Skip to main content
. 2023 Jul 20;23(14):6548. doi: 10.3390/s23146548

Table 2.

Application used for the evaluation of EdgeMap.

Applications MNIST-MLP MNIST-LeNet Fashion-MNIST Heart Class CIFAR10-LeNet CIFAR10-AlexNet CIFAR10-VGG11 CIFAR10-ResNet
28×28×1 28×28×1 28×28×1 42×42×1 32×32×3 32×32×3 32×32×3 32×32×3
Topology MLP 1 CNN 2 MLP 3 CNN 4 CNN 5 CNN 6 CNN 7 CNN 8
Neuron number 1193 7403 1393 17,001 11,461 794,232 9,986,862 9,675,543
Synapses 97,900 377,990 444,600 773,112 804,614 39,117,304 47,737,200 48,384,204
Total spikes 358,000 1,555,986 10,846,940 2,209,232 7,978,094 574,266,873 796,453,842 5,534,290,865

1 Feedforward(784-100-10). 2 Conv((5,5),(1,1),6)-AvgPool(2,2)-Conv((5,5),(1,1),16)-AvgPool(2,2)-FC(500)-FC(10). 3 Feedforward(784-500-100-10). 4 Conv((5,5),(1,1),6)-AvgPool(2,2)-Conv((5,5),(1,1),16)-AvgPool(2,2)-FC(10). 5 Conv((5,5),(1,1),6)-AvgPool(2,2)-Conv((5,5),(1,1),16)-AvgPool(2,2)-FC(500)-FC(10). 6 Conv((11,11),(4,4),96)-Maxpool(2,2)-Conv((5,5),(1,1),256)-Maxpool(2,2)-Conv((3,3),(1,1),384)-Conv((3,3),(1,1),256)-Maxpool(2,2)-FC(4096-4096-10). 7 Conv((3,3),(1,1),64)-MaxPool(2,2)-Conv((3,3),(1,1),128)-MaxPool(2,2)-Conv((3,3),(1,1),256)-Conv((3,3),(1,1),256)-MaxPool(2,2)-Conv((3,3),(1,1),512)-Conv((3,3),(1,1),512)-MaxPool(2,2))-Flatten-FC(4096-4096-10). 8 Conv((3,3),(1,1),64)-MaxPool(2,2)-Conv((3,3),(1,1),128)-MaxPool(2,2)- Conv((3,3),(1,1),256)-Conv((3,3),(1,1),256)-MaxPool(2,2)-Conv((3,3),(1,1),512)-Conv((3,3),(1,1),512)-MaxPool(2,2)- FC(4096-4096-10).