’s performance, it is computed as follows:

Throughput = max Loadij, 1 ≤ i < j ≤ k, |i− j| = 1

Loadij = Total spikes through channelij
(8)

where Loadij indicates the total number of spikes transmitted between clusters i and j.
(4) Average Hop: This metric offers insights into the efficiency of communication and

overall performance. It denotes the average number of hops a spike requires to travel
between neuron clusters, which mirrors the communication efficiency of the edge
computing system. It is computed as follows:

Hav = M/
k

∑
j=i

sij (9)

where M is the total communication cost from Equation (7).
(5) Average latency: This metric represents the average delay experienced by spikes on

the NoC. The latency is critical to system responsiveness and the real-time nature of
inference computations, particularly in edge computing applications requiring swift
responses. It can be computed as follows:

E =
Ns

∑
i=1

[(hi − 1) ∗ lw + hi ∗ ls] (10)

where hi is the hop count for a spike from source to destination, lw is the communica-
tion delay, and ls is the processing delay of the hops.

(6) Average congestion: This metric represents the average communication pattern of the
NoC, which is the connection network in the edge scenarios. It is especially critical for
applications demanding real-time responses. It is computed as follows:

Mac = ∑
(x,y)∈S

Con(x, y)/N (11)

where Con(x, y) computes the congestion in the router, with coordinates of (x, y). It is
computed as follows:

Con(x, y) = ∑
ei,j∈EP

(
wP
(
ei,j
)
∗Expe

(
x, y, P(ci), P

(
cj
)))

, (12)

where Expe is the function that computes the expected value of the number of spikes
that pass through the coordinates [26].

To tackle the complexities of these scenarios, we propose a multi-objective optimization
algorithm based on NSGA-II [44], tailored specifically to edge computing applications
where energy consumption and communication costs are vital factors. The optimization
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target, designed to simultaneously minimize the total communication costs and energy
costs, is expressed in Equation (13).

argmin
x

(M, E), s.t. x is a valid mapping scheme. (13)

In order to find the best optimization solution, Algorithm 2 is used to optimize
Equation (13). Firstly, we initialize the population with input size N (line1∼5). A quick
non-dominated sorting is then performed on the initial population P (line 6). The offspring
are generated using P (line 7) by selection, crossover, and mutation. We then iterate for
several rounds until the convergence criteria are met (line 8∼19). In each round, we first
perform the parent–child merge, then perform the fast non-dominated sorting. The top
best N individuals are selected and then generate offspring for the next round based on
these N individuals. Once the convergence criteria are met, individuals with rank 0 (non-
dominated solutions) are filtered from the population (P) and added to the non-dominated
(ND) population (line 20∼25). The non-dominated (ND) population is finally returned
(line 26).

Algorithm 2: Multi-objective optimized mapping for edge computing
Data: Population size N
Result: Non-dominated population ND
/* Initialize population */

1 P← population with N individuals;
2 for i = 1→ N do
3 P[i].solution← randomly initialized solution;
4 P[i].rank← −1 ; // no dominance relationship initially
5 end
6 P← Quick non-dominated sort(P);
/* Create a new population by selection, crossover, and mutation */

7 Q←Make new population(P);
/* Iterate over the population */

8 while divergence criteria not met do
9 R← P ∪Q ; // R[i] is the set of individuals with rank i

10 R← Quick non-dominated sort(R) ;
11 P← {}, i← 0;
12 while (P ∪ R[i]).size ≤ N do
13 P← P ∪ R[i];
14 i← i + 1;
15 end
16 R[i]← Crowding distance sort(R[i]);
17 P← P ∪ R[i][N − P.size];
18 Q←Make new population(P);
19 end

/* Divergence criteria met */
20 ND ← {};
21 for p ∈ P do
22 if p.rank = 0 then
23 add p to ND;
24 end
25 end
26 return ND

Upon obtaining the Pareto solution space through Algorithm 2, a location placement
algorithm is needed to acquire the solution space, the task of which is performed by
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Algorithm 3. The goal of this algorithm is to convert each solution Yi from Algorithm 2 into
a final mapping solution, represented as X = (X1, X2, · · · , Xk).

(
c1

max c1
)2 + (

c2

max c2
)2 (14)

Let us recall that each Yi is an integer array of size k, where 1 ≤ yij ≤ j + 1. The metric
for selection is defined in Equation (14), where max c1 and max c2 represent the maximum
values of the metrics computed during the execution of Algorithm 2.

Yi = (yi1, yi2, · · · , yik), 1 ≤ i ≤ population size (15)

However, Yi does not represent the final mapping solution. Each final mapping
solution, denoted by X = (X1, X2, · · · , Xk), is constructed from Yi. Here, X is a sorted array
ranging from 1 to k. The procedure for constructing X from Yi is detailed in Algorithm 3.
The outcome of this procedure is that each cluster Ci from C is mapped onto a physical core
Pxi in P . This final mapping is essential for the optimization of the communication cost
and energy cost in edge computing applications.

Algorithm 3: Procedure for the optimal mapping result
Data: A particle/individual Y = (y1, y2, ·, yk)
Result: A mapping scheme X = (x1, x2, · · · , xk)

1 used← All false Boolean arrays with a size of k;
2 X ← All zero integer arrays with a size of k;
3 for i = k→ 1 do
4 rank← yi − 1;
5 pos← −1;
6 while rank > 0 do
7 pos← pos + 1;
8 while used[pos] do
9 pos← pos + 1;

10 end
11 rank← rank− 1;
12 end
13 used[pos]← True;
14 xi ← pos;
15 end
16 return X

5. Evaluation Methodology
5.1. Experimental Environment

In this section, we describe the configuration of the edge computing environment used
for the comprehensive evaluation of EdgeMap. We conducted all experiments on a system
with an Intel i7-8700k CPU, 32 GB of RAM, and an NVIDIA RTX2080 GPU operating on
Ubuntu 20.04. CARLsim [40] serves as our choice for the training and simulation of SNNs.
In order to gauge performance, we employ the advanced, modified, cycle-accurate Noxim
framework [43] to generate more accurate test data.

We leverage the software to simulate a hypothetical neuromorphic edge computing
environment, using it as a benchmark to measure the performance of EdgeMap and other
toolchains. The parameters of the target hardware are outlined in Table 1. The NCs in the
edge devices are configured with 256 neurons and 64K synapses. The rest of the parameters
are mentioned in Equations (6) and (10) and will be utilized in the experiments conducted
throughout this paper.
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Table 1. Parameters of the target neuromorphic edge devices.

Parameter Neurons/Core Synapses/Core es ew ls lw

Value 256 64k 1 0.1 1 0.01

5.2. Evaluated Applications

In this subsection, we delve into the efficiency evaluation of EdgeMap by considering
various applications represented by SNNs. All applications are designed for edge comput-
ing and smaller edge devices, and are listed in Table 2; this table encapsulates vital details,
including the input size, SNN connection topology, total neuron count, total synapses, and
the whole spike count of the SNNs.

In this paper, we selected a suite of applications to evaluate EdgeMap. For classi-
fication tasks on the MNIST dataset [45], we used two different networks: MLP (multi-
layer perceptron) and LeNet [46], both processing 28× 28-pixel images (referred to as
MNIST-MLP and MNIST-LeNet). In addition, we used an MLP network to process
28× 28 pixel images from the Fashion MNIST dataset [47], referred to as Fashion-MNIST.
The Heart Class application focuses on ECG-based heartbeat classification using images
of 42× 42 pixels [48]. For the CIFAR-10 classification task, we evaluated four different
SNNs of varying complexity. These include LeNet [46] (CIFAR10-LeNet), AlexNet [49]
(CIFAR10-AlexNet), VGG11 [50] (CIFAR10-VGG11), and ResNet [51] (CIFAR10-ResNet),
all processing 32× 32× 3-pixel images. All of these applications are converted into spike-
based models using the CNN-to-SNN conversion tool [52], and they are used to perform
inference computations.

5.3. Evaluated Metrics

We evaluate the mapping toolchain for all SNN applications using the following
metrics as listed below. These metrics are crucial as they directly reflect energy consumption
and real-time processing capabilities, providing valuable insights into the system’s ability
to meet the unique demands and constraints of edge computing scenarios.

• Energy consumption: This reflects the energy consumed by the neuromorphic hard-
ware, a critical factor in edge device computing. It is modeled in Equation (6).

• Communication cost: This represents the cost of multi-chip or multi-devices edge
computing scenarios. It is modeled in Equation (7).

• Throughput: This refers to the throughput of each application on the multi-core
neuromorphic hardware. It is modeled in Equation (8).

• Average hop: Serves as an important indicator of communication efficiency in NoC-
based neuromorphic hardware, which is modeled in Equation (9). We further analyze
the maximum hop count across the mapping schemes to capture extremes.

• Average latency: This metric is indicative of the time delay in processing and is essen-
tial for time-sensitive edge computing applications. It is modeled in Equation (10); we
also assess the maximum latency observed in the mapping schemes.

• Average congestion: This metric provides insight into the load balance across the
network. It is modeled in Equation (11), and we extend our analysis to the maximum
congestion experienced in the mapping schemes.

• Execution time: This metric measures the duration required for a mapping toolchain
to produce a mapping result, encompassing both the partitioning and mapping stages.

5.4. Comparison Approaches

In our experiments, we conducted a comprehensive evaluation of various mapping
toolchains, including our proposal, EdgeMap, which encompasses both the partitioning
and mapping components. All of the toolchains we compare are summarized in Table 3. In
these evaluations, we use SpiNeMap as a baseline for all metrics.
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Table 2. Application used for the evaluation of EdgeMap.

Applications MNIST-MLP MNIST-LeNet Fashion-MNIST Heart Class CIFAR10-LeNet CIFAR10-
AlexNet CIFAR10-VGG11 CIFAR10-ResNet

28× 28× 1 28× 28× 1 28× 28× 1 42× 42× 1 32× 32× 3 32× 32× 3 32× 32× 3 32× 32× 3
Topology MLP 1 CNN 2 MLP 3 CNN 4 CNN 5 CNN 6 CNN 7 CNN 8

Neuron number 1193 7403 1393 17,001 11,461 794,232 9,986,862 9,675,543
Synapses 97,900 377,990 444,600 773,112 804,614 39,117,304 47,737,200 48,384,204

Total spikes 358,000 1,555,986 10,846,940 2,209,232 7,978,094 574,266,873 796,453,842 5,534,290,865
1 Feedforward(784-100-10). 2 Conv((5,5),(1,1),6)-AvgPool(2,2)-Conv((5,5),(1,1),16)-AvgPool(2,2)-FC(500)-FC(10). 3 Feedforward(784-500-100-10). 4 Conv((5,5),(1,1),6)-AvgPool(2,2)-
Conv((5,5),(1,1),16)-AvgPool(2,2)-FC(10). 5 Conv((5,5),(1,1),6)-AvgPool(2,2)-Conv((5,5),(1,1),16)-AvgPool(2,2)-FC(500)-FC(10). 6 Conv((11,11),(4,4),96)-Maxpool(2,2)-Conv((5,5),(1,1),256)-
Maxpool(2,2)-Conv((3,3),(1,1),384)-Conv((3,3),(1,1),256)-Maxpool(2,2)-FC(4096-4096-10). 7 Conv((3,3),(1,1),64)-MaxPool(2,2)-Conv((3,3),(1,1),128)-MaxPool(2,2)-Conv((3,3),(1,1),256)-
Conv((3,3),(1,1),256)-MaxPool(2,2)-Conv((3,3),(1,1),512)-Conv((3,3),(1,1),512)-MaxPool(2,2))-Flatten-FC(4096-4096-10). 8 Conv((3,3),(1,1),64)-MaxPool(2,2)-Conv((3,3),(1,1),128)-
MaxPool(2,2)- Conv((3,3),(1,1),256)-Conv((3,3),(1,1),256)-MaxPool(2,2)-Conv((3,3),(1,1),512)-Conv((3,3),(1,1),512)-MaxPool(2,2)- FC(4096-4096-10).

Table 3. Comparison of different mapping toolchains.

Toolchains SpiNeMap [13] SNEAP [22] DFSynthesizer [23] NEUTRAMS 4 [21] EdgeMap

Partition Algorithm Kernighan–Lin(KL) METIS Greedy algorithm 1 Kernighan–Lin(KL) Streaming-based
Objective Communication cost Communication cost Resource Utilization. Communication cost Communication cost

Mapping Algorithm PSO SA 2 LSA 3 – NSGA-II
Objective Communication cost Average Hop Energy consumption – Communication cost & Energy consumption

1 This algorithm is a modified greedy algorithm. 2 SA is short for simulated annealing. 3 LSA is short for the local search algorithm. 4 In NEUTRAMS, the mapping stage is not
mentioned, we use sequential mapping as the default.
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6. Results and Discussion

In this section, we present and discuss the results of our experiments, exploring the
effectiveness of different mapping schemes in various applications. We evaluate their
performance based on critical metrics, including energy consumption, communication
cost, throughput, spike hop, spike latency, congestion, and execution time. These metrics
are essential to comprehending the operational efficiency of each scheme under edge
computing conditions

6.1. Energy Consumption Analysis

Figure 8 illustrates the energy consumption of different mapping schemes. As shown
in the figure, EdgeMap demonstrates a clear advantage over other schemes in all applica-
tions, notably achieving an approximate 89% reduction in energy consumption compared
to the baseline SpiNeMap in the CIFAR10-LeNet application. This considerable reduction
is attributed to EdgeMap’s advanced optimization strategies that focus on energy con-
sumption and communication costs during the mapping stage. It is worth mentioning that
these optimization policies are not only unique to EdgeMap but also present a substantial
advancement over similar strategies applied in previous work, such as the methods used
in SpiNeMap, SNEAP, DFSynthesizer, and NEUTRAMS.

Figure 8. Normalized energy consumption analysis across different mapping schemes.

In relatively simple SNN structures used in the MNIST-MLP and Fashion-MNIST
applications, all mapping schemes show comparably the same energy consumption. This
might be a consequence of fewer neurons and connections involved in these applications.
Nonetheless, even in these simple scenarios, EdgeMap still provides a notable improvement
in energy consumption (12% decrease of SpiNeMap), which validates the effectiveness of
its optimization techniques.

EdgeMap outperforms other mapping schemes in terms of average energy consump-
tion, surpassing SpiNeMap by 57%, SNEAP by 66%, DFSynthesizer by 63%, and NEU-
TRAMS by 33%. This improvement is not incidental but is the result of EdgeMap’s special-
ized optimization policies, which are particularly designed for edge devices. It is important
to note here that these policies include methods that significantly reduce the total number
of spikes on the devices during the partitioning stage. This is a fundamental advancement
over traditional methods and contributes significantly to the energy-saving performance of
EdgeMap. Furthermore, the robustness of EdgeMap’s performance across a diverse range
of SNNs with different scales shows EdgeMap’s generalizability to a broad array of SNN
structures and edge devices.

In summary, EdgeMap’s excellence in managing energy consumption distinguishes
it from other mapping schemes evaluated in this paper. Its superior efficiency makes it a
compelling choice for edge devices, even when dealing with complex SNNs that have a
large number of neurons and connections.
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6.2. Communication Cost Analysis

Figure 9 provides a comparison of the normalized communication costs across differ-
ent mapping schemes, each measured relative to SpiNeMap. Clearly, EdgeMap emerges as
the most effective scheme, indicating a significant improvement in reducing communica-
tion costs. In fact, when compared to SpiNeMap, SNEAP, DFSynthesizer, and NEUTRAMS,
EdgeMap manages to reduce communication costs by 58%, 73.9%, 78.9%, and 65.8%, respec-
tively. This substantial reduction is primarily the result of EdgeMap’s unique optimization
approach, as outlined in Algorithm 1, which strategically modulates interactions among
the neuron clusters. This technique represents an advancement over the existing methods
employed by the compared schemes.

Figure 9. Normalized communication costs across different mapping schemes.

Moreover, our analysis shows that EdgeMap’s performance improvement is not con-
stant but scales proportionally with the complexity of the SNNs. That is, the larger the scale
of the SNNs, the more pronounced the performance benefits of our optimization algorithm.
This correlation suggests that EdgeMap’s optimization strategies are well-suited to complex
SNNs that typically pose challenges for existing mapping schemes. This adaptive nature of
performance enhancement is of great importance in an edge computing environment. It
ensures that the deployment of complex SNNs does not translate into excessive communi-
cation overhead. It is worth noting that this advantage is not merely theoretical, but it has
been validated across various scales of SNNs and in different edge computing scenarios,
reinforcing the robustness and generalizability of our results.

In conclusion, the performance advantage demonstrated by EdgeMap in terms of
communication cost reduction is a testament to the effectiveness of its novel optimiza-
tion approach. This not only separates EdgeMap from other mapping schemes but also
underscores its suitability for complex SNNs in an edge computing environment.

6.3. Throughput Analysis

Figure 10 offers a comparative analysis of the normalized throughput for each appli-
cation across the mapping schemes under evaluation, with each scheme normalized to
SpiNeMap. This comparison is pivotal for understanding the operational efficiency of each
scheme within the edge computing context. The analysis reveals that EdgeMap surpasses
all other mapping schemes in terms of throughput performance. Notably, EdgeMap’s
throughput is 4.02× greater than that of SpiNeMap, and outperforms SNEAP, DFSynthe-
sizer, and NEUTRAMS by 2.52×, 3.43×, and 3.65×, respectively.

The remarkable throughput advantage of EdgeMap is primarily due to its focus on
multi-objective optimization during the mapping process, as detailed in Algorithm 2. This
distinguishing factor sets EdgeMap apart from the other schemes, which do not typically
incorporate this aspect into their mapping methodologies. By focusing on multi-objective
optimization, EdgeMap can effectively harness the computational capabilities of edge
devices, facilitating a significant improvement in throughput, satisfying the real-time pro-
cessing requirement. As the complexity of the SNNs increases, the throughput advantage
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of EdgeMap becomes more pronounced, suggesting that our toolchain is particularly suited
for large-scale, complex SNN applications.

Figure 10. Normalized throughput across different mapping schemes.

Overall, these results affirm EdgeMap’s effectiveness in delivering superior through-
put performance and its scalability in handling complex SNNs, making it a highly competi-
tive solution in the field of SNN mapping on edge devices.

6.4. Spike Hop Analysis

Figure 11 presents the normalized average and maximum hops for each application
under each of the evaluated mapping schemes, normalized to SpiNeMap. A single color
represents each mapping scheme, the darker shade indicates the average hop, and the
lighter shade denotes the maximum hop. The hop count serves as a crucial indicator of
collaborative capability in edge computing scenarios.

Figure 11. Normalized average and maximum hop analysis across different mapping schemes.

EdgeMap consistently outperformed all other mapping schemes across all applications,
highlighting its benefits in edge computing scenarios. Specifically, EdgeMap’s average hop
count is 19.4% lower than that of SpiNeMap, and its maximum hop count is 29.9% lower.
Moreover, when compared with SNEAP, DFSynthesizer, and NEUTRAMS, EdgeMap
reduces the average hop count by 36.5%, 48.1%, and 27.3%, respectively, while its maximum
hop count is decreased by 27.8%, 48.1%, and 41.9%.

With the scaling of the SNNs, both average and maximum hops increase correspond-
ingly. However, EdgeMap effectively keeps this increase within a manageable range,
primarily due to the mapping strategy deployed in Algorithm 2, which emphasizes the
spatial proximity of interconnected neurons. This approach curbs the exponential growth
of hop counts as the network expands, thereby contributing significantly to EdgeMap’s
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efficient performance within edge computing environments. Notably, this control over hop
counts is instrumental in reducing latency, making EdgeMap an ideal choice for real-time
applications where responsiveness is key.

In summary, the results underscore EdgeMap’s efficacy in maintaining efficient com-
munication among neurons in large-scale SNN applications, resulting in lower latency, and
making it a compelling choice for edge computing scenarios.

6.5. Spike Latency Analysis

Figure 12 illustrates the comparative analysis of both average and maximum spike
latencies across applications for the evaluated mapping schemes. Consistent color patterns
are used to denote individual mapping schemes, with darker shades representing average
latency, and lighter shades indicating maximum latency. Our evaluation reveals that
EdgeMap consistently outperforms other schemes, demonstrating lower average and
maximum latencies. Specifically, EdgeMap’s average latency is 19.8% lower than that of
SpiNeMap, while its maximum latency is reduced by 22.5%. Comparatively, EdgeMap’s
average latency reduces by 33.4%, 29.2%, and 35.5% against SNEAP, DFSynthesizer, and
NEUTRAMS, respectively. Similarly, its maximum latency is lower by 28.6%, 22.9%,
and 33.7%.

Figure 12. Average and maximum latency analysis across different mapping schemes.

The latency in each application arises from two components: the processing time for
spikes and the spike communication latency. As the scale of the SNN increases, so does the
hardware scale and, thus, the transmission time, leading to increased latency. However,
EdgeMap’s optimization of communication costs effectively reduces congestion, resulting
in a decrease in latency.

In summary, EdgeMap demonstrates superior performance by consistently main-
taining lower latency levels across all applications. This is primarily achieved through
its strategic optimization, which effectively mitigates congestion, enabling EdgeMap to
maintain optimal performance even as the network scales. These features underscore
EdgeMap’s suitability for edge computing environments, where low latency is crucial.

6.6. Congestion Analysis

Congestion is a crucial metric that reflects the collaborative capability of edge comput-
ing scenarios, and as such, it plays a pivotal role in our analysis. As Figure 13 demonstrates,
EdgeMap consistently outperforms other mapping schemes across all applications, exhibit-
ing superior performance. Each mapping scheme in the figure is represented by a specific
color, with darker shades indicating average congestion and lighter shades representing
maximum congestion.



Sensors 2023, 12, 6548 21 of 25

Figure 13. Normalized average and maximum congestion analysis across different mapping schemes.

Specifically, EdgeMap outperforms other mapping schemes across all applications.
Specifically, the average congestion of EdgeMap is 39.5% lower than that of SpiNeMap,
while its maximum congestion is reduced by 40.8%. Furthermore, compared to SNEAP,
DFSynthesizer, and NEUTRAMS, EdgeMap’s average congestion decreases by 47.8%,
42.6%, and 81.2% respectively, with maximum congestion reduced by 47.5%, 43.7%, and
74%. Interestingly, NEUTRAMS exhibits inferior performance, which can be attributed to its
methodology. This scheme optimizes the communication cost only during the partitioning
stage, mapping neuron clusters onto devices sequentially. As a result, it suffers from
high congestion.

In summary, EdgeMap is shown to be a highly effective mapping scheme, significantly
reducing congestion in edge computing applications. This finding underlines EdgeMap’s
capabilities in boosting performance and efficiency in edge scenarios, providing valuable
insights for researchers in the field.

6.7. Execution Time Analysis

Figure 14 provides a comparison of the execution time across different applications for
the evaluated mapping schemes. We divided the total execution time into two stages: the
partitioning stage and the mapping stage. A uniform color scheme is employed to represent
each mapping scheme, with darker shades indicating the partition time and lighter shades
denoting the mapping time.

Figure 14. Execution times across different mapping schemes.

Interestingly, the execution times of SpiNeMap and NEUTRAMS are relatively similar,
which can be attributed to their identical partitioning algorithms and objectives. However,
NEUTRAMS does not incorporate a separate mapping stage. The partition time dominates
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the execution time, accounting for 96.5% of the total in SpiNeMap and rising to 99.68% for
the CIFAR10-VGG11 application as the complexity of SNNs increases.

EdgeMap’s execution process differs significantly from other schemes, with the map-
ping stage accounting for a considerable portion of the total execution time. For the
MNIST-MLP network, the mapping time essentially occupies the entire execution time. As
the complexity of the SNNs increases, so does the time spent on mapping. For instance, the
mapping time constitutes 90.3% of the total execution time for the CIFAR10-VGG11 net-
work. Furthermore, EdgeMap outperforms SpiNeMap by an impressive factor of 1225.44×
in the average execution time. The partitioning stage and the mapping stage are faster
by 11268.9× and 131×, respectively. Despite having a comparable total execution time to
SNEAP, EdgeMap demonstrates superior efficiency, with partition times being 3.36× faster
and mapping times 0.82× as fast. When compared with DFSynthesizer and NEUTRAMS,
EdgeMap’s average total execution time is more efficient, specifically 0.94× and 1113×,
respectively. The partition time for DFSynthesizer is 2.1× longer, further emphasizing
EdgeMap’s efficacy.

7. Conclusions

In this paper, we introduced EdgeMap, an optimized toolchain for mapping SNNs onto
neuromorphic hardware within edge computing scenarios. EdgeMap demonstrates signifi-
cant improvements in energy efficiency, communication cost reduction, and throughput
enhancement. It also successfully minimizes both spike latency and congestion, highlight-
ing its superior real-time performance, which is crucial for edge applications. Through
a two-stage mechanism, partitioning and mapping, EdgeMap ensures rapid execution
speed and is highly adaptable to edge computing conditions. Remarkably, its robust perfor-
mance remains consistent even as the network complexity escalates, reinforcing EdgeMap’s
supremacy over other contemporary mapping methods.

Despite its significant advantages, EdgeMap still has its limitations. Currently, our
SNN mapping is largely based on static optimization, concentrating primarily on fixed net-
work structures. However, edge computing scenarios often require dynamic adjustments
in response to environmental changes or task requirements. This dynamic aspect of edge
computing presents a challenge that EdgeMap, in its current form, may not handle directly.
Additionally, we make an assumption that all edge devices have equal computational
power and overlook geographical factors. This assumption may not reflect real-world
scenarios. Variations in hardware can cause differences in the computational power of
edge devices. Similarly, the geographical location can significantly affect communication
latency and data transfer efficiency. These factors could increase the complexity of mapping,
indicating an area where our EdgeMap method may require enhancements.

Moving forward, our goal is to incorporate more flexible optimization objectives within
the EdgeMap toolchain to accommodate the needs of increasingly complex computing
environments. We also aim to explore methods for mapping SNNs with online learning
capabilities onto edge devices. In conclusion, EdgeMap shows promise as a strategy for
efficiently mapping SNNs onto edge devices. Although it has demonstrated exceptional
results, improvements and adaptations are necessary to reflect real-world edge computing
scenarios more accurately.
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