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Abstract: Polylactic acid (PLA) is a biodegradable polyester polymer that is produced from renewable
resources, such as corn or other carbohydrate sources. However, its poor toughness limits its
commercialization. PLA composites can meet the growing performance needs of various fields,
but limited research has focused on their sustainable applications in sports. This paper reviews the
latest research on PLA and its composites by describing the characteristics, production, degradation
process, and the latest modification methods of PLA. Then, it discusses the inherent advantages of
PLA composites and expounds on different biodegradable materials and their relationship with the
properties of PLA composites. Finally, the importance and application prospects of PLA composites in
the field of sports are emphasized. Although PLA composites mixed with natural biomass materials
have not been mass produced, they are expected to be sustainable materials used in various industries
because of their simple process, nontoxicity, biodegradability, and low cost.

Keywords: PLA; biocomposites; biodegradation; sports equipment manufacturing

1. Introduction

The continuous advancement of science and technology has increased the global
demand for natural resources, leading to frequent problems, such as material shortages
and environmental pollution. Rapidly depleting oil reserves, greenhouse gas emissions,
and the large-scale use of oil-based products have resulted in a lack of biodegradable
products, prompting researchers to explore biodegradable, renewable, and recyclable
materials. Polylactic acid (PLA) is a biodegradable bio-based aliphatic polyester that can
be extracted from 100% renewable resources, such as corn, potatoes, and sugarcane [1].
Compared with traditional petroleum-based composite materials, PLA has a low density,
low cost, good plasticity, and rigidity. PLA possesses excellent workability, making it an
ideal choice for 3D printing sports equipment. 3D printing can be used to adjust the density
and structure of a material according to specific requirements, allowing for personalized
customization and innovative designs based on individual measurements and particular
needs. This can achieve an ideal combination of lightweight and high strength to ensure
that PLA sports equipment does not impose excessive burdens on athletes, enhances
athletic performance, and protects different individuals. Although PLA possesses many
characteristics suitable for the fabrication of sports equipment, more research is needed.
Figure 1 compares the characteristics of bioplastics and petro plastics, showing that PLA
occupies a crucial position in the biopolymer market and plays a vital role in various
fields, such as in automotive, aerospace, construction, defense, food packaging, and sports
equipment applications [2–5].
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Figure 1. Properties of bioplastics and petro plastics (adapted from Refs. [6,7]).

PLA is an extracted thermoplastic that is suitable for manufacturing composite materi-
als using various methods, such as injection molding, extrusion molding, and compression
molding [8]. Increases in the annual supply of PLA (Figure 2) and competitive petroleum
costs are key factors driving researchers to develop new PLA-based biocomposites. PLA
can biodegrade and bioaccumulate, which helps reduce production and waste disposal
costs. PLA can also be treated by landfilling, incineration, or pyrolysis. More than 50%
(2.8 kg CO2/kg PLA) of the released CO2 in the PLA life cycle is released during its conver-
sion. By optimizing the conversion process of PLA, there is tremendous potential for PLA
to become a low-carbon material [9].
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Figure 2. Global production capacity of PLA (adapted from Ref. [10]).

This report discusses the latest developments in the research and development of
PLA and its composites. It first outlines the basic structure, characteristics, production,
degradation process, and latest modification methods of PLA, and it discusses the inherent
advantages of selecting PLA composite materials and focuses on the relationship between
different biodegradable materials and their performance in the final PLA composite ma-
terials. Then, it introduces the application prospects of PLA composite materials in the
field of sports. Finally, it discusses the challenges faced by PLA composite materials and
competing materials.

2. Overview of PLA

PLA is an entirely biodegradable polymer hailed as one of the most promising bio-
based polymers because of its biocompatibility, biodegradability, high mechanical strength,
nontoxicity, nonirritation, and processability. PLA can be synthesized by low-energy
processes, and it is independent of petroleum resources. Microorganisms can decompose
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waste PLA into H2O and CO2. After photosynthesis, CO2 and water are converted back
into substances such as starch, which can be used as raw materials to resynthesize PLA,
thereby realizing a carbon cycle process [11] that does not pollute the environment.

2.1. PLA Structure

Lactic acid molecules contain a chiral asymmetric α-carbon atom and exhibit optical
activity that can be divided into two configurations: left-handed (L) and right-handed
(D). The dehydration of two lactic acid molecules forms three optical isomers of lactide:
L-lactide, D-lactide, and meso-lactide. L-lactide is cheaper because it is naturally occurring.
The content of D-lactic acid changes the crystallization behavior of PLA, including different
crystallization rates, multiple crystal types, different scales, and layer thicknesses. The
crystal morphology is closely related to the mechanical properties of the polymer: the larger
the PLA crystal, the more defects in the interior and on the surface of the crystal, and the
poorer the mechanical properties of the resulting material [12]. Like L-lactide, meso-lactide
is a cyclic diester with two chiral carbon atoms that are not optically active. PLA synthesized
via lactide ring-opening polymerization (ROP) has three different stereo configurations:
left-handed polylactic acid (PLLA), right-handed polylactic acid (PDLA), and racemic
polylactic acid (PDLLA) [13]. Figure 3 shows the three stereo configurations of PLA. The
properties and applications of these PLA stereo configurations depend on the molecular
weight, molecular weight distribution, crystal structure, and melt rheological behavior.
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2.2. Properties of PLA

PLA is a member of the family of aliphatic polyesters and has the essential char-
acteristics of universal polymer materials. PLA has a tensile strength similar to that of
polyethylene terephthalate (PET), approximately 54 MPa, while its tensile modulus is
3.4 GPa, which is slightly higher than that of PET [14,15]. The mechanical properties of PLA
are greatly affected by its molecular weight (Mw). When the molecular weight doubles
from 50 kDa to 100 kDa, the PLA’s tensile strength and elastic modulus also double [16].
The mechanical properties of PLA depend on its semicrystalline structure, amorphous
structure, and crystallinity. Semicrystalline PLA shows greater mechanical properties than
amorphous PLA. Upon increasing the PLA crystallinity and decreasing the molecular chain
mobility, the elongation at the break of the material decreases, while the tensile strength
and modulus increase. Table 1 shows the properties of PLA and its different stereo con-
figurations. In addition, the stereochemical structure of lactic acid-based polymers can be
controlled by copolymerizing L-lactide, D-lactide, D, L-lactide, and meso-lactide to slow
the crystallization rate, which significantly impacts the mechanical properties [17,18].

The environmental degradation process of PLA occurs in two steps: hydrolysis and
microbial degradation. PLA first undergoes the hydrolytic cleavage of ester bonds, degrad-
ing into PLA oligomers (OLAs) [19]. The hydrolysis of PLA can be catalyzed by acid or
alkali and is also affected by temperature and humidity [20,21]. As hydrolysis proceeds,
the number of –COOH groups in the system gradually increases, which plays a catalytic
role in the cleavage of PLA ester bonds [22]. This makes the degradation of PLA a self-
catalytic process. When the molecular weight of PLA decreases to below 10,000 g/mol,
microorganisms can participate in the degradation process of PLA and eventually degrade
it into H2O and CO2.
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Table 1. Properties of PLA and PLA stereo configurations.

Polymer Density
(g/cm3)

Glass Transition
Temperature (◦C)

Melting
Point (◦C)

Molecular
Weight (g/mol)

Tensile Strength
(MPa) Solubility Refs.

PLA 1.25 54–56 120–170 66,000 21–60 Trimethylsilyl [23–25]

PLLA 1.290 55–80 173–178 <350,000 15.5–150
Chloroform,

furan, dioxane,
and dioxole

[25–29]

PDLA 1.248 40–50 120–150 21,000–67,000 15.5–150 PLLA solvents,
plus acetone

[26–28,
30,31]

PDLLA 1.25 43–53 230–240 <350,000 27.6–50

Tetrahydrofuran,
ethyl acetate,

dimethyl
sulfoxide, and

dimethyl
formamide

[25–29]

2.3. PLA Production

Figure 4 shows the synthetic route of PLA. Researchers extract starch from renewable
natural resources, such as corn and potatoes, and ferment it to produce PLA. Traditional
lactic acid fermentation uses starchy raw materials, and some countries have developed
the use of agricultural and sideline products as raw materials for this process. The two
main methods for synthesizing PLA are direct condensation and lactide ROP [32].
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2.3.1. Direct Polycondensation

In the late 1980s, the advancement of direct condensation technology significantly
increased the global production of PLA and greatly reduced its costs. Direct condensation
involves preparing PLA by dehydrating and condensing lactic acid molecules. The disad-
vantage of this method is that the reaction system is in a dynamic equilibrium between
condensation and depolymerization, and the high viscosity of the system makes it difficult
to remove the water by-product. The unremoved water causes the depolymerization reac-
tion to proceed, even under vacuum conditions, making it difficult to extract water and
increasing the molecular weight of the PLA. Under a high temperature (>200 ◦C), the PLA
will undergo depolymerization, discoloration, and racemization accompanied by a series
of side reactions, such as ester exchange, which may form differently sized cyclic products.
This results in reduced product properties and poor mechanical properties, which limit their
industrial applications. However, the use of direct condensation to produce PLA is a short
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and inexpensive method. Chen et al. used a combination of direct condensation and melt
polymerization using tetra butyl titanate as a catalyst. They used different vacuum periods,
esterification, and condensation reactions. The results showed that this method reduced the
system’s viscosity, thus helping to remove water and increase the molecular weight [33].

2.3.2. Ring-Opening Polymerization (ROP)

In the early 1990s, Cargill Inc. applied for a patent for a solvent-free process and
new distillation technology based on ROP to convert lactic acid into high-molecular-
weight polymers. This made PLA the second-highest volume bioplastic after starch-based
materials. By utilizing specific microbial strains, natural agricultural materials can undergo
fermentation to produce lactic acid (LA), which is a precursor for PLA [34,35]. The mature
ROP process can make high-molecular-weight and chemically controllable PLA samples
with good mechanical properties by controlling lactide’s purity and reaction conditions.
This is currently the most common method for the industrial production of high-molecular-
weight PLA. The technical difficulties of ROP production lie in the synthesis and purification
of lactide. Lactide ROP, first, generates oligomers via the dehydration–condensation of
lactic acid, and then oligomers are cracked into lactide using initiators, and the lactide,
finally, undergoes ROP to generate PLA. Only high-purity lactide can be used to synthesize
high-molecular-weight PLA with the desirable physical properties. Depending on the
initiator used, lactide ROP can be divided into anionic, cationic, or coordination ROP.
Among them, cationic ROP uses a smaller amount of catalyst, while anionic ROP has high
reactivity and a fast speed [36].

2.4. Modified PLA

According to Refs. [37–39], the low flexibility, elongation, impact resistance, and heat
distortion temperature of PLA results in problems such as low crystallinity, long injection
molding cycle, high moisture sensitivity, and low hydrolysis resistance. Researchers
have used different modification techniques to improve the performance of PLA, such as
copolymers and blending with nanocomposites or other polymers.

2.4.1. Copolymers

PLA is a thermoplastic polymer whose processing temperature is generally between
170 and 230 ◦C. In recent years, researchers have produced self-reinforcing PLA through
techniques such as melt extrusion, stretching, and injection molding without the need for
additives, which retain the biocompatibility and biodegradability of PLA. This method
can also solve the trade-off between the toughness and strength and compatibility of
blends. In addition, Cao et al. [40] designed a new modification process. After isothermal
crystallization, blow molding was carried out below the melting point of crystalline PLA.
A crystal network was formed through stretching and blow-molding to prepare a self-
reinforcing PLA film. The elongation at the break of this film increased by approximately
67.50% and 104.83% in the transverse and longitudinal directions, respectively, and the
tensile strength increased by approximately 45.4 MPa and 78.0 MPa in the transverse and
longitudinal directions. This overcame the trade-off between the toughness and strength.

2.4.2. Blending with Nanocomposites

Chrissafis et al. [41] added 2.5% oxidized multiwalled carbon nanotubes into PLA
and found that the thermal stability of the modified PLA material was greater than that
of pure PLA, and the thermal conductivity increased by about 60%. The hexagonal mesh
structure and stable chemical bonds of oxidized multiwalled carbon nanotubes made
them highly durable, with a decomposition temperature above 1000 ◦C. Since oxidized
multiwalled carbon nanotubes disperse the heat absorbed by PLA, the modified PLA’s
thermal conductivity and thermal stability were enhanced. In addition, oxidized multi-
walled carbon nanotubes acted as heterogeneous nucleating agents in the PLA matrix. The
growth of PLA crystals around the oxidized multiwalled carbon nanotubes shortened the
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induction process of PLA nucleation, accelerated the PLA crystallization, and reduced the
spherulite size. Seligra et al. [42] grafted modified carbon nanotubes onto PLA, which sig-
nificantly increased the conductivity of the modified PLA material to 4000 s/m. The added
carbon nanotubes formed an electron-conducting network that lowered the percolation
threshold, thereby transforming PLA into a conductive polymer. A small amount of car-
bon nanotubes was sufficient to increase the conductivity without affecting the material’s
mechanical properties.

2.4.3. Blending with Other Polymers

Researchers can improve the mechanical properties of polymers by changing the struc-
ture and composition of copolymers. Adjusting the ratio of lactic acid and other monomers
in the copolymer system can produce copolymers with the desired mechanical strength to
improve the mechanical properties of PLA. By utilizing the hydroxyl and carboxyl groups
on the lactic acid segment, different monomers, such as caprolactone (CL), ethylene oxide
(EO), ethylene glycol (EG), and trimethylene carbonate (TMC), can be used to synthesize
PLA copolymers with improved mechanical properties, especially toughness. Li et al. [43]
prepared alternating and random polyurethane copolymers using PLA and polyethylene
glycol (PEG). The alternating polyurethane copolymer had a more controllable structure
than the random polyurethane copolymer and, therefore, showed higher crystallinity and
mechanical properties. Huang et al. [44] developed an electrochemically controlled switch-
able copolymer system and used it to quickly synthesize multisegment copolymers of PLA
and polycarbonate propylene (PPC) without adding external oxidants or reducing agents.
In this way, they exploited the complementary advantages of PPC (toughness) and PLA
(mechanical strength).

2.5. PLA Degradation

PLA is a biopolymer that can also undergo biodegradation under certain conditions
without producing environmental pollution [45,46]. Polymer degradation can be divided
into heterogeneous and homogeneous degradation, also known as surface and intramolec-
ular polymer degradation, which can occur through three different chemical reactions:
(a) main-chain cleavage, (b) side-chain cleavage, and (c) cross-link cleavage. PLA degra-
dation mainly occurs through ester bond cleavage, which splits long polymer chains into
shorter oligomers, dimers, or even monomers. Specifically, the ester bonds of PLA are
cleaved via chemical hydrolysis, and under the action of salicylic acid, they are split into
carboxylic acids and alcohols. These shorter units are small enough to pass through the cell
walls of microorganisms, where they serve as substrates for their biochemical processes
and are degraded by microbial enzymes. PLA can be composted to produce CO2 and H2O,
requiring temperatures near the Tg (60 ◦C) of the polymer and a high relative humidity [47].
The CO2 emissions are offset by the initial absorption during PLA production. Under such
conditions, the degradation time can be as short as 30 days.

Piedmont and Gironi [48] studied the hydrolytic degradation kinetics of PLA at
concentrations of 5–50 wt% between temperatures of 140 ◦C and 180 ◦C. The results showed
that the reaction kinetics did not depend on the concentration of PLA, and the collected
data indicated two different reaction mechanisms. The first mechanism was related to a
biphasic reaction (Ea = 53.2 kJ mol−1), and the second mechanism was associated with a self-
catalytic effect of increasing carboxylic acid groups during the depolymerization process
(Ea = 36.9 kJ mol−1). This effect was previously noted in PLA hydrolysis and lowered
the solution pH. The group’s further work modeled the hydrolysis of PLA at higher
temperatures (170–200 ◦C). The kinetic model described the batch erosion of PLA and
subsequent hydrolysis of oligomers, and the model accurately predicted the conversion and
concentration of oligomers. Under these conditions, PLA could be completely transformed
within 90 min.
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3. PLA Composite Materials

Although PLA has excellent mechanical properties, renewability, biodegradability,
and low costs [49], Figure 5 shows PLA composite degradation process, it is also brittle and
has low heat resistance [50]. Researchers have explored various reinforcement materials
to develop PLA composite materials to overcome these drawbacks [51], such as cellulose,
lignin, silk, PBAT, and PHA. Table 2 compares the mechanical properties of different PLA
composite materials.

Table 2. Comparison of the mechanical properties of different PLA composites.

Reinforcement Addition of
Fiber (wt.%)

Best Combination
(wt.%)

Tensile Strength
(MPa)

Tensile Modulus
(GPa) Ref.

Cellulose 30 - 62.3 4.1 [52]
Wood flour 20–40 30 63.3 5.3 [53]

Silk 1–7 5 62.08 2.54 [54]
PBAT 20 - 66.1 1.078 [55]
PHA 20 - 25.4 1.2 [56]
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3.1. Natural Fibers

Natural fibers can be divided into plant and animal fibers according to their sources [58].
Generally, combining natural fibers with PLA significantly improves the tensile strength,
flexural strength, elastic modulus, heat distortion temperature, and other properties of PLA
composites. This also enhances their impact resistance and dimensional stability [59,60]
while reducing costs. Therefore, natural fibers are an ideal choice for preparing PLA
composite materials.

3.1.1. Cellulose Nanocrystals

Cellulose nanocrystals (CNCs) are rod-shaped nanoparticles extracted from cellu-
lose through acid hydrolysis. A wide range of sources, including bleached wood pulp,
cotton, and hemp fibers, can be used to produce CNCs [61,62]. Because of their high
specific surface area, high reactivity, high strength, and low density, CNCs are an attractive
reinforcement material.

Since Favier et al. [63] first attempted to use cellulose whiskers to reinforce polymers in
1995, nano cellulose products have been commercialized, which has prompted researchers
to develop PLA/CNCs composite materials. Most studies have shown that CNCs can
be well dispersed in PLA and act as a heterogeneous nucleating agent that affects the
crystallization of PLA [64]. During isothermal or nonisothermal bulk crystallization, the
presence of CNCs reduces the activation energy of PLA crystallization and increases
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the crystallization rate of PLA. Kamal et al. [65] prepared CNCs/PLA composites by melt
blending and found that CNCs acted as a heterogeneous nucleating agent that promoted the
formation of PLA crystals, increased the crystallization rate, and improved the crystallinity.
Karkhanis et al. [66] used CNCs to prepare packaging film with PLA composites. Compared
with a PLA film, the water vapor permeability of the composite film decreased by 40%. The
oxygen permeability decreased by 75%, thus significantly improving the barrier properties
of the thin film. The presence of numerous hydroxyl groups on the surface of CNCs
controlled the degradation performance of the material and enhanced the hydrophilicity of
PLA composites. Shuai et al. [67] introduced CNCs into a laser-sintered PLA scaffold and
found that CNCs, as a heterogeneous nucleating agent, caused the ordered arrangement of
PLLA chains by forming hydrogen bonds between the surface hydroxyl groups of CNCs
and PLLA, thereby increasing the crystallization rate and crystallinity. In addition, since the
mechanical strength of polymers is closely related to their crystallinity, the addition of 3 wt%
CNCs to the PLA scaffold increased its compressive strength, compressive modulus, tensile
strength, tensile modulus, and Vickers hardness by 191%, 351%, 34%, 83.5%, and 56%,
respectively. Adding hydrophilic CNCs also improved the hydrophilicity and degradation
performance of PLLA.

3.1.2. Lignin

Lignin is the most abundant aromatic biomass in nature, accounting for 20–30% of the
weight of wood [57,68]. Most natural lignin (approximately 98%) is currently unused as a
value-added product and is discarded as industrial waste because its chemical structure
in its raw form is fragile and lacks resistance to heat, chemicals, external loads, and other
factors. When lignin is mixed with organic polymers, acetylation reactions reduce the
strength of the hydrogen bonds in lignin molecules, thereby reducing the size of the struc-
tural domains when polymerized lignin is mixed with organic polymers [69]. Interactions
between the hydroxyl groups of lignin and the carboxyl groups of PLA underpin the
production of PLA/lignin composite materials [70].

Spiridon et al. [71] obtained PLA/lignin biocomposites by melt blending, and a
study of the impact of their physicochemical parameters showed that adding different
concentrations of lignin increased the Young’s modulus and tensile strength of the ma-
terial. PLA/lignin biocomposites showed excellent mechanical resistance, remained sta-
ble during a 30-day degradation process, and maintained their dimensional stability in
fluid environments. In addition, lignin did not cause cytotoxicity, demonstrating that
PLA/lignin biocomposites have good biocompatibility. Tanase-Opedal et al. [72] studied
the 3D printing of PLA/lignin biocomposites. Because of the antioxidant activity of lignin,
PLA/lignin biocomposites showed incredibly high antioxidant activity, good extrudability,
and excellent flowability, making them a promising renewable substitute for traditional 3D
printing materials.

3.1.3. Silk Fiber

Silk fiber is a natural animal protein fiber with a higher crystallinity, toughness, and
tensile strength than plant fibers [73]. In addition to having good mechanical properties
and biocompatibility, silk fiber is also easier to process. However, its softness may limit
its applications in fields that require high hardness and rigidity. Therefore, it is necessary
to optimize the properties of silk fiber for specific applications, including by mixing it
with other materials such as PLA to produce tough and rigid materials [74] with improved
mechanical properties. Silk/PLA composites may also show greater biocompatibility,
making them suitable for various sports medicine and bioengineering applications.

Zhao et al. [75] prepared silk/PLA biocomposites by melt blending and found that
adding silk fiber improved the dimensional stability. The presence of silk fiber also en-
hanced the enzymatic degradation of the PLA matrix, thereby controlling its susceptibility
to hydrolysis. Cheung et al. [76] studied the mechanical properties and thermal behavior
of silk/PLA biocomposites and found that their tensile performance was superior to that of
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pure PLA. Therefore, adding silk fiber improved the thermal and physical properties of the
composite, making it suitable for use in medical scaffolds.

3.2. PHA

As a new bio-based polymer material, PHA has diverse structures, various sources,
and biodegradability, biocompatibility, optical activity, piezoelectricity, and gas barrier
properties. They can be naturally biodegraded into CO2 and H2O and are nontoxic to the
soil and air [77,78]. Currently, over 150 different PHA monomers have been discovered
and produced by other bacteria and growth conditions of which PHB, PHBV, PHBHHx,
and P34HB are the four main types. The discovery of these different PHA monomers has
dramatically increased the development of PHA into commercial plastic products [79,80].

Zembouai et al. [81] studied PHBV/PLA blends with different mass ratios and found
that PHBV acted as a nucleating agent for PLA, thus improving the crystallization of PLA,
and the tensile strength and elongation at the break of PHBV/PLA blends were higher
than those of pure PHBV. ePHA is a PHA belonging to the polyhydroxy fatty acid family
with the same chemical structure, biodegradability, and renewability. Takagi et al. [82]
prepared PLA/PHA blends with different compositions by mixing PLA with PHA and
functionalized ePHA containing 30% epoxy groups in the side chains. They found that
the Charpy impact strength of the PLA/PHA and PLA/ePHA blends increased with the
PHA or ePHA content and was higher than that of pure PLA. Functionalizing ePHA with
epoxy side groups enhanced the compatibility of the mix, thereby increasing the tensile
strength and Charpy impact strength of the PLA/ePHA mixture. The blending of PHA
and PLA improved the properties of PHA and also guaranteed the degradability of the
composite material.

3.3. PBAT

PBAT is a biodegradable material produced on large scales and widely used in pack-
aging materials and biomedical fields. PBAT has good processability and can toughen and
modify other polyesters [83], but commercially available PBAT/PLA blends often exhibit
macroscale phase separation and show two glass transition temperatures (Tg), indicating
the poor compatibility of unmodified PBAT/PLA blends. In experimental studies, the
preparation of PBAT/PLA blends usually involves melt blending. At high temperatures
and sufficient time, ester exchange reactions occur between the two polyesters, thereby im-
proving their compatibility [84]. By increasing the PBAT content within a specific range, the
mechanical properties of PLA/PBAT composites, such as impact strength and elongation
at break, can be improved [85].

Arruda et al. [86] prepared PLA/PBAT blends using an epoxy-functionalized chain
extender and investigated the effect of 0.3% and 0.6% chain extenders on the mechanical
properties, thermal properties, and microstructure of PLA/PBAT blends with ratios of
40/60 and 60/40. In the blend containing 40% PLA and no chain extender, the microstruc-
ture was significantly affected by the chain extender. PLA exhibited a fibrous dispersed
phase, appearing elongated in the film stretching direction. In the mixture containing 60%
PLA and no chain extender, PBAT displayed a large, belt-like structure in the middle of
the film, with an overall skin-core design. The chain extender increased the crystalliza-
tion temperature of PLA in both blends with different ratios and reduced the crystallinity
of PBAT.

3.4. Methods for Manufacturing PLA-Based Composites
3.4.1. Microcellular Injection Molding

Microcellular injection molding was first proposed in the 1980s by Nam et al. [87]. The
formation of pores in microcellular foams proceeds via four main stages: construction of a
polymer/supercritical fluid homogeneous system, bubble nucleation, bubble expansion,
and cooling and solidification [88–91]. Microcellular foam injection molding can be used
to produce microcellular foam products with micropores, with millions of pores per unit
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volume. Compared with nonfoamed substrates, microcellular foam materials exhibit at
least a four-fold higher fracture toughness and impact resistance [92].

3.4.2. Extrusion Molding

Extrusion molding can be divided into continuous and intermittent types based on
the different pressures used during extrusion. Continuous extrusion applies pressure with
the rotation of a screw to uniformly plasticize the material inside the barrel. The material
undergoes mixing and heating through the action of the screw during the extrusion process,
resulting in good material uniformity [93]. Intermittent extrusion applies pressure to the
material through a plunger. While this provides a higher pressure than screw extruders,
its ability to generate significant shear action is limited, and its operation is discontinuous,
which limits its application range [94].

3.4.3. Compression Molding

Compression molding is a standard processing method for PLA. During compression
molding, PLA particles are placed in a heated mold, and pressure is applied to liquefy and
flow the material at high temperatures [95]. As the material cools, it resolidifies and shapes
the mold. The final product’s body, size, and performance can be controlled by adjusting
the temperature, pressure, and holding time. Compared with other molding methods,
compression molding has lower mold fabrication costs [96].

4. PLA Composites for Sports Applications

The global production capacity of all biodegradable plastics, including PLA, is ex-
pected to increase rapidly to approximately 1.33 million in 2024 [6], with primary ap-
plications in the automotive industry, electronic components, and sports equipment. In
the automotive industry, 3D printing has had a revolutionary impact by enabling the
rapid fabrication of lighter and more complex structures. For instance, in 2014, Local
Motors manufactured the first electric car using 3D printing. The automotive industry
utilizes 3D printing during the improvement stage to explore various alternative solutions
to promote ideal and efficient car design. 3D printing can also reduce material waste
and consumption [97]. Because of the ability of 3D printing to create highly integrated
three-dimensional multifunctional structures, many researchers have actively explored this
emerging technology to fabricate geometrically complex and biocompatible devices and
scaffolds. These include biosensors, electrically stimulated tissue-regenerating scaffolds
and microelectrodes [98,99]. New technologies for producing high-molecular-weight PLA
have expanded their applications in recent years. PLA is becoming a popular substitute for
petroleum-based synthetic polymers (PETs, polystyrene (PS), polyethylene (PE), etc.) in
various fields, particularly the sports industry [100,101], as shown in Figure 6.

4.1. Sportswear

PLA fiber is a biodegradable synthetic fiber that is refined and fermented from starch
sugar in corn, beets, or wheat. It is a new type of polyester fiber in the textile industry. PLA
fiber is 100% compostable and reduces the Earth’s carbon dioxide levels throughout its
entire life cycle. The cross-section of PLA fiber is generally circular with a smooth surface.
Its load–elongation curve is similar to that of wool, while its toughness is lower than that
of cotton. PLA fiber has good core absorbency and fast moisture management. Therefore,
by blending PLA fiber with cotton, the moisture transmission properties of cotton fabrics
can be improved. Guruprasad et al. [102] developed a sports textile by combining cotton
and PLA at a ratio of 65:35. Then, they tested the moisture management performance,
moisture vapor transmission rate, and thermal performance of the cotton/PLA blended
fabric. Experiments showed that the mixture of PLA fiber and cotton provided improved
moisture management performance. The liquid transfer rate of cotton/PLA blended fabric
was faster than that of 100% cotton fabric. The cotton/PLA composite fabric had a high
unidirectional transmission capacity, spreading speed, and bottom absorption rate, giving
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it a higher OMMC value and allowing it to transfer sweat to the other side faster. The
moisture vapor transmission rate of the cotton/PLA blended fabric was 14% higher than
that of the 100% cotton fabric, which helped liquid moisture diffuse quicker, making it an
ideal material for sportswear.
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4.2. Helmets

Raykar et al. [103] used PLA plastic to manufacture a bicycle helmet through a com-
bination of fused deposition modeling (FDM) and 3D printing. PLA plastic filaments
were used and melted and deposited using layer-by-layer heat extrusion onto the building
platform of the 3D model until the entire exterior of the helmet was covered in PLA plastic.
After cleaning and trimming, a PLA bicycle sports helmet was produced. Experiments
proved that the 3D printed PLA bicycle sports helmet had high safety, good breathability,
and lighter weight, thus balancing the safety and comfort of the athlete.

4.3. Protective Sports Gear

Traditional protective sports gear has a structure consisting of a hard outer shell made
of a thermoplastic material and an inner soft foam padding. Currently, there are new “soft
shell” technologies for sports protectors based on the use of soft polymer foams typically
made of polyurethane or polyacrylate with good cushioning properties. During the manu-
facturing process of sports protectors, soft polymer foams can be combined with PLA. Soft
polymer foams are used as the internal cushioning material. In contrast, PLA can be used
as the outer shell material to improve sports knee protectors’ lightweight, breathability, and
comfort properties, thus achieving better protection results. Yang et al. [104] used tensile
materials (PLA and thermoplastic polyurethane (TPU)). They tested them through 3D
printing prototyping and compared the results with calculated predictions to evaluate the
possibility of using tensile materials in sports protectors. The results showed that the tensile
material had a high fracture toughness, high shear modulus, superior specific strength,
compressive indentation resistance, strong energy dissipation, and a controllable strain
penetration rate, making it suitable for protective sports gear to reduce the risk of injuries.
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4.4. Surfboards

The source of power for a surfboard comes from the movement of waves, and the
significant impact force generated by an impact wave can often break a surfboard, mainly
when materials such as fiberglass are used in its production. In recent years, researchers
have turned their attention to biodegradable materials. Soltani et al. [105] used the finite
element method (FEM) and 3D printing to manufacture a surfboard with a uniform honey-
comb core structure based on a PLA composite material. They then conducted three-point
bending experiments and used accurate finite element tools to simulate surfboards with
different core structures. The PLA composite material surfboard passed the three-point
bending test, and the overall volume of the surfboard remained unchanged.

4.5. Sports Medicine Tools

Because of the biocompatibility and biodegradability of PLA when in contact with
mammalian bodies, it has been widely used in the biomedical and pharmaceutical fields [106]
to manufacture screws, pins, surgical sutures, stents, etc. [107,108]. The unique properties
of PLA make it suitable for reinforcing rotator cuff repairs and can help heal tendon
tissues in various body parts. PLA and its copolymers are often used in orthopedic
surgery to manufacture artificial bones and joints, providing a temporary structure for
tissue growth, which eventually decomposes. Koh et al. [109] used PLA-reinforced suture
anchors to suture and repair tendons separated from the bone. The tensile strength of PLA
is approximately 1200 N, and it can be manufactured to the required size. The experiment
showed that adding a PLA scaffold to the bone bridge increased the fixation strength by
1.3 times. The use of PLA scaffolds showed significant advantages when used to fix the
rotator cuff.

4.6. 3D Printed Sports Equipment

Compared with traditional printing materials, PLA produces almost no harmful gases
and has a lower shrinkage rate, making it ideal for 3D printing sports equipment. Protective
gear, such as mouthguards, helmets, and shin guards [110], can be 3D printed using PLA,
providing athletes with customizable, comfortable, and lightweight equipment. Because of
its biocompatibility, PLA is the preferred material for 3D printing protective gear, as it can
be safely used in contact sports without causing harm to athletes. In addition to protective
gear, PLA can be used to 3D print bicycle frames, kayak paddles, and skis [111]. PLA’s
mechanical properties and biodegradability make it an attractive alternative to durable
materials, such as plastics, metals, and other traditional materials for sports applications.

4.7. Limitations of PLA Composites in Sports Applications

Compared with traditional petroleum-based plastic sports equipment, the green dis-
posal of idle sports equipment meets the requirements of sustainable development. Sports
equipment made of PLA composites can be used safely and decomposes after being dis-
carded, which can prevent environmental pollution. In addition, PLA has a lower density,
allowing for the production of relatively lightweight sports equipment. Through 3D print-
ing, PLA enables personalized customization, offering more possibilities for the innovative
design of sports equipment. However, as a linear thermoplastic polyester, PLA’s strength
may not meet the requirements of certain sporting equipment in specific environments.
For example, because of PLA’s high brittleness and low elongation at break [25], sports
equipment made from PLA composite materials are more susceptible to rupturing during
contact sports. Additionally, prolonged exposure to sunlight can cause a decrease in the
molecular weight of PLA composite materials [112], potentially impacting the mechanical
performance of outdoor sports equipment.

5. Conclusions

PLA is a natural, renewable, and low-cost biodegradable material, but its inherently
poor toughness limits its broader applications. By adding reinforcement materials to de-
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velop PLA composites, it can adapt to the increasing performance requirements of various
fields. Compared with most inorganic and synthetic fibers, natural fibers have abundant
sources, low prices, complete degradability, low energy consumption, and environmental
friendliness. In the future, appropriate additives, modifications to polymerization con-
ditions, and reinforcement techniques will be employed to enhance the strength of PLA
and meet specific needs. At the same time, by developing low-cost reinforcement mate-
rials and optimizing formulations and processing methods, the manufacturing costs of
PLA composites can be reduced. Their performance can be improved to meet various
environmentally friendly applications, including sports equipment manufacturing. Cur-
rently, the application of PLA composites in the sports field is expanding. Compared with
petroleum-based materials, the mechanical properties of PLA composites still need to be
improved. However, as biodegradable alternatives to petroleum-based plastics, they still
have tremendous potential.
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112. Mosnáčková, K.; Danko, M.; Šišková, A.; Falco, L.M.; Janigová, I.; Chmela, Š.; Vanovčanová, Z.; Omaníková, L.; Chodák, L.;
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