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Abstract: To clarify the effects of dietary inflammatory and pro-oxidative potential, we investigated
the impact of the Dietary Inflammation Index (DII) and the Dietary Oxidative Balance Score (DOBS)
on all-cause and disease-specific mortality. For DII and DOBS, 17,550 and 24,527 participants were
included. Twenty-six and seventeen dietary factors were selected for scoring. Cox proportional
hazards regression models were used. DII and DOBS were significantly associated with all-cause,
CVD, and cancer mortality in this nationally representative sample of American adults. Compared
with the lowest DII, the multivariable-adjusted hazard ratios (95% CI) of all-cause, CVD, and cancer
mortality for the highest were 1.49 (1.23–1.80), 1.58 (1.08–2.33), and 1.56 (1.07–2.25). The highest
quartile of DOBS was associated with the risk of all-cause death (HR 0.71, 95% CI 0.59–0.86). Pro-
inflammatory and pro-oxidative diets were associated with increased risk for all-cause (HR 1.59,
95% CI 1.28–1.97), and CVD (HR 2.29, 95% CI 1.33–3.94) death compared to anti-inflammatory and
antioxidant diets. Similar results were observed among the stratification analyses. Inflammation-
reducing and oxidative-balancing diets are linked to lower all-cause and CVD mortality. Diets impact
health by regulating inflammation and oxidative stress.

Keywords: inflammation; oxidative stress; dietary inflammatory index; dietary oxidative balance
score; mortality; national health and nutrition examination survey

1. Introduction

Inflammation and oxidative stress are common physiological responses to external
stimuli and certain diseases [1]. However, long-term high levels of inflammation and
oxidative stress in the body are also considered to be the main causes of the occurrence
and development of diseases [2,3]. For example, there is growing evidence that markers of
inflammation and oxidative stress, such as C-reactive protein (CRP), are associated with
the increased risk of diseases, including diabetes [4], cardiovascular disease (CVD) [5],
cancer [6], and dementia. In general, high levels of inflammation and oxidative stress are
sufficient to affect the health status of the body and lead to an increased risk of all-cause
and disease-specific mortality [7].

In addition to age, gender, genetic factors, environmental factors, the immune system,
and lifestyle, diet, which is an important way to obtain nutrients, is also another key factor
affecting inflammation and oxidative stress [8]. Epidemiological evidence suggests that
dietary patterns play an important role in maintaining homeostasis in inflammation and ox-
idative stress [9]. Specifically, dietary patterns such as the Mediterranean diet [10] have been
reported to reduce the risk of diabetes [11], CVD [12], and certain cancers [13] by reducing
inflammation and oxidative stress. And the effects of dietary components on inflammation
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and oxidative stress can occur through direct or indirect means. Dietary components
that have direct effects include nutrients with anti-inflammatory and antioxidant activity,
such as beta-carotene [14] and zinc [15], as well as proteins, fats, and cholesterol, that
can cause inflammation or oxidation. Indirect dietary components refer to nutrients that
can affect the composition and metabolites of gut microbes, such as dietary fiber [16] and
probiotics [17]. In addition, bad eating habits such as consuming a high-fat diet, high-sugar
diet, or low-fiber diet may also contribute to heightened inflammation and oxidative stress
levels [18,19]. Dietary adjustment is one of the most important measures that can be taken
to prevent and cure diseases [20]. Its application in diseases has been proven to bring many
health benefits [21]. Epidemiological studies suggest that appropriate dietary adjustments
have a beneficial impact on preventing and treating inflammation- and oxidative stress-
related diseases [22], for example, reducing one’s intake of trans fats [23] and high-glycemic
foods [24], as well as increasing one’s intake of monounsaturated and polyunsaturated
fatty acids [25], and micronutrients such as zinc [26], copper [27], manganese [28], and
vitamins A, C, and E [29].

DII and DOBS are indicators calculated based on the inflammatory and oxidative
effects of nutrients in dietary intake, respectively, to evaluate the effects of diet on inflam-
mation and oxidative stress [28,30]. In general, a lower-DII or a higher-DOBS diet includes
plenty of fruits, vegetables, nuts, fish, and dietary fiber, which help reduce levels of inflam-
mation or oxidative stress. A higher-DII or a lower-DOBS diet includes a large amount
of high-sugar, high-salt, high-fat, high-cholesterol, high-trans fatty acids, and processed
foods, leading to increased inflammation or oxidative stress. To date, an increasing number
of studies have reported a correlation of high DII values or low DOBS values with poorer
health outcomes and higher risk of chronic diseases, including diabetes [31,32], osteoarthri-
tis [33,34], CVD [35], cancer [36,37], and neurodegenerative diseases [38]. So, it seems
reasonable to hypothesize that DII and DOBS may work together to affect mortality [39,40].
Although certain studies have evaluated the association of DII and DOBS with mortality,
the relationship of dietary inflammation and pro-oxidative potential with the risk of death
is unclear.

To examine the above hypothesis, we explored the association of DII and DOBS with
all-cause, CVD, and cancer mortality in the U.S. according to the National Health and
Nutrition Examination Survey (NHANES) (2003–2014).

2. Materials and Methods
2.1. Study Population

NHANES is a stratified, multistage, nationwide study conducted by the National
Center for Health Statistics (NCHS) to gain an accurate picture of the health and nutritional
status of Americans [41]. Detailed information about NHANES has been previously
described [42,43]. This study was performed on the data of adults (age ≥ 18 years) who
participated in NHANES (2003–2014). Individuals who met any of the following conditions
were excluded: (1) implausible energy consumption (<800 or >4200 kcal/day for men
and <500 or >3500 kcal/day for women) [44], (2) missing data for DII/DOBS components or
covariates, or (3) missing outcome states of interest. After excluding the above participants,
a total of 17,550 and 24,527 individuals were included in this prospective study for DII
and DOBS exposure, respectively (Figure 1). Before the survey, all protocols received
approval from the Institutional Review Board of the National Center for Health Statistics,
and informed consent was obtained from all participants.
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Figure 1. Flowchart of the selection strategy.

2.2. Dietary Information

Daily dietary intake was assessed by conducting 24 h dietary recall interviews over
two consecutive days. Each dietary nutrient and total dietary energy were calculated with
reference to the relevant guidelines of the U.S. Department of Agriculture’s Food and Nutri-
ent Database for Dietary Studies (FNDDS) [45]. Information on dietary supplement usage
was assessed via a dedicated questionnaire. Furthermore, various dietary components
derived from dietary nutrient supplementation were not included in the nutrient estimates.

2.3. Assessment of DII

DII has been described in detail in [46]. This score, derived from the literature review
together with population data, includes 45 dietary components associated with dietary
inflammatory potential and their representative dietary intake ranges. Specifics regarding
the constituents of the diet involved in DII are given in Supplementary Table S1. Twenty-six
of the forty-five dietary components were selected for DII calculation. The predictive
power of DII has been demonstrated to be stable when using these food parameters [47].
The DII of a certain dietary component was calculated as follows: (daily intake—global
average daily intake)/the standard deviation of the global average daily intake * the overall
inflammatory effect score of this dietary component. The sum of the DII of each dietary
component was the participant’s DII.
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2.4. Assessment of DOBS

DOBS was determined by combining the scores of pre-determined pro- and anti-
oxidant factors, and took into account both pro- and anti-oxidant factors in the diet [30,48].
Based on prior information on the relationships between certain nutrients and DOBS, a
total of 17 nutrients were included in the calculation of DOBS, including 3 pro-oxidants and
14 antioxidants. Most of these food components have been proven several times in existing
studies to be useful in the calculation of DOBS [49,50]. After classifying the continuous
dietary variable into tertiles, antioxidants were scored from 1 to 3, and pro-oxidants were
scored inversely. Regarding alcohol intake, non-drinkers (0 g/d), non-heavy drinkers
(0 to 30 g/d for male and 0 to 15 g/d for female), and heavy drinkers (>30 g/d for male
and >15 g/d for female) were given scores of 3, 2, and 1, respectively [50]. Meanwhile,
vitamin C, beta-carotene, and vitamin B12 were ln-transformed to better approximate
normal distributions. A detailed setup scheme for the DOBS components can be found
within Supplementary Table S2. The sum of each dietary ingredient score selected was the
participant’s DOBS.

2.5. Multivariate Linear Regression Models

In the validation sub-study, the relationships of DII/DOBS with CRP and red cell
distribution width (RDW) were assessed after adjusting for the same covariates as in the
CPH regression models. RDW is a measure of the variation of circulating erythrocyte
volume and is primarily used as an indicator to help identify and classify different types
of anemia. Similar to CRP, elevated RDW is a potential parameter characterizing ongoing
inflammation and has been shown to be correlated with the level of inflammatory markers
in patients with rheumatoid arthritis, CVD, and Crohn’s disease [51,52].

2.6. Main Outcomes

The outcome variables for this study included mortality in all participants that oc-
curred after their participation in the survey and before 31 December 2015, which was
identified using National Death Index data. The causes of disease-specific mortality were
defined using ICD-10. Participants who had ICD-10 codes of I00–I09, I11, I13, I20–I51, or
I60–I69 were classified as having died from CVD. Meanwhile, those who had ICD-10 codes
of C00–C97 were considered to have died from cancer. Briefly, in the analysis using DII
as exposure, 1943 deaths were recorded, including 467 deaths from CVD and 470 deaths
from cancer. And in the analysis using DOBS as exposure, 3616 deaths were observed, with
941 attributed to CVD and 819 to cancer.

2.7. Assessment of Covariates

The confounding variables included sex (male/female), age (years), race (Mexican
American/other Hispanic/non-Hispanic White/non-Hispanic Black/other), BMI (kg/m2),
cotinine (ng/mL), regular exercise (yes/no), education level (<9th grade/9–11th grade/high
school graduate/GED or equivalent/college or Associate in Arts degree/college graduate or
above), annual household income (<USD 20,000/USD 20,000–USD 45,000/USD 45,000–USD
75,000/USD 75,000–USD 100,000/>USD 100,000), total energy intake (kcal/day), dietary
supplement use (yes/no), diet quality assessed using the Alternative Healthy Eating Index
(AHEI) score [53], self-reported cancer (yes/no), CVD (yes/no), hypertension (yes/no), and
diabetes (yes/no).

2.8. Cox Proportional Hazards (CPH) Regression Models

DII and DOBS were converted into categorical variables by quartiles and used in
the corresponding analyses. CPH regression models were developed. The duration of
survival was defined as the number of months between the NHANES interview date and
either the date of death or the final census conducted on 31 December 2015. Moreover, the
CPH regression models controlled for many potential effect modifiers and confounding
factors, which were age, sex, race, body mass index (BMI), cotinine, regular exercise,
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education level, annual household income, total energy intake, dietary supplement use,
alternative healthy eating index (AHEI), self-reported cancer, CVD, hypertension, and
diabetes. To examine linear trends, the median DII/DOBS for each quantile was included
as a continuous variable in the models.

2.9. Competing Risk Models

Inflammation and oxidative stress are important risk factors for CVD, cancer, and
all other causes of death during the follow-up period prior to the onset of these two
outcomes. Therefore, it is highly necessary to apply competing risk models to test the
potential impact of competing events. As a special type of survival analysis, a competing
risk model accurately estimates the marginal probability of an outcome of interest occurring
independently of competing events [54,55]. Competing events were defined as any type
of death except CVD/cancer. A multivariate competing risk model was performed to
compare whether there were differences in the cumulative risk of outcome events in
different DII/DOBS quantiles after adjusting for potential covariates and controlling for
competing events. The adjusted covariates in this part of the analysis were kept the same
as those in the CPH regression model.

2.10. Mediation Statistical Models

To investigate whether inflammatory markers could act as mediators in the relationship
between DII/DOBS and mortality, mediation statistical models were constructed with
adjustment for the above covariables. The process of designing and developing mediation
statistical models has been described elsewhere [56].

2.11. Sensitivity Analysis

To verify the reliability of our findings, five sets of sensitivity analyses were addition-
ally conducted as follows: (1) the association of the combination of DII and DOBS with
mortality was investigated among the co-participants of the two analyses, in which partici-
pants were reclassified into those with pro-inflammatory and pro-oxidative diets (the third
quantile of DII and the first quantile of DOBS), anti-inflammatory and antioxidant diets (the
first quantile of DII and the third quantile of DOBS), and a composite diet (participants not
in the above two groups). (2) After adjusting for potential covariates and competing events,
a multivariate competing risk model was used to explore whether there was a difference in
the cumulative risk of outcome events across different DII/DOBS quantiles. (3) Restricted
cubic splines (RCS) were applied to visualize the linearity of the relationships between
DII/DOBS and mortality. (4) Mediation statistical models were carried out to investigate
the mechanisms underlying the relationships found in this study by assessing the impacts
of mediator variables. (5) A series of subgroup analyses were performed to reveal how
DII/DOBS was associated with mortality in specific populations.

2.12. Statistical Analyses

All analyses in this study took into account sample weights, as well as stratification and
clustering methods, in order to meet the requirements of the NHANES analysis guidelines
for complex sampling designs. Continuous and categorical demographic, anthropometric,
and dietary intake variables are shown as means (95% CI) and percentages (95% CI),
respectively. To compare continuous and categorical baseline characteristics, age-adjusted
general linear models and χ2 tests were adopted, respectively.

All analyses mentioned above were performed using R 4.1.1, and statistically signifi-
cant results were defined as p < 0.05.

3. Results
3.1. Baseline Characteristics

The differences in the demographic and nutritional characteristics according to DII/DOBS
in quartiles are described in Supplementary Tables S3 and S4. Significant differences were
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observed in the study variables, except for annual household income, among the different
DII/DOBS quartiles (p < 0.05). Participants eating pro-inflammatory and pro-oxidative
diets were more likely to be Hispanic white and female and had higher cotinine, BMI, CRP,
RDW, prevalent CVD, hypertension and diabetes. Additionally, they had lower education
levels, socioeconomic status, dietary supplement use, total energy intake, AHEI, and cancer
incidence (Table 1).

Table 1. Baseline characteristics according to the different combinations of DII and DOBS a.

The Different Combinations of DII and DOBS (N = 17,750)

Anti-Inflammatory
and Antioxidant Diet Composite Diet Proinflammatory and

Pro-oxidative Diet
N = 3104 N = 11,077 N = 3369 p

Age, years 47.11 (46.16, 48.05) 47.16 (46.55, 47.77) 47.14 (46.29, 47.99) 0.987
Male (%) 67.70 (65.90, 69.50) 46.50 (45.30, 47.60) 29.00 (26.80, 31.40) 0.000

Non-Hispanic white (%) 73.90 (70.70, 76.90) 69.60 (66.10, 72.80) 62.30 (56.70, 67.50) 0.000
BMI, kg/m2 28.04 (27.69, 28.39) 28.93 (28.75, 29.10) 29.64 (29.36, 29.92) 0.000

Cotinine (ng/mL) 34.17 (28.90, 39.44) 54.09 (49.23, 58.95) 86.22 (77.84, 94.60) 0.000
Regular exercise (%) 26.10 (23.70, 28.80) 19.50 (18.00, 21.10) 16.90 (15.00, 18.90) 0.000

College graduate or above (%) 42.90 (40.00, 45.90) 30.40 (28.30, 32.60) 13.10 (11.00, 15.50) 0.000
>USD 100,000 annual household

income (%) 31.60 (28.00, 35.50) 23.10 (21.00, 25.40) 13.40 (11.20, 15.80) 0.000

Dietary supplement use (%) 60.90 (58.10, 63.60) 52.80 (50.90, 54.60) 40.30 (38.00, 42.60) 0.000
Total energy, kcal/day 2683 (2652, 2713) 2036 (2017, 2055) 1400 (1375, 1425) 0.000

AHEI sore 52.94 (52.35, 53.52) 49.71 (49.37, 50.04) 48.24 (47.84, 48.63) 0.000
Self-reported cancer (%) 10.10 (9.00, 11.40) 9.40 (8.60, 10.20) 9.60 (8.20, 11.20) 0.000

Self-reported cardiovascular
disease (%) 6.60 (5.60, 7.80) 7.70 (7.10, 8.40) 11.20 (9.70, 13.00) 0.000

Self-reported hypertension (%) 28.60 (26.40, 31.00) 31.40 (29.90, 33.00) 34.20 (32.20, 36.30) 0.000
Self-reported diabetes (%) 7.40 (6.20, 8.70) 8.80 (8.00, 9.60) 11.30 (10.20, 12.50) 0.000

C-reaction protein (mg/dL) 0.29 (0.25, 0.33) 0.38 (0.36, 0.40) 0.48 (0.43, 0.52) 0.000
Red cell distribution width (%) 12.80 (12.75, 12.85) 12.99 (12.94, 13.04) 13.24 (13.18, 13.30) 0.000

a Continuous variables are listed as weighted means (95% CI). Categorical variables are listed as weighted
percentages (95% CI). After adjusting for age, general linear models and chi-square tests were conducted to
compare continuous and categorical baseline characteristics, respectively.

3.2. Multivariate Linear Regression Models

In the validation study, there were strong positive correlations of DII with serum
CRP (β 0.08, 95% CI 0.04–0.13) and RDW (β 0.18, 95% CI 0.11–0.24). DOBS was inversely
correlated with serum CRP (β −0.13, 95% CI −0.18–−0.09) and RDW (β −0.10, 95% CI
−0.17–−0.02) (Supplementary Tables S5 and S6).

3.3. CPH Regression Models

The relationship between DII/DOBS and mortality is presented in Figure 2 and Supple-
mentary Tables S7 and S8. Participants in the highest quartile of DII (quartile 4) were more
likely to die due to all-cause diseases (HR 1.49, 95% CI 1.23–1.80), CVD (HR 1.58, 95% CI
1.08–2.33), and cancer (HR 1.56, 95% CI 1.07–2.25). For DOBS, participants in quartile 4 had
significantly lower all-cause mortality (HR 0.71, 95% CI 0.59–0.86) compared with those in
quartile 1. Meanwhile, DOBS was not significantly associated with CVD (HR 0.71, 95% CI
0.49–1.04) or cancer mortality (HR 0.69, 95% CI 0.47–1.01). The associations of the combina-
tion of DII and DOBS with risk of mortality are shown in Figure 3 and Supplementary Table
S9. Pro-inflammatory and pro-oxidative diets were significantly related to all-cause (HR 1.59,
95% CI 1.28–1.97) and CVD (HR 2.29, 95% CI 1.33–3.94) mortality.
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the number of case subjects/total. Q, quintile.
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Figure 3. Association of the combination of DII and DOBS with mortality. Data are presented as
weighted HR estimates and 95% confidence intervals. The adjustments include age, sex, ethnicity,
BMI, cotinine, exercise, education, income, nutrient supplement use, AHEI, self-reported cancer,
self-reported cardiovascular disease, self-reported hypertension, and self-reported diabetes. Case/N,
the number of case subjects/total. Q, quintile.

3.4. Restricted Cubic Splines (RCS)

The association between DII/DOBS and mortality was modeled flexibly using RCS,
and the results are illustrated in Figure 4. DII had approximate linear associations with a
higher risk of all-cause (Plinearity = 0.004, Pnonlinearity = 0.440) and CVD death (Plinearity = 0.007,
Pnonlinearity = 0.064) after multivariable adjustment. Similarly, a significantly opposite trend
was detected between DOBS and all-cause mortality (Plinearity = 0.008, Pnonlinearity = 0.238).
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Figure 4. Associations of DII and DOBS with mortality, evaluated using CPH regression models
and RCS after adjusting for age, sex, ethnicity, BMI, cotinine, exercise, education, income, nutrient
supplement use, AHEI, self-reported cancer, self-reported cardiovascular disease, self-reported
hypertension, and self-reported diabetes. Central estimates are represented by solid black lines, and
gray shaded areas indicate 95% confidence intervals.

3.5. Sensitivity Analysis

Supplementary Tables S10–S12 show the results of competing risk models after control-
ling for competing risk events. The results reveal consistently similar association patterns
between DII, the combination of DII and DOBS, and CVD/cancer mortality. Both DII
(HR 1.44, 95% CI 1.05–1.98) and a pro-inflammatory and pro-oxidative diets were indepen-
dent factors of higher CVD death (HR 1.83, 95% CI 1.26–2.65). According to the association
found in the study, statistical mediation models were established. The mediation effects
are shown in Supplementary Figure S1. The total effect of DII on all-cause (βTot = 0.00335,
p < 0.01) and CVD (βTot = 0.00115, p < 0.001) death was measured as a standardized re-
gression coefficient. The total effect of DOBS on all-cause mortality (βTot = −0.00222,
p < 0.01) also confirmed the previous findings. The total effect of the combination of DII and
DOBS on all-cause (βTot = 0.02189, p < 0.01) and CVD (βTot = 0.01303, p < 0.001) mortality
was measured after adjusting for the corresponding covariables in the CPH regression
models. The indirect effect was calculated using β1, β2, β3, and β4. The proportions of the
indirect effect on all-cause and CVD mortality mediated by CRP and RDW were measured
at 5.97, 8.70, 4.48, 4.35%, respectively. The indirect effect mediated by CRP (4.05%) and
RDW (5.86%) also accounted for a certain percentage of the total effect of DOBS on all-cause
death. The proportions of the indirect effect on all-cause and CVD mortality mediated by
CRP and RDW were 4.66, 3.68, 8.54, 4.22%, respectively. Our results were not materially
changed during most stratification analyses according to age, sex, race, BMI, smoking,
and exercise status (Supplementary Tables S13–S21). Especially in the participants who
were aged 45 years or younger, were male, were non-Hispanic white, did not smoke, and
performed regular exercise, the results did not change significantly. Furthermore, BMI had
no modification effect on the above associations (Supplementary Tables S13–S21).

4. Discussion

Using 26 dietary components associated with inflammatory potential and 17 a priori
selected pro- and antioxidant nutrients, we constructed two holistic scores that compre-
hensively represent an individual’s dietary pro-inflammatory and antioxidant levels. Our
results confirmed the findings of previous studies, indicating that higher DII or lower DOBS
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was associated with increased all-cause mortality [31,49]. This study found that people who
consumed more inflammatory foods showed an increased risk of CVD and cancer death.
Furthermore, consuming more both pro-inflammatory and pro-oxidative foods was related
to greater all-cause and CVD mortality. Last, but not least, younger participants, men,
non-Hispanic white participants, non-smokers, and those who performed regular exercise
experienced a reduced risk of death when they adhered to a diet rich in anti-inflammatory
or antioxidant properties.

To the best of our knowledge, this study was the first to examine the association of
dietary-derived anti-inflammatory and/or antioxidant capacity with mortality. Chronic
low-level inflammatory responses and oxidative stress are important in the occurrence
of chronic diseases and death [57,58]. As important physiological processes in the body,
they are also affected by many factors, including genetics, age, diet, lifestyle, immunity,
and environment [59]. In line with previous studies, we confirmed that higher DII or
lower DOBS was associated with the increased levels CRP and RDW, which were more
strongly related to disease, aging, and death [60–63]. This discovery indirectly supports the
association of DII/DOBS with poor health.

Several published meta-analyses have confirmed the role of dietary-induced inflam-
mation [31,64–66]. Adherence to pro-inflammatory dietary patterns was significantly and
positively associated with poor health status in more than half of the included studies.
Consistent with our findings, Class I (Convincing) evidence was established only for CVD
and CVD-related death according to the results of the credibility assessment grade division.
The evidence of increased all-cause mortality and overall and site-specific cancer incidence
with increasing DII was determined to be Class II (highly suggestive). However, other
outcomes had Class III (suggestive) evidence [67]. In the absence of interventional studies
aimed at modifying the inflammatory potential of the diet and examining its effects on the
above-mentioned outcomes of risk factors and diseases, it was impossible to determine
whether DII functioned independently of body composition. Considering the observed
correlation between DII and systemic inflammatory biomarkers like CRP and RDW, it was
reasonable to hypothesize that systemic inflammation might serve as a mediator between
DII and mortality [68]. Our mediation analysis suggested that CRP and RDW partly me-
diated the association of DII with the risk of death, despite the fact that the effect was
relatively small in magnitude.

Due to the great heterogeneity in the definition of oxidative balance scores (OBSs),
different scoring schemes and various kinds of pro- and antioxidant components were
presented [48]. Most OBSs were derived by considering more than 10 components (dietary
intake and lifestyles), and few considered only dietary factors [48]. Most studies were con-
sistent in supporting that excessive oxidative stress reflected by lower OBSs had deleterious
effects on health. There is limited research available on the potential link between DOBS
and mortality. Among a biracial US cohort, individuals who consumed a diet with greater
antioxidant capacity had lower mortality [49]. It was unclear whether the different results
of the association of DOBS with the risk of CVD and cancer death could be attributed to
variations in designs or differences in the characteristics of the populations being studied.
In addition, lower DOBS has been associated with the elevated levels of CRP and RDW,
which were more strongly linked to death and mediated the association.

Estimates for the risk of death based on combining DII and DOBS were stronger,
especially for all-cause and CVD mortality. They were was also consistent with our previous
findings that when individuals had either higher DII or lower DOBS alone, they still faced a
higher likelihood of mortality. Compared to all-cause and CVD mortality, cancer death was
more weakly associated with the levels of components in the diet related to inflammation
and oxidative stress. This may be due to the fact that the mechanisms of many cancers have
little or no relationship with inflammation and oxidative stress, such as genetic mutations,
the inactivation of tumor suppressor genes, and matrix degradation [69], which have
been considered major drivers of tumor development. This had been reported in many
previous studies, as well [40,70]. Confusingly, the baseline characteristics showed that
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participants eating pro-inflammatory and pro-oxidative diets had lower cancer incidence.
This phenomenon may not be verified, and may be due to the facts that the self-reported
cancer-related data came from questionnaires, the exact time of cancer diagnoses were
unknown, and the self-reported cancer prevalence may not match current dietary intake
information [42,43].

In the sensitivity analysis of our study, similar associations were observed when
DII, DOBS, and the combination of DII and DOBS were analyzed separately. In addition,
stronger associations were observed among participants who were aged 45 years or younger,
were male, were non-Hispanic white, did not smoke, and performed regular exercise, which
was aligned with the data from the Reasons for Geographic and Racial Differences in Stroke
(REGARDS) Study [49]. One possible explanation for this could be the healthier lifestyles,
lower disease risk, and physiological and metabolic differences in these individuals, so the
relationship between diet quality and health risks may be more pronounced.

The present study incorporated several notable strengths. Firstly, this was the first
study to examine the association of dietary inflammation and oxidative stress (the combi-
nation of DII and DOBS) with all-cause, CVD, and cancer mortality based on rigorously
designed population-based research conducted using NHANES. Second, the use of a
complex, multistage probability sampling design ensured that the sample in this study
was representative of non-institutionalized civilian residents, which allowed the findings
to be applicable to all adult residents who were not institutionalized across the United
States. Meanwhile, the association was proven to be fairly robust with adjustment for
various important confounders, and still very robust in the sensitivity analysis. How-
ever, this study also had certain limitations. First, using DII and DOBS, it was hard to
include all instances of inflammatory response- and oxidative stress-associated dietary ex-
posure; many components, such as isoflavones, anthocyanidins, and tea, were limited in the
database. Some nutrients that have been found to be associated with inflammation and ox-
idative stress but have not yet been demonstrated, such as calcium, were also not included.
However, our study incorporated as many relevant components as possible compared to
similar published studies. And the association between current DII/DOBS and mortality
was sufficiently stable and unlikely to be substantially impacted by the elements that
were not incorporated. Second, dietary information was gathered from the self-reported
24 h dietary recall, and it cannot be excluded that the participants might have altered their
dietary patterns. Third, this study directly assumed that oxidative stress was linearly corre-
lated with both pro-oxidants and antioxidants, without taking into account the potential
threshold effect. Nonetheless, research studies have discovered that certain antioxidants,
such as carotenoids and copper, may actually demonstrate pro-oxidative activity when
administered at high doses or under specific conditions [71]. Fourth, no well-matched
verifiable markers of oxidative stress were included for evaluating the effectiveness of
DOBS. Finally, despite the inclusion of several confounding variables, there was still a high
probability that certain confounders were not taken into account.

5. Conclusions

The results from this nationally representative sample suggested that lower DII or
higher DOBS may reduce the risk of premature all-cause and CVD death. Participants
whose diets were both anti-inflammatory and antioxidant were at lower risk of all-cause
and CVD mortality, especially those who were aged 45 years or younger, were male, were
non-Hispanic white, did not smoke, and performed regular exercise. Cancer death was
only weakly associated with the levels of components in the diet related to inflammation.
These findings confirm the results of previous research and suggested that DII and DOBS
might be valuable instruments for assessing the impacts of dietary factors associated with
inflammation and oxidative stress on morbidity and mortality. To understand the exact
underlying mechanisms, further investigation is needed.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu15143148/s1, Table S1. Dietary composition parameters involved
in DII. Table S2. The DOBS assignment scheme. Table S3. Baseline characteristics according to DII
quartiles. Table S4. Baseline characteristics according to DOBS quartiles. Table S5. Association
of DII with serum CRP and RDW. Table S6. Association of DOBS with CRP and RDW. Table S7.
Association of DII with mortality. Table S8. Association of DOBS with mortality. Table S9. Association
of the combination of DII and DOBS with mortality. Table S10. Association of DII with mortality in
competing risk models. Table S11. Association of DOBS with mortality in competing risk models.
Table S12. Association of the combination of DII and DOBS with mortality in competing risk models.
Table S13. Association of DII with all-cause mortality stratified by age, sex, race, BMI, smoking, and
exercise status. Table S14. Association of DII with CVD mortality stratified by age, sex, race, BMI,
smoking, and exercise status. Table S15. Association of DII with cancer mortality stratified by sex,
race, BMI, smoking, and exercise status. Table S16. Association of DOBS with all-cause mortality
stratified by age, sex, race, BMI, smoking, and exercise status. Table S17. Association of DOBS with
CVD mortality stratified by age, sex, race, BMI, smoking, and exercise status. Table S18. Association
of DOBS with cancer mortality stratified by sex, race, BMI, smoking, and exercise status. Table S19.
Association of the combination of DII and DOBS with all-cause mortality stratified by age, sex, race,
BMI, smoking, and exercise status. Table S20. Association of the combination of DII and DOBS with
CVD mortality stratified by age, sex, race, BMI, smoking, and exercise status. Table S21. Association
of the combination of DII and DOBS with cancer mortality stratified by sex, race, BMI, smoking, and
exercise status. Figure S1. Mediation effects of CRP and RDW on the associations of DII/DOBS/the
combination of DII and DOBS with all-cause, CVD, and cancer mortality.
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