Table 2.
Application used for the evaluation of EdgeMap.
| Applications | MNIST-MLP | MNIST-LeNet | Fashion-MNIST | Heart Class | CIFAR10-LeNet | CIFAR10-AlexNet | CIFAR10-VGG11 | CIFAR10-ResNet |
|---|---|---|---|---|---|---|---|---|
| Topology | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Neuron number | 1193 | 7403 | 1393 | 17,001 | 11,461 | 794,232 | 9,986,862 | 9,675,543 |
| Synapses | 97,900 | 377,990 | 444,600 | 773,112 | 804,614 | 39,117,304 | 47,737,200 | 48,384,204 |
| Total spikes | 358,000 | 1,555,986 | 10,846,940 | 2,209,232 | 7,978,094 | 574,266,873 | 796,453,842 | 5,534,290,865 |
1 Feedforward(784-100-10). 2 Conv((5,5),(1,1),6)-AvgPool(2,2)-Conv((5,5),(1,1),16)-AvgPool(2,2)-FC(500)-FC(10). 3 Feedforward(784-500-100-10). 4 Conv((5,5),(1,1),6)-AvgPool(2,2)-Conv((5,5),(1,1),16)-AvgPool(2,2)-FC(10). 5 Conv((5,5),(1,1),6)-AvgPool(2,2)-Conv((5,5),(1,1),16)-AvgPool(2,2)-FC(500)-FC(10). 6 Conv((11,11),(4,4),96)-Maxpool(2,2)-Conv((5,5),(1,1),256)-Maxpool(2,2)-Conv((3,3),(1,1),384)-Conv((3,3),(1,1),256)-Maxpool(2,2)-FC(4096-4096-10). 7 Conv((3,3),(1,1),64)-MaxPool(2,2)-Conv((3,3),(1,1),128)-MaxPool(2,2)-Conv((3,3),(1,1),256)-Conv((3,3),(1,1),256)-MaxPool(2,2)-Conv((3,3),(1,1),512)-Conv((3,3),(1,1),512)-MaxPool(2,2))-Flatten-FC(4096-4096-10). 8 Conv((3,3),(1,1),64)-MaxPool(2,2)-Conv((3,3),(1,1),128)-MaxPool(2,2)- Conv((3,3),(1,1),256)-Conv((3,3),(1,1),256)-MaxPool(2,2)-Conv((3,3),(1,1),512)-Conv((3,3),(1,1),512)-MaxPool(2,2)- FC(4096-4096-10).