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Abstract: Pellino proteins are a family of evolutionarily conserved ubiquitin ligases involved in
intracellular signaling in a wide range of cell types. They are essential for microbe detection and
the initiation of innate and adaptive immune responses. Some viruses specifically target the Pellino
proteins as part of their immune evasion strategies. Through studies of mouse models of viral
infections in the central nervous system, heart, lungs, and skin, the Pellino proteins have been linked
to both beneficial and detrimental immune responses. Only in recent years have some of the involved
mechanisms been identified. The objective of this review is to highlight the many diverse aspects
of viral immunity and pathogenesis that the Pellino proteins have been associated with, in order
to promote further research into their functions. After a brief introduction to the cellular signaling
mechanisms involving Pellino proteins, their physiological roles in the initiation of immune responses,
pathogenesis through excess inflammation, immune regulation, and cell death are presented. Known
viral immune evasion strategies are also described. Throughout, areas that require more in-depth
investigation are identified. Future research into the functions of the Pellino protein family may
reveal fundamental insights into how our immune system works. Such knowledge may be leveraged
in the fight against viral infections and their sequala.

Keywords: ubiquitin; ligase; Pellino; peli; immunity; immune evasion; inflammation; innate immu-
nity; Toll-like receptor; virus

1. Introduction

Pellino proteins are a group of highly conserved E3 ubiquitin ligases. Ubiquitin is
an abundant signaling protein critically involved in numerous cellular processes, ranging
from permanent cell differentiation in development to transient immune responses in
adulthood. E3 ubiquitin ligases link ubiquitin to target proteins to facilitate their activation,
relocalization within the cell, or degradation [1]. As viruses depend on their hosts’ cellular
machinery, they extensively interact with such processes, either to benefit from them or to
actively suppress them to avoid detection by immune mechanisms. This review is aimed at
highlighting the role of the family of Pellino proteins in immunity against viruses, and how
these immune responses contribute to pathogenesis. Furthermore, how some viruses are
known to evade immune responses involving the Pellino proteins will also be described.

The first Pellino protein was identified in Drosophila melanogaster as part of the
Toll•Tube•Pelle signaling cascade essential for dorsal–ventral pattern development in
the fly [2]. In vertebrates, the related TLR (Toll-like receptor) MyD88 (myeloid differentia-
tion primary response protein 88) IRAK (interleukin-1 receptor (IL-1R)-associated kinase),
and TLR•TRIF (Toll/IL-1R-domain-containing adapter-inducing interferon-β) pathways
engage numerous immune mechanisms in myeloid and non-myeloid cells (Figure 1). The
many and diverse signaling pathways that the Pellino proteins regulate are comprehen-
sively reviewed elsewhere [3,4]. Chief among these mechanisms is the activation of the
ubiquitous nuclear transcription factor NF-κB, MAPK (mitogen-activated protein kinases),
and IRF (interferon (IFN) response factors) [3,4]. The ubiquitin ligase activity of the Pellino
proteins is facilitated by a RING (really interesting new gene) domain located at the C-

Viruses 2023, 15, 1422. https://doi.org/10.3390/v15071422 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v15071422
https://doi.org/10.3390/v15071422
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-0267-8312
https://doi.org/10.3390/v15071422
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v15071422?type=check_update&version=1


Viruses 2023, 15, 1422 2 of 14

terminal end (Figure 2) [5,6]. At the N-terminus is an FHA (forkhead-associated) domain
that is involved in interacting with phosphorylated IRAK1 (Figure 2) [7].
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which may be involved in the recognition of several viral surface proteins. TLR3, TLR7, TLR8, and 
TLR9, which bind single- and double-stranded RNA and DNA present in endosomes, can activate 
the same pathways in an MyD88-dependent or -independent manner. The latter requires TRIF and 
results in interactions between Pellino proteins and the two kinases IKKε and TBK1. Through phos-
phorylation, this results in the activation of IRFs. The IRFs form homo- and heterodimers that in the 
nucleus bind to promoter regions of genes encoding type I IFNs. The Pellino•IKKε•TBK1•IRF path-
way is also engaged by RLRs such as RIG-I and MDA5, which recognizes viral RNA in the cytosol. 
These pathways also contribute to activation of the inflammasome. Pellino primes the inflam-
masome through the ubiquitination of NLRP3 and ASC. IL1B is among the many immune response 
genes activated by NF-κB. The gene transcript is translated into pro-IL-1β, which is activated 
through cleavage by caspase-1 in the inflammasome. In a similar manner, GSDMD (gasdermin-D) 
is cleaved. The N-terminal fragment N-GSDMD oligomerizes and forms membrane pores through 
which IL-1β is released. These pores can also contribute to pyroptotic cell death. The specific mech-
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Figure 1. Major signaling pathways regulated by Pellino proteins. Pellino proteins act as intermediate
signaling molecules between cytokine, RLR, and TLR in membranes or the cytosol, and transcription
factors in the nucleus. Upon IL-1 binding, MyD88 is recruited to the membrane-bound receptor IL-1R1
and IL-1RAP. The IRAK and Pellino proteins are further engaged and promote downstream activation
of the IKK (IκB-kinase) complex, which in turn phosphorylates IκB. IκB becomes ubiquitinated and
is degraded. This releases the transcription factor NF-κB, which translocates to the nucleus where
it activates the expression of pro-inflammatory genes. The pathway can branch to activate MAP
kinases essential for activation of the transcription factors AP1 and Elk1. The same signaling cascades
can be activated by extracellular TLRs, including TLR2 and TLR4, which may be involved in the
recognition of several viral surface proteins. TLR3, TLR7, TLR8, and TLR9, which bind single- and
double-stranded RNA and DNA present in endosomes, can activate the same pathways in an MyD88-
dependent or -independent manner. The latter requires TRIF and results in interactions between
Pellino proteins and the two kinases IKKε and TBK1. Through phosphorylation, this results in the
activation of IRFs. The IRFs form homo- and heterodimers that in the nucleus bind to promoter
regions of genes encoding type I IFNs. The Pellino•IKKε•TBK1•IRF pathway is also engaged by RLRs
such as RIG-I and MDA5, which recognizes viral RNA in the cytosol. These pathways also contribute
to activation of the inflammasome. Pellino primes the inflammasome through the ubiquitination
of NLRP3 and ASC. IL1B is among the many immune response genes activated by NF-κB. The
gene transcript is translated into pro-IL-1β, which is activated through cleavage by caspase-1 in the
inflammasome. In a similar manner, GSDMD (gasdermin-D) is cleaved. The N-terminal fragment
N-GSDMD oligomerizes and forms membrane pores through which IL-1β is released. These pores
can also contribute to pyroptotic cell death. The specific mechanisms engaged during viral infection
appear to be cell type- and context-dependent (see text for details). The individual signaling cascades
and the involvement of specific Pellino proteins are more comprehensively reviewed elsewhere [3,4].
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shown in green. The RING domain is shown in red. 
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Figure 2. Pellino proteins contain highly conserved functional domains. Human Pellino1, Pellino2,
and Pellino3 were aligned with the Melanoplus sanguinipes entomopoxvirus (MsEPV) Pellino protein
using Clustal Omega at https://www.ebi.ac.uk/Tools/msa/clustalo/ (accessed on 12 May 2023).
Stars (*) and dots (: and .) above the alignment indicate, respectively, identical and similar amino
acids in the human proteins. Stars (*) and dots (: and .) below the alignment indicate, respectively,
identical and similar amino acids between the human proteins and MsEPV Pellino. The FHA domain
is shown in green. The RING domain is shown in red.

In addition to Drosophila, Pellino has also been identified in nematodes, includ-
ing Caenorhabditis elegans and Schistosoma mansoni [8,9], as well as in several crustacean
species [10–13]. In mammals, the three PELI genes encode the proteins Pellino1, Pellino2,
and Pellino3 (Figure 2) [13]. The degree of sequence conservation is striking with, for
example, only a single amino acid substitution between human and mouse Pellino1. De-
spite the high degree of similarity between the invertebrate and vertebrate Pellino proteins,
the knockout of individual Peli genes in mice does not lead to apparent developmental
defects [14–18]. Thus, the Pellino proteins appear to have, at least in part, evolved as part
of the more elaborate immune system in vertebrates.

https://www.ebi.ac.uk/Tools/msa/clustalo/
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2. Initiation of Immune Responses

A crucial role of the Pellino proteins is to activate the expressions of genes involved
in immune responses. In the context of viral infections, the research focus has so far been
on innate immune mechanisms and inflammation. The innate immune response involves
the direct detection of viruses independent of adaptive immunity. The cell membrane-
and endosome-associated TLRs bind molecular patterns and proteins associated with mi-
crobes [19,20]. In a similar manner, the RIG-I (retinoic acid-inducible gene I)-like receptors
(RLRs) are a group of cytosolic sensors of viruses, for example [21]. Early mechanistic stud-
ies in cell culture systems established the role of Pellino proteins as intermediate signaling
molecules from TLRs (Figure 1). In human bronchial epithelial cells, Pellino1 is essential
for production of the inflammatory cytokine CXCL8, also known as IL-8, in response to
double-stranded RNA and rhinovirus minor group serotype 1B (RV-1B), a common human
pathogen [22]. The same study found that Pellino1 is not required for production of the
antiviral IFNβ, a type I IFN [22]. In contrast, Pellino1 appears to be critical for IFNβ
expression in myeloid cells and embryonic fibroblasts in response to double-stranded RNA
and Sendai virus [23,24]. Independently, it has been shown that Pellino3 is an essential
intermediate between RIG-I detection of the vesicular stomatitis virus (VSV) and cytokine
production, including type I IFN (Figure 1), in bone-marrow-derived macrophages [25].
This may suggest differential roles for Pellino proteins in antiviral immunity in different
cell types. In fact, in vivo studies using viruses with tropism for different organs and cell
types have indeed revealed distinct outcomes for infections.

In a mouse model of the herpes simplex virus-1 (HSV-1) skin infection, Pellino1-
deficient mice develop larger lesions and have a higher viral load in affected skin [16].
However, in mouse models of lung infections with rhinovirus RV1B and influenza A virus
(IAV), Pellino1 does not appear to be essential for immunity, as viral loads were found to
be the same in both Pellino1 knockout and wild-type mice [26]. In addition to the viral
tropisms and separate roles of Pellino1 in different cell types, the difficulty in demonstrating
involvement of Pellino in innate antiviral immunity may also be due to redundancies in
immune mechanisms to ensure adequate protection, even in the presence of viral immune
evasion strategies.

In addition to IFN-regulated viral restriction mechanisms that may limit viral repli-
cation directly in the infected cells, recruitment of leukocytes is an essential component
of immunity in vivo. As mentioned above, CXCL8 is expressed in a Pellino1-dependent
manner in contexts relevant to viral infections [22]. CXCL8 is chemotactic specifically to
neutrophils and is regulated by, for example, IL-1 and IL-36 [27,28]. Mice do not have
CXCL8, and often utilize CXCL1 and CXCL2 for tissue recruitment of neutrophils. Both of
these cytokines are also regulated by IL-1 and IL-36 [27,28]. During HSV-1 skin infection
in mice, neutrophil recruitment to naïve infection sites is delayed in Pellino1-deficient
animals [16]. This correlates with reduced levels of IL-1 and IL-36 (Figure 3) [16]. However,
the exact role of neutrophils in this model is unclear, as it has independently been shown
that depletion of neutrophils does not affect viral loads in the infected skin [29,30]. A
similar situation exists in the female reproductive system. While IL-36 promotes neutrophil
recruitment into HSV-2-infected vaginal mucosal sites, the antiviral functions of IL-36 are
independent of neutrophils [31]. The Pellino proteins are expressed in both male and
female reproductive organs, but their possible involvement in immunity against sexually
transmitted diseases, for example, has not been examined.
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latent infections in neurons. Upon reactivation, HSV-1 reemerges from axons innervating the skin
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inflammatory cytokines in a Pellino1-dependent manner. While IL-1 and IL-36 facilitate recruitment
of neutrophils from the circulation, GPR15LG is chemotactic to T cells expressing GPR15.

An essential bone-marrow-derived cell type for antiviral immunity is T cells. In VSV-infected
macrophages, Pellino3 promotes the expression of CXCL10, previously known as IP-10 [25],
a well-established regulator of T cell recruitment, priming, and development [32,33]. A more
recently identified modulator of T cells is GPR15LG, formerly known as 2610528A11Rik in
mice and C10orf99 in humans. GPR15LG is the ligand for GPR15 on T cells and acts as a
chemoattractant [34,35]. It is an important regulator of inflammation in the skin [36], and
its reduced expression in Pellino1 knockout mice may explain delayed T cell recruitment
during HSV-1 skin infections (Figure 3) [16]. This, in turn, may explain why HSV-1 repli-
cates and disseminates better in Pellino1-deficient mice compared to wild-type mice [16].
If GPR15LG is important for antiviral immunity in other tissues frequently infected by
viruses remains unknown.

The inflammasome is a multimeric protein complex essential for the proteolytic ac-
tivation of IL-1β [21]. It is extensively regulated through ubiquitination [37]. IL1B is
among the immune response genes activated during the early detection of viral infec-
tion (Figure 1). The protein IL-1β is initially synthesized as an intracellular pro-protein
without a signal peptide for extracellular export (reviewed in [38]). For example, upon
RLR or TLR engagement (Figure 1), Pellino1 and Pellino2 can ubiquitinate ASC (adaptor
molecule apoptosis-associated Speck-like protein containing a CARD (caspase activation
and recruitment domain)) and NLRP3 (nucleotide-binding domain, leucine-rich-containing
family, pyrin domain-containing-3) [14,39–41]. This ubiquitination primes formation of the
NLRP3•ASC inflammasome to which inflammatory caspases such as caspase-1 are also
recruited (Figure 1). Caspase-1 cleaves pro-IL-1β and Gasdermin-D into their mature forms.
The N-terminal domain of the latter forms large pores in the cell membrane through which
the cleaved IL-1β is released (Figure 1, reviewed in [38]). While the Pellino proteins have
been shown to have important beneficial and detrimental roles during viral infections, as
described above and below, the involvement of the Pellino-to-inflammasome signal during
these viral infections remains largely unexplored.

3. Viral Immune Evasion

Viruses extensively deploy immune evasion strategies to avoid detection by innate sen-
sors and prevent activation of the inflammasome, reviewed in detail elsewhere [38,42–48].
During evolution, apparent redundancies have emerged as fail safes to ensure protective
immunity even in the presence of highly effective microbial immune evasion mechanisms.
Consequently, deletion of one or more of the inflammasome components from the mouse
genome may have a limited, if any, effect upon infection outcomes. For example, mice
deficient in the two inflammasome executioner proteases, caspase-1 and caspase-11, ap-
pear to develop normal protective immunity against HSV-1, as evidenced by their viral
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dissemination being on par with wild-type mice [49]. While several viral immune evasion
mechanisms have been identified involving Pellino-activated NLRP3 and ASC [38,42–45],
specific viral targeting of one or more of the Pellino proteins in these processes has not
been examined. However, an unrelated direct viral immune evasion mechanism has been
identified in the Melanoplus sanguinipes entomopoxvirus (MsEPV) [50].

Poxviridae is a large family of double-stranded DNA viruses that can infect ver-
tebrate and arthropod species. MsEPV belongs to the Entomopoxvirinae subfamily and
infects, for example, the North American migratory grasshopper Melanoplus sanguinipes [51].
The MsEPV genome includes 267 methionine-initiated open reading frames greater than
60 amino acids [51]. One of these genes encodes a ubiquitin-like protein [51], while an-
other translates into a Pellino homolog with an overall 15.6% sequence identity to human
Pellino2 and 27.6% identity within the FHA domain (Figure 2) [50,51]. While the FHA
domain is present in MsEPV Pellino, the ubiquitin ligase activity associated RING domain
is truncated in MsEPV Pellino (Figure 2) [50]. Consequently, MsEPV Pellino associates with
IRAK but fails to engage downstream signaling events (Figure 4) [50]. The overexpression
of MsEPV Pellino in both insect and human cells causes inhibition of TLR-mediated NF-κB
or NF-κB-like activity. As such, MsEPV Pellino appears to act as an active strategy to
prevent the initiation of immune responses within the infected cells (Figure 4) [50]. The
relatively weak sequence similarity between MsEPV and Pellino2 (Figure 2) leaves open
the possibility that other viral-encoded Pellino-like proteins remain to be identified [50].
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Figure 4. Viruses can block Pellino1 activity through different mechanisms. MsEPV encodes a Pellino
protein that binds to IRAK but fails to engage downstream signaling. This prevents the production
of type I IFNs and inflammatory cytokines. JEV enhances expression of the host miR-155, which in
turn suppresses expression of Pellino1 and inflammatory genes. Black X indicates that the Pellino1
protein is not synthesized. Red X indicates that the pathway cannot take place.

A more indirect mechanism of immune evasion may be employed by the Japanese
encephalitis virus (JEV) [52]. During JEV infection of microglia, miR-155 is upregulated
(Figure 4). By complementary base-pairing, microRNAs silence mRNAs through degra-
dation or suppression of translation. The miR-155 prevents expression of Pellino1 [52,53],
and in the microglia-JEV system, this results in the reduced expression of proinflammatory
genes (Figure 4) [52]. If other microRNAs are involved in regulating Pellino1, Pellino2, or
Pellino3, they have not yet been examined.
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4. Excess Inflammation and Pathogenesis

Inflammation is essential for recruiting immune cells to infected tissues, as described
above. The immune cells are involved in killing infected cells, clearing cellular debris, and
promoting tissue regeneration. However, an exuberant inflammatory response that is too
potent or prolonged can damage the surrounding uninfected tissue, and thus exacerbate
and/or prolong disease. The central nervous system is especially prone to damage from
inflammation. The two flaviviruses, West Nile virus (WNV) and Zika virus (ZV), trigger
inflammation that is Pellino1-dependent (Figure 5) [18,54]. WNV enters the brain by
crossing the blood–brain barrier, and promotes meningitis and encephalitis [18]. The onset
and progression of this inflammation is attenuated in Pellino1-deficient mice (Figure 5a) [18].
In a similar Pellino1-dependent manner, ZV enters and crosses the placenta [54], and the
concomitant inflammation results in fetal demise (Figure 5b) [54]. In both models, innate
inflammatory markers such as IL-1β, IL-6, and TNF are reduced in Pellino1-deficient
mice (Figure 5) [18,54]. The entry and replication of both viruses in several cell types,
including macrophages, microglia, and neurons, is Pellino1-dependent through an as yet
unknown mechanism [18,54]. Thus, the targeted inhibition of Pellino1 function may have
dual preventive or therapeutic applications through both reduction of inflammation and
restriction of viral replication.
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(a) Pellino1 promotes IL-1, IL-6, and TNF expression and neuroinflammation in response to infection
with WNV in the adult brain. (b) During embryonic ZV infection, Pellino1 drives the expressions of
IL-1, IL-6, and TNF. This results in inflammation that causes malformations and death.

Viral infections can exacerbate many inflammatory diseases. Chronic obstructive pul-
monary disease (COPD) is the third-leading cause of death worldwide, and is characterized
by progressively worsening lung inflammation. Both bacterial and viral infections of the
airways aggravate the disease. When infected with the rhinovirus RV-1B, primary bronchial
epithelial cells from patients with COPD produce elevated cytokine levels compared to
cells from healthy control subjects [55,56]. Pellino1 is specifically upregulated upon RV-1B
infection in cells from COPD patients [55]. While this increase in Pellino1 production
may contribute to the observed elevated cytokine expression in infected COPD cells, its
potential role in exacerbating COPD during upper respiratory viral infections remains
undetermined.

5. Immunoregulatory Functions

Since excessive inflammatory responses can result in tissue damage if they are not
tightly controlled, numerous regulatory mechanisms are in place to curb the degree and
duration of the involved pathways, including those engaged by Pellino proteins (Table 1).
Pellino3 may have evolved, at least in part, to regulate certain inflammatory signaling
cascades. Through respectively poly- and mono-ubiquitination, Pellino3 modifies TRAF6
(tumor necrosis factor receptor-associated factor-6), TRAF3, and TANK (TRAF family
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member-associated NF-κB activator) [15,57,58]. These ubiquitination events disrupt inter-
actions with downstream signaling factors TBK1 (TANK-binding kinase 1, an activator of
IRF3), IRF3, and IRF7, and thus diminish IFNβ induction [15,57]. In the absence of these
mechanisms, a stronger immune response is engaged. Consequently, Pellino3-deficient
mice exhibit less severe disease, including lower viral loads during at least encephalomy-
ocarditis virus (EMCV) infections [15].

Table 1. Regulatory functions of Pellino proteins. Pellino1 and Pellino3 can through ubiquitination
promote degradation of direct or indirect downstream signaling factors. Pellino1 itself is regulated at
the mRNA and protein levels through the action of inhibitory molecules. These factors act upstream
of the Pellino1-activated signaling cascades.

Pellino Protein Downstream Degraded Target Upstream Regulator

Pellino3 TRAF6 [15]
Pellino3 TRAF3 [58]
Pellino3 TANK [57]
Pellino1 TRAF3 [59,60]
Pellino1 c-Rel [61] miR-155 [53]
Pellino1 Smad6 [62]
Pellino1 Smad7 [63]
Pellino1 IDO [64]

Similarly, Pellino1 promotes degradation of TRAF3 [59] and suppression of type I IFN
in microglia cells [60]. Thus, Pellino1 knockout mice have a more potent antiviral immune
response against VSV, including higher levels of type I IFNs and TNF, and better viral clear-
ance than wild-type mice [60]. Pellino1-deficient mice also have increased inflammation
and production of TNF and IL-6 during infections with RV1B and IAV [26]. However, the
specific mechanism involved has not been investigated.

Pellino1 is a known regulator of T cell polarization through the ubiquitination of
c-Rel [53,61]. c-Rel is a member of the NF-κB family of transcription factors. It is predom-
inantly expressed in B and T cell lineages and is essential for proliferation and differen-
tiation [65]. During T cell development, Pellino1 promotes the degradation of c-Rel [61];
however, the expression of Pellino1 is repressed by miR-155 [53]. This regulatory activity
creates a fine-tuned system that is essential for preventing the development of self-reactive
T cells. Consequently, upon appropriate non-microbial challenge, Pellino1-deficient mice
develop autoimmunity [61,66]. Numerous viruses have been linked to the development
of autoimmunity [67,68], but how the Pellino1•miR-155 system may be involved in these
processes has not been examined.

Cellular responses take place in highly complex milieus. TGF-β (transforming growth
factor) is a cytokine with anti-inflammatory properties through, for example, Smad6
and Smad7 (suppressor of mothers against decapentaplegic) [69]. Upon their induc-
tion, Smad6 and Smad7 cooperate to suppress IL-1 and TLR signaling [62,63]. Smad6
associates with the FHA domain in Pellino1, and thus disrupts the interface essential
for binding to IRAK1 (Figure 6a) [62]. Smad7 binds to the region between the FHA and
RING domains in Pellino1 (Figure 2) [63]. These interactions prevent the assembly of the
MyD88•IRAK1•Pellino1•TRAF6 signalosome, and thus the activation of the downstream
pro-inflammatory signaling cascades, including the NF-κB pathway (Figure 6a) [62]. This
mechanism has been harnessed to prevent developmental defects in mouse embryos dur-
ing infection with ZV using a peptide (Smaducin-6) derived from Smad6 (Figure 6b) [54].
Whether this approach will translate into humans and other viral pathologies involving
Pellino1-dependent tissue damage remains to be determined.



Viruses 2023, 15, 1422 9 of 14
Viruses 2023, 15, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 6. Pellino1 is inhibited by Smad6 and Smad7. (a) Following activation via TGF-β, Smad6 and 
Smad7 bind to Pellino1. This prevents Pellino1·IRAK interactions, and thus downstream signaling 
events are not engaged. (b) Smaducin-6, a peptide based on the Smad6 sequence, inhibits Pellino1 
during ZV infections. This results in attenuated IL-1-, IL-6-, and TNF-dependent inflammation and 
death in the developing embryos. Red Xs indicate pathways that cannot take place. 

IDO (indoleamine 2,3-dioxygenase) acts as an immunomodulator through the catab-
olism of tryptophane [64]. The enzyme suppresses inflammatory responses and promotes 
tolerance by shifting the balance between effector T cells and regulatory T cells towards 
the latter [64]. During viral infections, IDO expression is induced by type I and type III 
IFNs [64]. Experiments involving the IDO inhibitor 1-methyl tryptophan (1MT) suggest 
that IDO suppresses Pellino1 expression in macrophages, and that this contributes to re-
strained production of inflammatory cytokines during influenza infections [70]. Hence, 
the regulation of at least Pellino1 is intricate (Table 1) during viral infections, and its spe-
cific role in promoting beneficial and detrimental inflammatory responses requires further 
investigation. 

6. Regulation of Cell Death Mechanisms 
Cell death impacts many diverse cellular and physiological functions during viral 

infections. There are currently 22 defined types of cell death [71]; of these, Pellino proteins 
are known to regulate 4. One of these is pyroptosis, which is associated with activation of 
the inflammasome and extracellular release of IL-1β, described above (Figure 1). The for-
mation of N-GSDMD pores in the cell membrane can result in loss of membrane potential, 
leading to cell death through pyroptosis [72–77]. Since both Pellino1 and Pellino2 are in-
volved in activation of the inflammasome [14,39–41], they may be determinants of the 
outcome of viral infections through pyroptosis. While mice deficient in caspase-1 and 
caspase-11 appear fully competent at controlling HSV-1 and exhibit no more severe dis-
ease than wild-type mice [49], other viruses need to be examined to define the beneficial 
and detrimental effects of pyroptosis on inflammation, tissue damage, and viral re-
striction. 

Programmed cell death pathways such as apoptosis and necroptosis can act as anti-
viral mechanisms, but viruses extensively suppress them through their survival strategies 
[44,78]. The Pellino proteins appear to regulate these pathways in many ways. Pellino1 
can reduce necroptosis in keratinocytes through K48-linked ubiquitin-mediated degrada-
tion of RIPK3 (receptor-interacting serine/threonine-protein kinase) (Figure 7) [79]. Pel-
lino1 may also suppress apoptosis (Figure 7). This can be achieved through at least two 
different mechanisms. K63-ubiqutination of RIPK1 prevents interaction with caspase-8, 

Figure 6. Pellino1 is inhibited by Smad6 and Smad7. (a) Following activation via TGF-β, Smad6 and
Smad7 bind to Pellino1. This prevents Pellino1•IRAK interactions, and thus downstream signaling
events are not engaged. (b) Smaducin-6, a peptide based on the Smad6 sequence, inhibits Pellino1
during ZV infections. This results in attenuated IL-1-, IL-6-, and TNF-dependent inflammation and
death in the developing embryos. Red Xs indicate pathways that cannot take place.

IDO (indoleamine 2,3-dioxygenase) acts as an immunomodulator through the catabolism
of tryptophane [64]. The enzyme suppresses inflammatory responses and promotes tol-
erance by shifting the balance between effector T cells and regulatory T cells towards
the latter [64]. During viral infections, IDO expression is induced by type I and type III
IFNs [64]. Experiments involving the IDO inhibitor 1-methyl tryptophan (1MT) suggest
that IDO suppresses Pellino1 expression in macrophages, and that this contributes to re-
strained production of inflammatory cytokines during influenza infections [70]. Hence,
the regulation of at least Pellino1 is intricate (Table 1) during viral infections, and its spe-
cific role in promoting beneficial and detrimental inflammatory responses requires further
investigation.

6. Regulation of Cell Death Mechanisms

Cell death impacts many diverse cellular and physiological functions during viral
infections. There are currently 22 defined types of cell death [71]; of these, Pellino proteins
are known to regulate 4. One of these is pyroptosis, which is associated with activation
of the inflammasome and extracellular release of IL-1β, described above (Figure 1). The
formation of N-GSDMD pores in the cell membrane can result in loss of membrane potential,
leading to cell death through pyroptosis [72–77]. Since both Pellino1 and Pellino2 are
involved in activation of the inflammasome [14,39–41], they may be determinants of the
outcome of viral infections through pyroptosis. While mice deficient in caspase-1 and
caspase-11 appear fully competent at controlling HSV-1 and exhibit no more severe disease
than wild-type mice [49], other viruses need to be examined to define the beneficial and
detrimental effects of pyroptosis on inflammation, tissue damage, and viral restriction.

Programmed cell death pathways such as apoptosis and necroptosis can act as antiviral
mechanisms, but viruses extensively suppress them through their survival strategies [44,78].
The Pellino proteins appear to regulate these pathways in many ways. Pellino1 can re-
duce necroptosis in keratinocytes through K48-linked ubiquitin-mediated degradation of
RIPK3 (receptor-interacting serine/threonine-protein kinase) (Figure 7) [79]. Pellino1 may
also suppress apoptosis (Figure 7). This can be achieved through at least two different
mechanisms. K63-ubiqutination of RIPK1 prevents interaction with caspase-8, while NF-κB-
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elicited expression of survival genes, e.g., cFLIP (cellular Fas-associated death domain-like
IL-1β-converting enzyme-inhibitory protein), provides an alternative approach to prevent-
ing caspase-8 activation [80], and thus downstream apoptosis (Figure 7). It should be noted
that how these mechanisms affect the outcomes of viral infections in different cell types has
not been studied.
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Figure 7. Cell death pathways are modified by Pellino1. Pellino1 can suppress necroptosis through
K48 ubiquitination of RIPK3. Pellino1-mediated induction of survival genes, such as cFLIP, and K63
ubiquitination of RIPK1 inhibit caspase-8 activation and thus, apoptosis. Through K63 ubiquitination,
Pellino1 activates Beclin1 and autophagy. Red Xs indicate pathways that cannot take place.

An alternative viral restriction approach is autophagy [81]. The HIV Tat protein
promotes autophagy in endothelial cells [82]. In this system, Pellino1 activates Beclin1,
an activator of autophagy [83], through K63-ubiquitination (Figure 7); this may be a
contributing factor to blood–brain barrier dysfunction in HIV patients [82]. How this
mechanism may impact viral replication needs to be examined. It also remains to be
determined if Pellino2 and Pellino3 have similar or diverging functions.

7. Conclusions

The involvement of Pellino proteins in immunity and pathogenesis during viral infec-
tions is multifaceted. While having essential protective functions, they may also contribute
to pathologies. Prophylactic and therapeutic approaches targeting these mechanisms may
be possible; however, such strategies must be carefully evaluated for both their beneficial
and detrimental effects. The already known Pellino-regulated pathways and mechanisms
described in this review cannot necessarily be directly extrapolated from one system to
another, due to the unique complexity of individual organs and each viral pathogen hav-
ing specific immune evasion strategies. Thus, numerous opportunities exist to not only
elucidate the roles of Pellino-mediated ubiquitination in immune and disease processes,
but likely also identify new viral approaches to modifying ubiquitin-regulated cellular
responses. Comprehensive insight into such functions and mechanisms is essential in
the fight against current and future pathogenic viruses. Further research should carefully
delineate favorable from damaging activities to best prepare us for the next pandemic.
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