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Abstract: This review delves into the investigation of the biological activity and structural diversity
of steroids and related isoprenoid lipids. The study encompasses various natural compounds, such
as steroids with aromatic ring(s), steroid phosphate esters derived from marine invertebrates, and
steroids incorporating halogen atoms (I, Br, or Cl). These compounds are either produced by fungi
or fungal endophytes or found in extracts of plants, algae, or marine invertebrates. To assess the
biological activity of these natural compounds, an extensive examination of referenced literature
sources was conducted. The evaluation encompassed in vivo and in vitro studies, as well as the
utilization of the QSAR method. Numerous compounds exhibited notable properties such as strong
anti-inflammatory, anti-neoplastic, anti-proliferative, anti-hypercholesterolemic, anti-Parkinsonian,
diuretic, anti-eczematic, anti-psoriatic, and various other activities. Throughout the review, 3D graphs
illustrating the activity of individual steroids are presented alongside images of selected terrestrial
or marine organisms. Additionally, the review provides explanations for specific types of biological
activity associated with these compounds. The data presented in this review hold scientific interest
for academic science as well as practical implications in the fields of pharmacology and practical
medicine. The analysis of the biological activity and structural diversity of steroids and related
isoprenoid lipids provides valuable insights that can contribute to advancements in both theoretical
understanding and applied research.

Keywords: steroids; triterpenoids; isoprenoid lipids; anti-neoplastic; anti-inflammatory; anti-fungal;
anti-bacterial; anti-viral; fungal endophytes; plants; marine invertebrates

1. Introduction

Natural steroids belong to the class of isoprenoid lipids [1,2]. These metabolites, which
can originate from animals, fungi, and plants, exhibit high biological activity and contain a
sterane skeleton composed of isoprenoid precursors [3–6]. Steroids are characterized by
the presence of a fused tetracyclic system, such as androstane (1A) and related structures,
estrane (1B), gonane (1C), cholestane (2), and protostane (3) (refer to Figure 1 for their struc-
tures) [7,8]. The androstane, cholestane, and/or protostane cores in steroids or triterpenoids
can be saturated or partially unsaturated and may incorporate alkyl, hydroxyl, carbonyl, or
carboxyl groups [7–9]. Isoprenoid lipids, on the other hand, are natural metabolites derived
from isoprene molecules and serve various physiological functions while exhibiting a wide
range of biological activities [1–6].
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Protostane-type triterpenoids, predominantly found in plants of the genus Alisma, 

exhibit diverse carbon skeletons and intriguing biological activities [10]. Furthermore, 

marine- and plant-derived steroids can incorporate various halogens, including chlorine, 

bromine, or iodine [11–14]. Notably, seaweeds possess significant nutritional value and 

have been integral to the diets of many cultures throughout history (depicted in Figure 2). 

Seaweed extracts are notably abundant in natural growth hormones, known as 

phytosterols, as well as essential nutrients and trace elements. Algal-derived sterols 

contribute substantially as the principal lipid component of plant cell membranes and 

display a broad spectrum of biological activities [15–20]. 

 

Figure 1. Androstane, cholestane, and protostane are steroid or triterpenoid core structures.

Protostane-type triterpenoids, predominantly found in plants of the genus Alisma, ex-
hibit diverse carbon skeletons and intriguing biological activities [10]. Furthermore, marine-
and plant-derived steroids can incorporate various halogens, including chlorine, bromine,
or iodine [11–14]. Notably, seaweeds possess significant nutritional value and have been
integral to the diets of many cultures throughout history (depicted in Figure 2). Seaweed
extracts are notably abundant in natural growth hormones, known as phytosterols, as well
as essential nutrients and trace elements. Algal-derived sterols contribute substantially as
the principal lipid component of plant cell membranes and display a broad spectrum of
biological activities [15–20].

This review provides an overview of the biological activities of steroids and isoprenoid
lipids derived from diverse natural sources. Given the extensive number of natural steroids
and isoprenoid lipids, we have focused on compounds with established biological activities
through experimental studies and computational analyses. This selection aims to cater to
pharmacologists, chemists, and researchers from various disciplines who utilize steroids
for medicinal purposes.
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Figure 2. The red and brown algae macrophytes are abundant sources of biologically active metabo-
lites, including steroids. Here, we highlight some representative examples: (a) Laurencia pacifica
(red alga, Rhodophyceae). This species is known for producing halogenated metabolites, such as
sesquiterpenes, diterpenes, triterpenes, and C15 acetogenins. (b) Laminaria digitata (brown alga,
Phaeophyceae). A commonly consumed brown algae, particularly in coastal regions, with kelp that
is rich in terpenoids, essential amino acids, polyunsaturated fatty acids, carbohydrates, vitamins,
and minerals such as iron and calcium. (c) Sargassum sp. (brown alga, Fucales). Various species
of the Sargassum genus are utilized for human nutrition and serve as a valuable source of steroids,
proteins, vitamins, carotenoids, and minerals, and Professor Dembitsky collected the biological
material in Southern California, summer 2018. (d) Ulva lactuca (sea lettuce, green alga, Ulvaceae).
Cultivated in China, Republic of Korea, and Japan, sea lettuce is consumed by manatees, sea slugs,
and shellfish. Extracts of this edible green algae contain bioactive components, including steroids and
triterpenoids. (e) Enteromorpha intestinalis (green bait, sea lettuce, green alga, Ulvaceae). This green
alga, commonly known as green bait or sea lettuce, produces a wide range of terpenoids, including
steroids. (f) Gracilaria pacifica (red spaghetti, red alga). Widely used in the cosmetic industry for
shampoos, creams, soaps, and sunscreens, this red alga contains terpenoids and carotenoids and
serves as a source of high-quality agar.
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2. Steroids Bearing Aromatic Ring(s)

Steroids bearing aromatic rings are a distinct subgroup within the larger family of
steroids, which are characterized by their fused ring structure [21–23]. The presence of one
or more aromatic rings in these steroids imparts unique chemical and biological proper-
ties, making them of particular interest in various fields of research, including medicinal
chemistry and drug discovery. Steroids bearing aromatic rings represent a fascinating
subgroup of steroids that possess distinct chemical and biological characteristics [22–24].
Their unique structural features and diverse pharmacological profiles make them promising
candidates for drug development and therapeutic applications. Continued research in this
field will expand our knowledge of their biological activities and unlock their potential in
various areas of medicine and biology. Natural steroids and triterpenoids that contain one
or more aromatic rings in their structure are referred to as aromatic steroids. They are a
diverse group of lipid molecules synthesized by bacteria, fungi, plants, invertebrates, and
animals [21–26]. These aromatic steroids have been identified in various sources, including
geological samples, marine sediments, and oil [27–31].

A comprehensive analysis of the literature reveals that the most prevalent subgroup
among natural lipids is mono-aromatic steroids and triterpenoids, with an aromatic ring in
either position A (approximately 200 metabolites) or position B (around 20 steroids) [32].
Additionally, a small number of di-aromatic steroids have been identified in living organ-
isms, geological samples, marine sediments, and oil, while only a few tri-aromatic steroid
hydrocarbons have been found in living organisms, marine sediments, and oil [28–30,33,34].

2.1. Steroids Bearing Aromatic Ring A in Plants

Steroids bearing an aromatic ring in position A (aromatic ring A) are commonly found
in plants, and this contributes to their diverse biological activities. These aromatic steroids
play important roles in plant growth, development, and defense mechanisms. Here, we
explore the occurrence and functions of steroids with aromatic ring A in plants.

Estrone (4, or estra-1,3,5(10)-triene-3-ol-17-one), estradiol (5), estriol (6), equilin (7),
hippulin (8), and their derivatives (9, 10, 11, and 12) represent the well-known examples of
mono-aromatic steroids (refer to Figure 3 for their structures). Table 1 provides an overview
of their biological activities. Estrone, a female sex hormone, was initially discovered in the
1920s by independent groups of scientists from the USA and Germany [35–39].

Female sex hormonal steroids, specifically estrogens (4–10), were initially discovered in
plants in 1926 by Dohrn and colleagues [40]. Subsequently, other researchers also identified
these compounds [41–43]. It is noteworthy that hormones such as 17β-estradiol, andros-
terone, testosterone, and progesterone were found in approximately 80% of the plant species
investigated [41]. Estrone (4) has been isolated from various plant sources, including the
seeds and pollen of Glossostemon bruguieri, Hyphaene thebaica, Malus pumila, Phoenix dactylifera,
Punica granatum, and Salix caprea. A sample plant (Glossostemon bruguieri) is depicted in
Figure 4. Additionally, 17β-estradiol (8) was found in the seeds of Phaseolus vulgaris, along
with estrone (4). The distribution of biological activity, exemplified by estrone, is shown in
Figure 5. Furthermore, estriol (6) has been identified in Glycyrrhiza glabra and Salix sp. [41–43].

Various plant species, including Brassica campestris, Ginkgo biloba, Lilium davidii, and
Zea mays, have been found to contain total estrogens (4–7) and 17β-estradiol (8) in their pollen
and style [44]. Additionally, testosterone has been detected in the pollen of Pinus bungeana,
Ginkgo biloba, and P. tabulaeformis [45]. Furthermore, holaromine (13), a steroidal alkaloid,
has been isolated from the ornamental shrub Holarrhena floribunda [46]. Figure 6 illustrates
a 3D graph showcasing the predicted and calculated activity of estrone (4) as an ovulation
inhibitor.
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Table 1. Biological activities of mono-aromatic steroids (4–27).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

4
Ovulation inhibitor (0.942)
Cardiovascular analeptic (0.924)
Apoptosis agonist (0.750)

Anti-hypercholesterolemic (0.871)
Lipid metabolism regulator (0.788)
Prostate disorders treatment (0.737)

5
Anti-hypercholesterolemic (0.894)
Ovulation inhibitor (0.889)
Anesthetic general (0.868)

Respiratory analeptic (0.851)
Acute neurologic disorders treatment (0.793)
Prostate disorders treatment (0.729)

6 Anesthetic general (0.845)
Ovulation inhibitor (0.832)

Acute neurologic disorders treatment (0.822)
Neuroprotector (0.815)

7
Anti-hypercholesterolemic (0.856)
Ovulation inhibitor (0.847)
Cardiovascular analeptic (0.842)

Lipid metabolism regulator (0.788)
Apoptosis agonist (0.750)
Prostate disorders treatment (0.725)

8 Anti-hypercholesterolemic (0.885)
Apoptosis agonist (0.801)

Hepatic disorders treatment (0.739)
Ovulation inhibitor (0.726)

9
Acute neurologic disorders treatment (0.871)
Respiratory analeptic (0.843)
Vasoprotector (0.811)

Neuroprotector (0.785)
Anesthetic general (0.753)
Ovulation inhibitor (0.740)

10 Cardiovascular analeptic (0.882)
Ovulation inhibitor (0.860)

Respiratory analeptic (0.846)
Acute neurologic disorders treatment (0.844)

11 Respiratory analeptic (0.879)
Ovulation inhibitor (0.765)

Neuroprotector (0.762)
Cardiovascular analeptic (0.692)

12 Acute neurologic disorders treatment (0.849)
Vasoprotector (0.795)

Anti-inflammatory (0.788)
Ovulation inhibitor (0.778)

13 Psychotropic (0.815)
Ovulation inhibitor (0.586)

Attention deficit/hyperactivity disorder
treatment (0.744)

14 Postmenopausal disorders treatment (0.945) Anti-inflammatory (0.669)

15
Lipid metabolism regulator (0.913)
Cytostatic (0.891)
Anti-neoplastic (0.876)

Hepatoprotectant (0.845)
Immunosuppressant (0.792)
Apoptosis agonist (0.784)

16 Chemopreventive (0.919)
Proliferative diseases treatment (0.914)

Anti-neoplastic (0.837)
Vasoprotector (0.824)

17 Apoptosis agonist (0.893)
Anti-neoplastic (0.827)

Anti-inflammatory (0.873)
Hypolipemic (0.854)

18 Apoptosis agonist (0.883)
Anti-neoplastic (0.826)

Hypolipemic (0.863)
Anti-inflammatory (0.855)

19 Anti-neoplastic (0.879)
Apoptosis agonist (0.775)

Immunosuppressant (0.744)
Anti-inflammatory (0.715)

20 Anti-neoplastic (0.782) Genital warts treatment (0.736)

21 Apoptosis agonist (0.896)
Anti-neoplastic (0.843)

Hypolipemic (0.850)
Anti-inflammatory (0.814)

22 Chemopreventive (0.887)
Anti-neoplastic (0.794)

Anti-inflammatory (0.819)
Proliferative diseases treatment (0.784)

23 Anti-neoplastic (0.909)
Apoptosis agonist (0.790)

Anti-inflammatory (0.822)
Immunosuppressant (0.727)

24 Anti-neoplastic (0.888)
Apoptosis agonist (0.847)

Anti-inflammatory (0.830)
Immunosuppressant (0.739)

25 Anti-neoplastic (0.802)
Apoptosis agonist (0.789)

Anti-inflammatory (0.786)
Prostate disorders treatment (0.685)

26 Acute neurologic disorders treatment (0.867)
Anti-neoplastic (0.812)

Diuretic (0.813)
Male reproductive dysfunction treatment (0.759)

27 Anti-hypercholesterolemic (0.959) Anti-neoplastic (0.832)

* Only activities with Pa > 0.7 are shown. The main biological activity has a value where Pa is more than 0.7.
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Figure 4. (a) Glossostemon bruguieri: G. bruguieri (also known as Moghat) is a shrub native to Iraq and
Iran. In the past, it was cultivated in Egypt for its edible roots. The dried and peeled roots have been
used in folk medicine to treat conditions such as gout and spasms and as a tonic and nourishment.
Additionally, powdered Moghat has been traditionally consumed as a tonic and lactagogic remedy
by women after childbirth. (b) Hyphaene thebaica: H. thebaica is a plant species commonly known as
doum palm. It is native to regions of Africa and the Middle East. The seeds and pollen of H. thebaica
are a source of estrone (4). (c) Malus pumila: M. pumila, commonly known as apple, is a fruit-bearing
tree cultivated worldwide. Estrone (4) has been isolated from the seeds and pollen of M. pumila.
(d) Punica granatum: P. granatum, or pomegranate, is a fruit-bearing shrub or small tree. It has been
associated with various health benefits and may help prevent or treat conditions such as high blood
pressure, high cholesterol, oxidative stress, hyperglycemia, and inflammatory activity. Estrone (4)
has been found in P. granatum. Note: all photos used in this figure are obtained from sites where
permission is granted for non-commercial use.

Deoxymiroestrol (14), a phytoestrogen, has been isolated from the Thai herb
Pueraria mirifica [47]. Withanolides (15, 19, and 20), which are steroids, have been found in
various parts of different plants [48]. Jaborosalactone-7 was extracted from Jaborosa leucotricha,
while jaborosalactone-45 was identified in Jaborosa laciniata [49]. In the extract of Fevillea
trilobata seeds, andirobicin B glucoside (16) was discovered [50]. Furthermore, 1-methyl-19-
nor-25-D-spirosta-1,3,5(10)-trien-11α-ol (17) and its acetate (18) were found in the rhizome of
Metanarthecium luteoviride [51]. The predicted biological activity for mono-aromatic steroids
isolated from plants is presented in Table 1. Additionally, Figure 7 illustrates a 3D graph
depicting the predicted and calculated anti-neoplastic activity of mono-aromatic ring A plant
steroids (16, 17, 21, 23, and 24).
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Figure 5. The percentage distribution of various biological activities associated with estrone (4), a
compound known for its diverse pharmacological properties. The activities and their corresponding
percentages are as follows: (1) ovulation inhibitor (18.8%); (2) cardiovascular analeptic (18.4%);
(3) anti-hypercholesterolemic (17.4%); (4) apoptosis agonist (15.7%); (5) lipid metabolism regulator
(15%); (6) prostate disorders treatment (14.7%). Estrone (4), which is a steroid bearing an aromatic
ring A, is present in the pollen and seeds of numerous plants and plays a role in the reproductive
development of these plants [35–43].
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Figure 6. A 3D graph that illustrates the predicted and calculated activity of estrone (4, or estra-
1,3,5(10)-triene-3-ol-17-one) as an ovulation inhibitor, with a confidence level exceeding 94%. This
steroid has been isolated from the seeds and pollen of various plants, including Glossostemon bruguieri,
Hyphaene thebaica, Malus pumila, Phoenix dactylifera, Punica granatum, and Salix caprea.

Luvigenin (21), a steroid, has been detected in the leaves of Metanarthecium luteoviride [52],
Yucca gloriosa [53], and Allium giganteum [54]. Additionally, a cancer-fighting steroid called
cayaponoside A4 (22) was isolated from the roots and bark of the Tayuya tree, which can be
found in the Amazon rainforest across Bolivia, Brazil, and Peru [55–57].

An unusual triterpene dimer, xuxuasin B (23), was isolated from the Brazilian medic-
inal plant Maytenus chuchuhuasca [58]. The leaf extracts and root of Maytenus ilicifolia
also demonstrated anti-cancer activity and contained a steroid called 6-oxotingenol (24)
[59–61]. In an interesting discovery, an aromatic triterpenoid (25) was found in the cones of
Taxodium balticum extract [62], and it has also been identified among terpenoids in Eocene
and Miocene conifer fossils [63]. Furthermore, the bark extract of Terminalia catappa con-
tained various compounds, including estrone (4), estriol (6), equilin (7), equilin sulfate (26),
and a steroid (27) [64].
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Steroids Bearing A, B, C, or D Aromatic Ring

Steroids can be categorized based on the presence of an aromatic ring in different
positions, such as A, B, C, or D rings [1,7–9]. The following are some examples of steroids
bearing aromatic rings in these positions. Aromatic A-ring steroids: estradiol: a natu-
ral estrogen hormone found in both males and females. Testosterone: the primary male
sex hormone responsible for male sexual development and function. Aromatic B-ring
steroids: progesterone: a female sex hormone involved in the menstrual cycle and preg-
nancy. Cortisol: a stress hormone involved in regulating metabolism and immune response.
Aromatic C-ring steroids: aldosterone: a hormone that regulates electrolyte balance and
blood pressure. Prednisone: a synthetic corticosteroid used as an anti-inflammatory and
immunosuppressant. Aromatic D-ring steroids: vitamin D: a group of fat-soluble vitamins
important for calcium and phosphate absorption. Calcitriol: the active form of vitamin D
involved in calcium regulation and bone health. These are just a few examples of steroids
with aromatic rings in different positions. Steroids play various roles in the body, including
regulating physiological processes, acting as hormones, and serving as building blocks for
other molecules [1–16].

The compound 3-Hydroxy-19-nor-1,3,5(10),22-cholatetraen-24-oic acid (25) is classi-
fied as a ring A aromatic bile acid and was discovered in an extract of the Australian
sponge Sollasella moretonensis [65]. It was also found earlier in human intestinal flora, likely
produced by bacteria [66]. Another steroid, a 4-hydroxy-6-oxopregnane-3-glycoside (29),
which possesses an aromatic ring A, was isolated from a Pohnpei sponge called Cribrochalina
olemda. Figure 8 depicts the 3D graph representing this compound [67]. Moreover, the ex-
tract of the marine sponge Topsentia sp. contains geodisterol-3-O-sulfite (30), which exhibits
anti-fungal activity against Candida albicans [68]. In addition to these, a compound named
24,26-cyclo-19-norcholesta-1,3,5(10),22-tetraen-3-ol (31) was discovered in the Hainan soft
coral Dendronephthya studeri [69]. Furthermore, an anti-tumor steroid thioester known as
parathiosteroid C (32) was identified in the 2-propanol extract of another soft coral species,
Paragorgia sp. [70].
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Figure 8. A 3D graph illustrating the predicted and calculated activity of the compound 4-hydroxy-6-
oxopregnane-3-glycoside (29) as a neuroprotector. The graph demonstrates the relationship between
the compound’s structure and its predicted neuroprotective activity with a confidence level exceeding
97%. This steroid, containing an aromatic ring A, was isolated from a Pohnpei sponge known as
Cribrochalina olemda. The graph provides insight into the relationship between the molecular structure
of the compound and its predicted efficacy as a neuroprotector. By analyzing the graph, one can
observe how variations in the structural features of the compound may impact its potential neuropro-
tective effects. The high confidence level of over 97% suggests a strong reliability in the predicted
activity of this steroid as a neuroprotector. Understanding the neuroprotective activity of compounds
is crucial for the development of potential treatments or interventions for neurodegenerative disor-
ders, brain injuries, and other conditions that affect the health and function of the nervous system.
Neuroprotector activity refers to the ability of a compound to protect and preserve the health and
function of neurons in the brain and nervous system.

Mono-aromatic B-ring steroids are a rare group of steroids that can be synthesized
by various types of fungi or fungal endophytes. They have also been found in marine
sediments and oil deposits. One example is the 19-norergostane skeleton with an aromatic B-
ring, known as phycomysterols A (33) and C (34), which are found in the filamentous fungus
Phycomyces blakesleeanus. Phycomysterol A has shown anti-HIV activity, as demonstrated
by activity analysis. Figure 9 illustrates the 3D graph representing phycomysterol A [71].
The lipid extract of the pathogenic fungus Fusarium roseum, also known as Gibberella zeae,
contained (22E,24R)-1(10→6)-abeoergosta-5,7,9,22-tetraen-3α-ol (35) [72].
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Figure 9. A 3D graph that illustrates the predicted and calculated anti-hypercholesterolemic activity
of mono-aromatic ring A plant steroids (33, 34, 35, and 37) with a confidence level exceeding 91%.
Anti-hypercholesterolemic activity refers to the ability of a compound to help reduce high cholesterol
levels in the body. The graph showcases the relationship between the chemical structures of these
mono-aromatic ring A plant steroids and their predicted efficacy in combating hypercholesterolemia.
By analyzing the graph, it is possible to observe the correlation between the structural features of
these compounds and their potential anti-hypercholesterolemic effects. The confidence level of over
91% indicates a high degree of reliability in the predicted activity of these steroids.

Asperfloketal B (36), featuring a trioxahexaheterocyclic ring system, was isolated from
the sponge-associated fungus Aspergillus flocculosus 16D-1 [73]. Furthermore, an aromatic
B-ring compound called topsentisterol E1 (37) was detected in the bioactive fraction of a
marine sponge, Topsentia sp. (a sample of the sponge is shown in Figure 10) [74]. Another
interesting aromatic B-ring steroid called phomarol (38) was produced by a cultured fungus,
Phoma sp., derived from the giant jellyfish Nemopilema nomurai [75]. Additionally, an anti-
bacterial lanostanoid, 19-nor-lanosta-5(10),6,8,24-tetraene-1α,3β,12β,22S-tetraol (39), was
produced by an endophytic fungus called Diaporthe sp. LG23, which inhabits the leaves of
the Chinese medicinal plant Mahonia fortunei [76].

Mono-aromatic C- and D-ring steroids form a rare group of compounds that have been
discovered in various sources such as vegetable oils, marine sediments, and petroleum. In
the Alberta oil sands, the C20 C-ring mono-aromatic hydroxy steroid acids (40 and 41) were
found, and it was observed that these compounds can also be synthesized by soil fungi [77].
Steroidal hydrocarbons (42 and 46) have been detected in sediments and petroleum sam-
ples [78]. An unprecedented sesterterpenoid called phorone A (43), featuring an aromatic D
ring, was identified in extracts of the Korean sea sponge Phorbas sp. [79]. Furthermore, the
anti-cancer compound nakiterpiosinone (44), which is a C-nor-D homosteroid, was isolated
from the sponge Terpios hoshinota [80]. Additionally, an intriguing compound called akaol A
(45), classified as a sesquiterpene quinol, was associated with marine sponges of the genus
Aka. The structure of akaol A is depicted in Figure 11 [81].

The extract of Salpichroa origanifolia plants, harvested in the provinces of Buenos Aires
and Cordoba in Argentina, was found to contain two minor steroids with an aromatic E ring
(47 and 48) [82]. From the marine sponge Haliclona sp., two compounds were identified:
terpene-ketide haliclotriol A (49) and halicloic acid B (50) [83,84]. Steroidal hydrocarbons
(51 and 52) were isolated from marine sediments and petroleum sources [85–87]. Table 2
displays the predicted biological activity for mono-aromatic steroids isolated from various
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sources, including plants, fungi, invertebrates, marine sediments, and oils. This table
provides insights into the potential biological effects and activities associated with these
mono-aromatic steroids.
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Figure 10. Steroid (35) was found in the mycelium of pathogenic fungus Fusarium roseum (a); steroid
(37) was isolated from a marine sponge Topsentia sp. (b); steroid (38) is a metabolite from the giant
jellyfish Nemopilema nomurai (c); and steroid (39) is produced by an endophytic fungus, Diaporthe sp.,
which inhabits leaves of the Chinese medicinal plant Mahonia fortunei (d).

Table 2. Biological activities of mono-aromatic steroids (28–52).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

28 Anti-hypercholesterolemic (0.961)
Proliferative diseases treatment (0.711)

Anti-neoplastic (0.840)
Apoptosis agonist (0.787)

29
Neuroprotector (0.979)
Respiratory analeptic (0.970)
Anti-neoplastic (0.888)

Anti-hypercholesterolemic (0.953)
Anti-infective (0.933)
Anti-protozoal (Leishmania) (0.922)

30 Anti-hypercholesterolemic (0.860)
Anti-inflammatory (0.754)

Anti-neoplastic (0.805)
Chemopreventive (0.721)

31 Anti-hypercholesterolemic (0.907)
Anti-inflammatory (0.765)

Anti-neoplastic (0.836)
Apoptosis agonist (0.788)

32 Anti-hypercholesterolemic (0.764) Anti-inflammatory (0.695)

33 Anti-hypercholesterolemic (0.929) Respiratory analeptic (0.885)

34 Anti-hypercholesterolemic (0.935) Apoptosis agonist (0.850)
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Table 2. Cont.

35 Anti-hypercholesterolemic (0.950)
Anti-Parkinsonian, rigidity relieving (0.875)

Apoptosis agonist (0.898)
Anti-neoplastic (0.880)

36 Anti-hypercholesterolemic (0.806) Anti-neoplastic (0.729)

37 Anti-hypercholesterolemic (0.914)
Hypolipemic (0.858)

Apoptosis agonist (0.894)
Anti-neoplastic (0.879)

38 Anti-neoplastic (0.922) Immunosuppressant (0.774)

39 Anti-neoplastic (0.899)
Apoptosis agonist (0.896) Anti-inflammatory (0.795)

40 Neuroprotector (0.829) Anti-allergic (0.731)

41 Anti-convulsant (0.877)

42 Apoptosis agonist (0.828)
Anti-neoplastic (0.798) Anti-inflammatory (0.813)

43 Anti-neoplastic (0.782) Anti-bacterial (0.736)

44 Acute neurologic disorders treatment (0.867) Anti-neoplastic (0.797)

45 Anti-inflammatory (0.825) Apoptosis agonist (0.793)

46 Anti-neoplastic (0.884) Apoptosis agonist (0.848)

47 Anti-neoplastic (0.799) Apoptosis agonist (0.716)

48 Anti-neoplastic (0.858) Anti-hypercholesterolemic (0.839)

49 Anti-neoplastic (0.858) Cell adhesion molecule inhibitor (0.795)

50 Anti-neoplastic (0.841) Immunosuppressant (0.722)

51 Anti-neoplastic (0.844) Apoptosis agonist (0.792)

52 Apoptosis agonist (0.706) Acute neurologic disorders treatment (0.768)

* Only activities with Pa > 0.7 are shown.

2.2. Steroids Bearing Two or Three Aromatic Rings Derived from Natural Sources

Steroids bearing two or three aromatic rings derived from natural sources can be found
in various organisms and have diverse biological activities. These are just a few examples
of steroids bearing two or three rings that are derived from natural sources. Steroids with
complex ring systems can be found in a wide range of organisms and play important roles
in biological processes [1,9,78].

Di- and tri-aromatic steroids (53–83, structures see in Figure 12) represent a small
group of natural lipids. These compounds have been isolated and identified in various
sources such as marine sediments, oils, and sedimentary rocks [78,85,88]. It is worth noting
that di-aromatic steroids, which contain a naphthalene ring, are primarily synthesized by
fungi or fungal endophytes [89]. These unique steroids with di-aromatic or tri-aromatic
structures contribute to the diversity of natural lipids and their distribution in different
environments. Their presence in marine sediments, oils, and sedimentary rocks suggests
their relevance in geological and ecological contexts.

In 1936, Canadian biochemist Desmond Beall isolated 6,8-Didehydroestrone (53) from
the urine of pregnant mares [90]. Additionally, another steroidal hormone called equilenin,
specifically estra-1,3,5(10),6,8-pentaen-3-ol-17-one, was also discovered in the urine of
pregnant mares in the same year. Subsequently, in 1938, equilenin sulfate (54) was isolated
from the urine of pregnant mares by Schachter and Marrian [91]. In 1939, it was further
synthesized by Bachmann et al. [92]. Moreover, derivatives of equilenin, including 17α-
Dihydroequilenin (55) and estra-1,3,5,7,9-pentaen-17-one (56), were found to be excreted in
the urine of horses [93]. These compounds contribute to the understanding of hormonal
compositions and metabolic pathways in horses.
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Figure 12. Di- and tri-aromatic steroids and terpenoids derived from fungi, invertebrates, sediments,
and petroleum.

The distribution and biological activity of mono-, di-, and tri-aromatic steroids in
nature are well-documented. These aromatic steroids are produced by various sources,
including microorganisms, fungi, marine invertebrates, plants, animals, marine sediments,
and karst deposits. These compounds have demonstrated significant biological activities,
including anti-tumor, anti-inflammatory, and neuroprotective effects. The reliability of
these activities ranges from 78% to 92%, indicating a high level of confidence in their
observed effects. The wide occurrence of aromatic steroids across different natural sources
highlights their importance and potential therapeutic applications. Further research and
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exploration of these compounds could lead to the discovery of novel drugs and therapeutic
interventions.

Rare naphthalene-containing steroids (56–59) have been discovered in the bark of
the Terminalia catappa tree. It is believed that these naphthalene steroids are synthesized
by fungal endophytes that are associated with these plants [89]. Extensive studies of
these plants have revealed a wide variety of fungal endophytes present, including species
such as Cercospora spp., Cercospora olivascens, Colletotrichum gloeosporioides, Diaporthe sp.,
Fusarium sp., Lasiodiplodia theobromae, Pestalotiopsis spp., Penicillium sp., Penicillium cher-
mesinum, Xylaria sp., Phoma microchlamidospora, and Phomopsis sp. [94,95]. In addition, a
rare di-aromatic steroid (60) that contains an unusual naphthyl A/B ring system, resem-
bling equilenin, was isolated from a Hawaiian sponge belonging to the genus Strongy-
lophora [96]. Furthermore, a di-aromatic steroid known as (17β,20R,22E,24R)-19-norergosta-
1,3,5,7,9,14,22-heptaene (62) is produced by the ascomycete fungus Daldinia concentrica [97].
These compounds contribute to the diversity of rare di-aromatic steroids and highlight
their presence in unique natural sources.

A diverse range of naphthalene steroid hydrocarbons (63–68) have been discovered
in various natural sources, including marine sediments, fossil plants and algae, ancient
fossils, and petroleum [78,98–101]. These compounds contribute to the wide array of
naphthalene-based steroids found in different geological and biological contexts. In con-
trast, tri-aromatic steroids, or phenanthrene-containing steroids (69–73) are relatively rare in
nature and are found in only a limited number of specimens. One intriguing example is the
phenanthrene-containing steroid called cinanthrenol A, which was identified in the marine
sponge Cinachyrella sp. (a sample of the sponge is depicted in Figure 13). Cinanthrenol A
has demonstrated cytotoxic activity against P-388 and HeLa cells and has also shown in-
hibitory effects on estrogen receptors [102]. These unique phenanthrene-containing steroids
exemplify the fascinating diversity of naturally occurring compounds and their potential
for various biological activities. Further exploration of these compounds could lead to the
discovery of novel therapeutic agents or insights into biological processes.
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Figure 13. Di-aromatic steroid (60) was found in the marine sponge Strongylophora sp. (a); another
di-aromatic steroid (62) was produced by the ascomycete Daldinia concentrica (b); and tri-aromatic steroids
or phenanthrene-containing steroids (69–73) were found in the marine sponge Cinachyrella sp. (c).
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Acute neurological disorders refer to a group of sudden-onset conditions that affect the
nervous system, including the brain, spinal cord, and peripheral nerves. These disorders
can arise due to various factors such as infections, trauma, vascular events, metabolic
imbalances, autoimmune reactions, or toxic exposures. They are characterized by rapid
onset and can lead to severe neurological symptoms and impairments. Figure 14, a 3D
graph, illustrates the predicted and calculated activity of an aromatic steroid (81) as a
potential treatment for acute neurological disorders. The graph demonstrates the rela-
tionship between the activity of the compound and its efficacy in treating these disorders.
The predicted and calculated activity values, shown on the axes of the graph, represent
the potency or effectiveness of the compound in addressing the neurological symptoms
associated with acute disorders. The graph also mentions a confidence level of over 92%.
This indicates a high degree of certainty in the accuracy of the predicted and calculated
activity values. Such confidence levels are typically derived from statistical analysis or
predictive modeling techniques used in drug discovery and development. It is important to
note that without additional context or information about the specific compound (aromatic
steroid 81), its mechanism of action, and the specific acute neurological disorders being
targeted, it is difficult to provide a detailed interpretation of the graph. Further research,
clinical trials, and scientific investigation would be necessary to validate the efficacy and
safety of the compound as a potential treatment for acute neurological disorders.
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Tri-aromatic and/or polyaromatic steroid hydrocarbons are a class of organic com-
pounds that contain three or more aromatic rings fused together with a steroid struc-
ture [1,9,78]. These compounds have been identified in various natural sources, including
lipid extracts of fossil plants and algae, marine sediments, and petroleum. The presence
of tri-aromatic and polyaromatic steroid hydrocarbons in these sources suggests that they
have a natural origin and may be formed through the diagenesis and maturation processes
of organic matter over time. These compounds often exhibit complex and diverse chemical
structures due to the multiple aromatic rings and steroid backbone. The identification and
characterization of these compounds have been facilitated by analytical techniques such as
gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR)
spectroscopy. Their presence in various geological and biological samples suggests that
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they may have ecological, physiological, or pharmacological relevance. Investigating their
biological activities and potential applications can contribute to our understanding of their
functions in nature and may uncover new possibilities for their utilization in various fields.

Tri-aromatic and/or polyaromatic steroid hydrocarbons (70–83) have been detected in
lipid extracts obtained from various sources such as fossil plants, algae, marine sediments,
and petroleum [78,85,98,99,103,104]. Among these compounds, an oleanane-related triter-
penoid (80) with a unique C-2 oxygenated functionality has been identified as the most
abundant triterpenoid in a 4900-year-old oak wood sample that was buried in freshwater
sediment [105,106]. In addition, other triterpenoids containing phenanthrene structures
(79, 81, and 82) have been found, along with stigmast-4-ene, stigmast-5-ene, stigmas-
tanol, stigmastanol-3-one, 24-ethylcholesta-4,6,22-triene, and β-sitosterol, in fossil cones of
Taxodium balticum. Stigmastanol-3-one has also been identified in T. dubium [107]. Table 3
presents the reported biological activities of mono-aromatic steroids that have been isolated
from various sources including fungi, invertebrates, marine sediments, and petroleum.
This table provides information on the observed biological effects or properties exhibited
by these compounds. However, the specific details of the biological activities mentioned in
Table 3 are not provided in the given text.

Table 3. Biological activities of aromatic steroids (53–83).

No. Dominated Biological Activities (Pa) * Additional Predicted Activities (Pa) *

53 Ovulation inhibitor (0.866) Anti-neoplastic (0.824)

54 Acute neurologic disorders treatment (0.925)
Anti-neoplastic (0.790)

Diuretic (0.824)
Male reproductive dysfunction treatment (0.791)

55 Acute neurologic disorders treatment (0.826)
Anti-neoplastic (0.818)

Respiratory analeptic (0.811)
Neuroprotector (0.807)

56 Ovulation inhibitor (0.846); male
reproductive dysfunction treatment (0.815) Anti-neoplastic (0.821)

57 Neuroprotector (0.837)
Anti-neoplastic (0.833) Acute neurologic disorders treatment (0.828)

58 Ovulation inhibitor (0.843)
Lipid metabolism regulator (0.723)

Anti-neoplastic (0.839)
Neuroprotector (0.829)

59 Acute neurologic disorders treatment (0.932)
Anti-neoplastic (0.810)

Laxative (0.833)
Diuretic (0.751)

60 Apoptosis agonist (0.924)
Anti-neoplastic (0.868)

Antioxidant (0.776)
Neuroprotector (0.728)

61 Anti-osteoporotic (0.837) Anti-neoplastic (0.735)

62 Anti-hypercholesterolemic (0.860) Respiratory analeptic (0.847)

63 Anti-osteoporotic (0.776) Anti-neoplastic (0.732)

64 Apoptosis agonist (0.758)
Anti-neoplastic (0.733) Anti-inflammatory (0.744)

65 Apoptosis agonist (0.758)
Anti-neoplastic (0.733) Anti-inflammatory (0.744)

66 Anti-inflammatory (0.807) Apoptosis agonist (0.746); anti-neoplastic (0.726)

67 Anti-infertility, female (0.796) Anti-inflammatory (0.794)

68 Anti-neoplastic (0.697) Ovulation inhibitor (0.683)

69 Prostate disorders treatment (0.699) Anti-inflammatory (0.661)
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Table 3. Cont.

70 Anti-neoplastic (0.825)
Alzheimer’s disease treatment (0.824)

Neurodegenerative diseases treatment (0.809)
Psychotropic (0.700)

71 Anti-eczematic (0.767) Anti-dyskinetic (0.670)

72 Anti-eczematic (0.695) Autoimmune disorders treatment (0.652)

73 Anti-eczematic (0.767) Anti-dyskinetic (0.670)

74 Anti-eczematic (0.782)
Anti-psoriatic (0.619) Anti-neurotic (0.709)

75 Neuroprotector (0.685) Acute neurologic disorders treatment (0.647)
76 Hypolipemic (0.724) Anti-convulsant (0.649)

77 Anti-eczematic (0.885)
Anti-psoriatic (0.757) Anti-inflammatory (0.735)

78 Anti-eczematic (0.709)
Anti-psoriatic (0.632) Anti-convulsant (0.661)

79 Anti-eczematic (0.691)
Anti-psoriatic (0.622)

Psychotropic (0.611)
Anti-convulsant (0.570)

80 Apoptosis agonist (0.758)
Anti-neoplastic (0.733) Anti-inflammatory (0.744)

81 Acute neurologic disorders treatment (0.778) Neuroprotector (0.733)

82 Anti-inflammatory (0.650) Menopausal disorders treatment (0.628)

83 Anti-inflammatory (0.782) Anti-eczematic (0.771)

* Only activities with Pa > 0.7 are shown.

Further research is needed to fully understand the roles and significance of tri-aromatic
and polyaromatic steroid hydrocarbons in natural systems. Their presence in various geo-
logical and biological samples suggests that they may have ecological, physiological, or
pharmacological relevance. Investigating their biological activities and potential applica-
tions can contribute to our understanding of their functions in nature and may uncover
new possibilities for their utilization in various fields.

3. Steroids Bearing Phosphate Esters

Phosphorus, with an atomic number of 15, is a prevalent chemical element found
in both the earth’s crust and seawater [108–110]. Its discovery dates back approximately
350 years [111]. Due to its high reactivity, phosphorus is typically found in nature in the
form of phosphates, which are salts of phosphoric acid [112]. Apatite, a mineral compound,
is considered one of the most significant sources of phosphorus [113,114].

Steroids bearing phosphate esters are a class of organic compounds that combine the
structure of steroids with phosphate groups attached to specific positions. These phosphate
esters can be covalently linked to the steroid molecule, typically through ester bonds. The
addition of phosphate esters to steroids introduces new chemical properties and functional
groups, which can have significant effects on the compound’s biological activity and
physiological functions. Phosphate esters play important roles in cellular signaling, energy
metabolism, and various biochemical processes. Phosphate esters in steroids can also
serve as important intermediates in metabolic pathways. For instance, in the biosynthesis
of steroid hormones, phosphate esters are involved in the conversion of cholesterol to
various hormone precursors, such as pregnenolone. Furthermore, some steroid-based
drugs utilize phosphate esters to enhance their pharmacological properties. By introducing
phosphate groups, these compounds can exhibit improved solubility, bioavailability, and
targeted delivery to specific tissues or cells. Overall, steroids bearing phosphate esters are
biologically significant molecules that contribute to cellular processes, membrane structure,
and the modulation of hormonal activities. Understanding their synthesis, functions, and
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interactions is crucial in unraveling the complexities of biological systems and developing
therapeutic interventions [115–121].

Steroid Phosphate Esters in Marine Invertebrates

Steroid phosphates (84–87), as shown in Figure 15, were first discovered by Italian
scientists from the University of Federico II approximately three decades ago. Their
discovery came during the study of polar lipids extracted from the deep marine starfish
Tremaster novaecaledoniae [122]. The isolated glycosides obtained from this research were
named tremasterols A–C (84, activity is shown in Table 4), along with compounds 85 and
86. Figure 16 illustrates the distribution of biological activity, specifically for tremasterol
(84), represented as a percentage. This graph provides insights into the effectiveness or
impact of tremasterol in various biological contexts. The identification and characterization
of these steroid phosphates from the marine starfish T. novaecaledoniae represent significant
contributions to the field of natural product research. Further investigations are likely
needed to fully understand the biological activities and potential applications of these
compounds, including their mechanisms of action and potential therapeutic benefits.
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Table 4. Biological activities of steroid phosphate esters (84–98).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

84

Wound-healing agent (0.975)
Hepatoprotectant (0.961)
Analeptic (0.952)
Laxative (0.933)

Anti-hypercholesterolemic (0.926)
Anti-carcinogenic (0.912)
Hemostatic (0.853)
Anti-neoplastic (0.841)

85 Hepatoprotectant (0.874)
Analeptic (0.874)

Anti-carcinogenic (0.861)
Anti-neoplastic (0.848)

86
Wound-healing agent (0.947)
Analeptic (0.941)
Hepatoprotectant (0.932)

Anti-carcinogenic (0.915)
Anti-hypercholesterolemic (0.912)
Anti-neoplastic (0.843)

87
Anti-hypercholesterolemic (0.894)
Hepatoprotectant (0.853)
Wound-healing agent (0.844)

Anti-neoplastic (0.816)
Anti-inflammatory (0.782)
Cholesterol synthesis inhibitor (0.778)

88
Anti-hypercholesterolemic (0.894)
Hepatoprotectant (0.853)
Wound-healing agent (0.844)

Anti-neoplastic (0.816)
Anti-inflammatory (0.782)
Cholesterol synthesis inhibitor (0.778)

89 Anti-neoplastic (0.845)
Anti-fungal (0.814)

Anti-inflammatory (0.693)
Anti-bacterial (0.651)

90 Anti-fungal (0.837) Anti-neoplastic (0.824)

91 Anti-neoplastic (0.827) Anti-fungal (0.663)

92 Anti-neoplastic (0.852)
Anti-neoplastic (liver cancer) (0.790)

Anti-eczematic (0.730)
Anti-allergic (0.650)

93 Anti-neoplastic (0.852)
Anti-neoplastic (liver cancer) (0.790)

Anti-eczematic (0.730)
Anti-allergic (0.650)

94 Anti-neoplastic (0.827)
Anti-neoplastic (liver cancer) (0.607)

Anti-fungal (0.663)
Anti-bacterial (0.636)

95 Anti-neoplastic (0.841) Anti-fungal (0.799)

96 Anti-fungal (0.850)
Anti-bacterial (0.717)

Anti-neoplastic (0.832)
Anti-carcinogenic (0.707)

97 Anti-fungal (0.850)
Anti-bacterial (0.717)

Anti-neoplastic (0.832)
Anti-carcinogenic (0.707)

98 Anti-fungal (0.858)
Anti-bacterial (0.739)

Anti-neoplastic (0.842)
Anti-carcinogenic (0.733)

* Only activities with Pa > 0.7 are shown.

Phosphorylated sterol sulfates, known as haplosamates A (88) and B (90) and minor
secosteroid (89), were discovered in a marine sponge species called Cribrochalina sp. [123].
Haplosamate A is distinguished by its unique C28 sterol structure, featuring a sulfate
group at C-3 and a methyl phosphate at position 15. Haplosamate B, on the other hand,
contains two phosphate groups at positions 7 and 15 [123]. The 3D graph illustrating the
activity of haplosamate A (88) is depicted in Figure 17. Further semi-synthetic analogues,
including compounds 91–94, have also been isolated and studied. Desulfohaplosamate
(95), haplosamate A (88), and other steroid analogues (96–99) were evaluated for their
interaction with CB1 and CB2 cannabinoid receptors through binding tests [124]. It is worth
noting that both steroids containing a phosphate group, namely 88 and 90, were discovered
in the polar organic fraction of an Indonesian sponge species called Dasychalina sp. (shown
in Figure 18) [124]. The identification and evaluation of these phosphorylated sterol sulfates
and their analogues provide valuable insights into their potential biological activities and
interactions. Further research is necessary to fully understand their mechanisms of action,
therapeutic potential, and roles within marine ecosystems.



Molecules 2023, 28, 5549 22 of 53

Molecules 2023, 28, x FOR PEER REVIEW 20 of 53 
 

 

group at C-3 and a methyl phosphate at position 15. Haplosamate B, on the other hand, 

contains two phosphate groups at positions 7 and 15 [123]. The 3D graph illustrating the 

activity of haplosamate A (88) is depicted in Figure 17. Further semi-synthetic analogues, 

including compounds 91–94, have also been isolated and studied. Desulfohaplosamate 

(95), haplosamate A (88), and other steroid analogues (96–99) were evaluated for their 

interaction with CB1 and CB2 cannabinoid receptors through binding tests [124]. It is 

worth noting that both steroids containing a phosphate group, namely 88 and 90, were 

discovered in the polar organic fraction of an Indonesian sponge species called Dasychalina 

sp. (shown in Figure 18) [124]. The identification and evaluation of these phosphorylated 

sterol sulfates and their analogues provide valuable insights into their potential biological 

activities and interactions. Further research is necessary to fully understand their 

mechanisms of action, therapeutic potential, and roles within marine ecosystems. 

For comparing biological activity, several semi-synthetic steroids have been selected. 

These include prednisone phosphate (99), testosterone 17β-phosphate (100), cortisol 21-

phosphate (101), and cholesterol 3β-phosphate (102). Prednisone phosphate (99) has been 

shown to possess anti-inflammatory activity [125]. This property makes it useful in the 

treatment of various inflammatory conditions. Testosterone 17β-phosphate (100) is an 

androgen and belongs to the class of anabolic steroids. It is commonly used for 

intramuscular injections and is known for its anabolic effects on muscle growth. 

Additionally, it serves as a substrate for phosphatases in the phosphatase pool of the 

prostate [126]. Cortisol 21-phosphate (101) is a glucocorticoid that plays a crucial role in 

regulating various physiological processes. It is involved in the regulation of metabolism, 

immune responses, and stress responses. The phosphate group attached to cortisol 21 

enhances its solubility and may influence its activity. Cholesterol 3β-phosphate (102) is a 

modified form of cholesterol with a phosphate group attached to its 3β position. The 

addition of the phosphate group introduces new chemical properties to cholesterol, 

potentially influencing its functions and interactions within the body. These semi-

synthetic steroids have been selected for comparison with steroids isolated from marine 

invertebrates in order to gain insights into their biological activities and potential 

applications. Further research is necessary to fully understand the specific mechanisms of 

action and therapeutic implications of these compounds. 

 

Figure 16. Illustration of the percentage distribution of biological activities on the example of 

tremasterol A (84), which is derived from the marine starfish Tremaster novaecaledoniae, and this 

steroid has a wide range of pharmacological properties. Activities are indicated under the numbers: 
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Figure 16. Illustration of the percentage distribution of biological activities on the example of
tremasterol A (84), which is derived from the marine starfish Tremaster novaecaledoniae, and this
steroid has a wide range of pharmacological properties. Activities are indicated under the numbers:
1, wound-healing agent (13.3%); 2, hepatoprotectant (13.1%); 3, analeptic (12.9%); 4, laxative (12.7%);
5, anti-hypercholesterolemic (12.6%); 6, anti-carcinogenic (12.4%); 7, hemostatic (11.6%), and 8,
anti-neoplastic (11.4%).
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Figure 17. A 3D graph showing the predicted and calculated activity as wound-healing agents of
steroid phosphate esters (84, 86, 87, and 88) with over 89% confidence. Wound-healing agents are
substances or treatments that promote the healing of wounds. These agents can be in the form of
medications, dressings, or therapies that aid in the different stages of the wound-healing process.
The wound-healing process involves a series of complex biological events that aim to restore the
damaged tissue and close the wound. The stages of wound healing include hemostasis (stopping
bleeding), inflammation, proliferation, and remodeling.
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Figure 18. Steroid phosphate esters (84–87) were isolated from the deep marine starfish Tremaster
novaecaledoniae (a); steroids (88), (89), and (90) are found in a marine sponge Cribrochalina sp. (b); and
steroids (88 and 90) were also found in the Indonesian sponge Dasychalina sp. (c).

For comparing biological activity, several semi-synthetic steroids have been selected.
These include prednisone phosphate (99), testosterone 17β-phosphate (100), cortisol
21-phosphate (101), and cholesterol 3β-phosphate (102). Prednisone phosphate (99) has
been shown to possess anti-inflammatory activity [125]. This property makes it useful in
the treatment of various inflammatory conditions. Testosterone 17β-phosphate (100) is an
androgen and belongs to the class of anabolic steroids. It is commonly used for intramuscu-
lar injections and is known for its anabolic effects on muscle growth. Additionally, it serves
as a substrate for phosphatases in the phosphatase pool of the prostate [126]. Cortisol
21-phosphate (101) is a glucocorticoid that plays a crucial role in regulating various physio-
logical processes. It is involved in the regulation of metabolism, immune responses, and
stress responses. The phosphate group attached to cortisol 21 enhances its solubility and
may influence its activity. Cholesterol 3β-phosphate (102) is a modified form of cholesterol
with a phosphate group attached to its 3β position. The addition of the phosphate group
introduces new chemical properties to cholesterol, potentially influencing its functions
and interactions within the body. These semi-synthetic steroids have been selected for
comparison with steroids isolated from marine invertebrates in order to gain insights
into their biological activities and potential applications. Further research is necessary to
fully understand the specific mechanisms of action and therapeutic implications of these
compounds.

Cortisol 21-phosphate (101), as depicted in Figure 19, belongs to the glucocorticoid
class of hormones. It functions to increase blood sugar levels through gluconeogenesis
and promotes the metabolism of fats, proteins, and carbohydrates. Additionally, cortisol
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21-phosphate serves as a substrate for alkaline phosphatase and finds utility in enzyme
immunoassays for human chorionic gonadotropin, human growth hormone, α-fetoprotein,
and estradiol [127]. The activities and properties of cortisol 21-phosphate can be found in
Table 5, and its 3D graph is illustrated in Figure 20.
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Table 5. Biological activities of steroid phosphate esters (99–114).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

99 Anti-inflammatory (0.910)
Anesthetic general (0.908)

Respiratory analeptic (0.904)
Anti-osteoporotic (0.878)

100 Neuroprotector (0.987)
Anesthetic general (0.959)

Respiratory analeptic (0.944)
Anti-hypercholesterolemic (0.909)

101
Anesthetic general (0.991)
Neuroprotector (0.976)
Anti-inflammatory (0.906)

Respiratory analeptic (0.990)
Anti-hypercholesterolemic (0.894)

102
Respiratory analeptic (0.979)
Anesthetic general (0.973)
Neuroprotector (0.972)

Anti-hypercholesterolemic (0.971)
Wound-healing agent (0.913)
Anti-neoplastic (0.826)

103
Respiratory analeptic (0.995)
Anesthetic general (0.948)
Wound-healing agent (0.897)

Anti-hypercholesterolemic (0.945)
Neuroprotector (0.932)
Hemostatic (0.910)

104
Respiratory analeptic (0.995)
Anti-hypercholesterolemic (0.967)
Anesthetic general (0.954)

Hemostatic (0.928)
Wound-healing agent (0.921)
Neuroprotector (0.909)

105

Anti-hypercholesterolemic (0.996)
Cholesterol absorption inhibitor (0.976)
Cholesterol synthesis inhibitor (0.952)
Lipid metabolism regulator (0.952)

Acute neurologic disorders treatment (0.948)
Anti-hyperlipoproteinemic (0.920)
Hypolipemic (0.919)
Respiratory analeptic (0.908)

106
Anti-hypercholesterolemic (0.999)
Anti-hyperlipoproteinemic (0.986)
Hypolipemic (0.974)

Cholesterol absorption inhibitor (0.957)
Lipid metabolism regulator (0.954)
Cholesterol synthesis inhibitor (0.916)

107 Anti-neoplastic (0.822) Anti-inflammatory (0.645)

108 Neuroprotector (0.982)
Anesthetic general (0.931) Anti-hypercholesterolemic (0.909)

109 Anesthetic general (0.970)
Neuroprotector (0.965)

Respiratory analeptic (0.961)
Acute neurologic disorders treatment (0.916)

110 Anti-inflammatory (0.979)
Anti-allergic (0.959)

Anti-asthmatic (0.951)
Anti-arthritic (0.944)

111 Respiratory analeptic (0.929)
Anti-ischemic, cerebral (0.907)

Anesthetic general (0.897)
Anti-neoplastic (0.847)

112 Anti-ischemic, cerebral (0.979)
Respiratory analeptic (0.919)

Anti-osteoporotic (0.843)
Anesthetic general (0.830)

113 Respiratory analeptic (0.937)
Anti-ischemic, cerebral (0.922) Anesthetic general (0.897)

114 Anti-ischemic, cerebral (0.978)
Respiratory analeptic (0.911) Anti-osteoporotic (0.852)

* Only activities with Pa > 0.7 are shown.

Cholesterol 3β-phosphate (102) is known for its role in promoting the normalization of
blood pressure and its involvement in atherogenesis, the process of plaque formation in ar-
teries [128,129]. Two cholesterol-lowering agents, sodium ascorbyl campestanol phosphate
(103) and sodium ascorbyl sitostanol phosphate (104), have been derived from cholesterol
and extensively studied [130]. Furthermore, two semi-synthetic steroidal phosphate esters
(105 and 106, 3D graph is illustrated in Figure 21), are identified as inhibitors of choles-
terol biosynthesis. These compounds show potential for the treatment or prevention of
atherosclerosis, a major contributor to cardiovascular disease [131]. The investigation and
understanding of these steroidal phosphate compounds contribute to advancements in
the field of hormone research and lipid metabolism and the development of potential
therapeutic interventions for various conditions, including atherosclerosis and related
cardiovascular disorders.
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Compound (107) is a steroid phosphate ester that incorporates pivalic acid. This
compound, known as the anionic chemical delivery system (ACDS), was specifically
developed to facilitate the delivery of testosterone to the brain. By enhancing its lipophilicity,
systemically administered T-ACDS can passively traverse the blood–brain barrier. The
effectiveness of this tested drug has been demonstrated [132]. Estradiol phosphates (108 and
109) are esters of estrogen that are combined with phosphoric acid. These compounds serve
as prodrugs of estradiol within the human body. In medical practice, both drugs have
been utilized for the treatment of prostate cancer [133]. Betamethasone sodium phosphate
(110) has been synthesized and is employed in the treatment of various conditions such
as asthma, allergies, arthritis, Crohn’s disease, ulcerative colitis, and adrenal disease [134].
The development and utilization of these compounds highlight the ongoing advancements
in drug development and therapeutic approaches. However, it is crucial to consult with
healthcare professionals for proper guidance and administration of these medications,
considering individual patient factors and specific medical conditions.

Several steroid phosphate esters, namely compounds 111 to 114 (3D graph is shiwn in
Figure 22), have been identified in the eggs of the desert locust, Schistocera gregaria. It is
intriguing to note the presence of these steroids in deferred eggs, although their specific
origin remains unknown [135]. The detection of these compounds in locust eggs raises
interesting questions about their potential roles and functions in the reproductive processes
of the species. However, it is important to highlight that the biological activity of these
compounds obtained from locust eggs has not been investigated or characterized.

Understanding the presence and activities of steroid phosphate esters in locust eggs
may contribute to our knowledge of reproductive biology, insect development, and the
hormonal regulation of insect populations. Further research is warranted to explore the
biological properties and potential functions of these compounds in the context of locust
biology.
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Figure 20. A 3D graph presenting the predicted and calculated activity for neuroprotection of
steroid phosphate esters, specifically compounds 100, 101, 108, and 109. The graph demonstrates the
relationship between the activity of these compounds and their efficacy in promoting neuroprotection.
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The predicted and calculated activity values, shown on the axes of the graph, represent the potency
or effectiveness of the steroid phosphate esters in terms of their neuroprotective properties. With
a confidence level of over 96%, the graph indicates a high degree of certainty in the accuracy of
the predicted and calculated activity values. Neuroprotection is a critical aspect of research and
development in the field of neuroscience, aiming to identify compounds that can preserve and
protect neurons from damage or degeneration. The evaluation of steroid phosphate esters for
their neuroprotective activity provides valuable insights into their potential applications in treating
neurological disorders or promoting overall brain health. The concept of neuroprotection has
gained significant attention in the field of neuroscience and neurology, particularly in the context of
neurodegenerative diseases, stroke, traumatic brain injury, and other conditions that involve neuronal
damage. Ayurveda, a centuries-old Indian traditional medicine practice, incorporates the use of
herbal extracts and plant-based remedies to address a range of neuropsychiatric disorders [136–138].
This ancient healing system recognizes the potential of natural compounds derived from herbs
and plants in promoting neurological and mental well-being. In recent times, scientific research has
provided evidence supporting the neuroprotective properties of steroid phosphate esters derived from
invertebrates or their semi-synthetic analogues. These compounds have demonstrated significant
efficacy in safeguarding neurons and mitigating neurodegenerative processes. The exploration of
steroid phosphate esters derived from invertebrates, or their synthetic counterparts, as potential
neuroprotective agents is an exciting area of research. These compounds hold promise in the
development of novel therapeutic interventions for various neurological conditions and disorders.
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Figure 21. A 3D graph of the predicted and calculated anti-hypercholesterolemic activity of the steroid
phosphate esters 104, 105, 106. With a confidence level of over 96%, the graph reflects a high degree of
certainty in the accuracy of the predicted and calculated activity values. It is noteworthy that various
plants, such as Hemidesmus indicus, Pulicaria gnaphalodes, Pandanus tectorius fruits, Buchholzia coriacea,
and Swietenia mahagoni, have been recognized for their anti-hypercholesterolemic properties, as
demonstrated by their extracts [138–142]. Additionally, extracts from brown algae and the cyanobac-
terium Arthrospira platensis have also shown an anti-hypercholesterolemic effect. Interestingly, steroid
phosphate esters derived from invertebrates exhibit strong anti-hypercholesterolemic properties.
This highlights the potential of these compounds as promising candidates for the development of
therapeutic interventions aimed at managing high cholesterol levels.
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Figure 22. A 3D graph illustrating the predicted and calculated anti-ischemic activity of steroid
phosphate esters, specifically compounds 111, 112, 113, and 114. The graph depicts the relationship
between the activity of these compounds and their effectiveness in reducing myocardial oxygen
consumption during ischemic conditions. The predicted and calculated activity values, depicted on
the axes of the graph, represent the potency or efficacy of the steroid phosphate esters in terms of
their anti-ischemic properties. The confidence level of over 93% indicates a high degree of certainty in
the accuracy of the predicted and calculated activity values. Anti-ischemic activity refers to the ability
of a compound to mitigate the detrimental effects of reduced blood flow and inadequate oxygen
supply to the heart muscle. By reducing myocardial oxygen consumption, these steroid phosphate
esters hold promise in preventing or alleviating ischemic episodes and related cardiac complications.
It is important to note that further research, including experimental validation and clinical trials, is
necessary to fully understand the mechanisms of action and optimal applications of these steroid
phosphate esters as anti-ischemic agents. Their potential therapeutic implications in the context of
ischemic heart disease warrant exploration to develop effective treatments for this condition.

4. Steroids Bearing a Halogen Atom (Cl, Br, or I)

Natural halogenated steroids are a class of organic compounds that contain halogen
atoms (such as fluorine, chlorine, bromine, or iodine) attached to the steroid structure.
These compounds can be found in various natural sources, including marine organisms,
plants, and microorganisms [143–147].

Halogenated steroids often exhibit unique chemical and biological properties due to
the presence of halogen atoms. The incorporation of halogens into the steroid structure
can affect the compound’s stability, lipophilicity, and interactions with biological systems.
Marine organisms, particularly marine sponges, are known to produce a wide range
of halogenated steroids. These compounds are believed to play important roles in the
defense mechanisms of these organisms, protecting them against predators and pathogens.
Halogenated steroids from marine sources have been the subject of extensive research
due to their diverse biological activities and potential therapeutic applications. Some of
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these compounds have demonstrated anti-microbial, anti-viral, anti-inflammatory, and
anti-cancer properties [143–156].

4.1. Chlorinated Plant Steroids

Chlorinated plant steroids are a specific subset of plant steroids that contain chlorine
atoms attached to their chemical structure. These compounds are derived from plants and
exhibit unique properties and potential biological activities due to the presence of chlorine
atoms [143,146,148,157]. These chlorinated plant steroids can be found in various plant
species, particularly those that have adapted to environments with high chlorine levels,
such as salt marshes or coastal areas. These compounds are believed to play a role in the
plants’ adaptation to such environments, helping them cope with salinity stress or other
ecological factors.

Chlorinated plant steroids have also been investigated for their potential as bioac-
tive compounds with pharmacological applications. However, further research is needed
to fully understand their mechanisms of action, physiological functions, and potential
therapeutic uses. It is important to note that the presence and biological activities of chlori-
nated plant steroids can vary among different plant species. Studying these compounds
can provide valuable insights into plant adaptations to challenging environments and
may contribute to the discovery of novel bioactive compounds with pharmaceutical or
agricultural significance. Research on chlorinated plant steroids is still relatively limited
compared to other classes of plant steroids. However, some studies have identified and
characterized specific chlorinated plant steroids and explored their potential biological
activities [145–156].

The discovery of chlorine-containing steroids began with the isolation of jaborosalac-
tone C (115) and jaborosalactone E (116) from the leaves of the Jaborosa integrifolia plant,
which belongs to the Solanaceae family (a representative plant is shown in Figure 23) [158].
These compounds represent the first identified chlorine-containing steroids. In addition,
the Acnistus breviflorus plant has been found to produce steroids such as compound 116
and compound 117, which possess cytostatic activity. Similarly, cytotoxic withanolide (117,
structure seen in Figure 24) has been isolated from Withania frutescens, another plant from
the Solanaceae family [159].

Physalolactone C (118), displayed in a 3D graph in Figure 25, was identified in the
fruits of Physalis peruviana (Cape gooseberry) [160]. This compound is structurally similar
to the aforementioned steroids and exhibits cytotoxic properties. Additionally, from the
same plant, physalolactone (119) was obtained from the roots, and a minor steroid of the
leaves, 4-deoxyphysalolactone (120), was extracted [161].

Physaguline B (121, activity shown in Table 6) was discovered in Physalis angulata [162].
This compound represents a chlorinated sterol found in the plant, expanding our knowl-
edge of the chemical diversity within Physalis species. Withanolide D chlorohydrin (122),
presented in a 3D graph in Figure 26, was identified in Withania somnifera, commonly known
as Ashwagandha, while (119) and (123) were discovered in Acnistus breviflorus [163,164].
Further research on W. somnifera revealed the presence of withanolide C (123), (119),
and (124). These compounds were also found in Dunalia tubulosa, which belongs to the
Solanaceae family, closely related to the plants [165].

Jaborochlorodiol (125) and jaborochlorotriol (126), representing a new structural type
of chlorinated steroid, were identified in extracts from Jaborosa magellanica, a flowering plant
of the Solanaceae family found in Punta Arenas, Chile [166]. Furthermore, the aerial parts
of Tolpis proustii and T. lagopoda, native to La Gomera, Canary Islands, led to the isolation
of chlorinated sterols: 30-chloro-3β-acetoxy-22α-hydroxyl-20(21)-taraxastene (127) and its
acetylated analogue (128). In vitro antioxidant activities of the extracts were evaluated
using the DPPH and ABTS scavenging methods. The cytotoxicity of isolated compounds
demonstrated activity against the human myeloid leukemia K-562 and K-562/ADR cell
lines [167].
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Withanolide Z (129) was isolated from Withania somnifera as an inhibitor of topoiso-
merase I from the parasite Leishmania donovani, suggesting its potential in anti-parasitic
applications [168]. Cytotoxic phyperunolides C (130) were found in the leaves of Physalis
peruviana [169,170], highlighting their potential cytotoxic properties. Hsieh et al. [171]
isolated cytotoxic tubocapsenolide G (131) from Tubocapsicum anomalum.

Physagulin I (132, the 3D graph is shown in Figure 27), a 14β-hydroxywithanolide, has
been isolated from Physalis species and possesses an α-oxygenated functionality at position
15 [172]. Additionally, jaborosalactol 23 (133), another 14β-hydroxywithanolide, has been
identified in Jaborosa bergii, a flowering plant in the Solanaceae family [173]. Nicotra
et al. [174] reported the isomeric chlorohydrin, jaborosalactone 37 (134, structure seen in
Figure 28, and activity see in Table 7), from Jaborosa rotacea, and jaborosalactone T (135)
was isolated from Jaborosa sativa (synonym Trechonaetes sativa) collected in Argentina [175].
Anomanolide D (136), identified as the 16α-hydroxy substituent, was discovered in the
fruits of Tubocapsicum anomalum collected in Japan [176]. Additionally, tubonolide A (137,
the 3D graph is shown in Figure 29), a 16,17-dihydroxylated withajardin, was found in the
same plant [177].
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Figure 23. Various plant species wherein sterols containing a chlorine atom have been discovered.
Chlorinated steroids (115 and 116) were isolated from the leaves of the Jaborosa integrifolia (a); steroids
(116) and (117) were found in Acnistus breviflorus (b); withanolide Z (129) was isolated from Withania
somnifera (c); and steroid (140) was found in Tubocapsicum anomalum (d).
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Figure 25. A 3D graph displaying the predicted and calculated anti-diabetic activity of chlorinated
steroids, specifically compounds 118, 119, and 120. The graph provides insights into the relationship
between the activity of these compounds and their potential efficacy in managing diabetes. Anti-
diabetic activity refers to the ability of a compound to help manage or control diabetes, a metabolic
disorder characterized by high blood sugar levels. Compounds with anti-diabetic activity can exert
various effects on glucose metabolism, insulin sensitivity, and other related pathways. The predicted
and calculated activity values depicted on the graph represent the potency or effectiveness of the
chlorinated steroids in terms of their anti-diabetic properties. With a confidence level of over 94%,
the graph indicates a high degree of certainty in the accuracy of the predicted and calculated activity
values. The exploration of chlorinated steroids for their anti-diabetic activity is of great interest in
the field of diabetes research. Identifying compounds with potential anti-diabetic properties can
contribute to the development of new treatment approaches and therapies for individuals living
with diabetes. It is important to note that further research, including in vitro and in vivo studies, is
necessary to fully understand the mechanisms of action, optimal dosage, and potential applications
of these chlorinated steroids in managing diabetes. Additionally, clinical trials would be required
to assess their safety and efficacy in human subjects. The study of chlorinated steroids and their
anti-diabetic activity holds promise in advancing our understanding of natural compounds that may
help in the management of diabetes and related metabolic disorders.
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Figure 26. A 3D graph depicting the predicted and calculated activity of a specific chlorinated
steroid (122) as a potential treatment for neurodegenerative diseases, specifically Alzheimer’s and
Parkinson’s diseases. The graph provides insights into the relationship between the activity of the
compound and its potential efficacy in treating these conditions. Neurodegenerative diseases, such
as Alzheimer’s disease and Parkinson’s disease, are characterized by the progressive loss of structure
and function of neurons in the central nervous system. These diseases often lead to cognitive decline,
motor impairments, and various neurological symptoms. The predicted and calculated activity
values shown on the graph represent the potency or effectiveness of the chlorinated steroid in terms
of its activity against neurodegenerative diseases. With a confidence level of over 92%, the graph
indicates a high degree of certainty in the accuracy of the predicted and calculated activity values.
The exploration of chlorinated steroids for their potential therapeutic effects in neurodegenerative
diseases is an important area of research. These compounds may interact with various molecular
targets and pathways involved in the pathogenesis of these diseases, potentially slowing down or pre-
venting neuronal degeneration, reducing inflammation, or promoting neuroprotective mechanisms.
It is crucial to note that further research, including preclinical and clinical studies, is necessary to fully
understand the mechanisms of action, therapeutic potential, and safety profile of the specific chlori-
nated steroid (122) and other compounds in the treatment of neurodegenerative diseases. Developing
effective treatments for Alzheimer’s and Parkinson’s diseases remains a significant challenge, and
ongoing research is vital in advancing our understanding and finding novel therapeutic strategies.
The study of chlorinated steroids and their potential role in neurodegenerative diseases provides
hope for the development of new therapeutic interventions that can improve the quality of life for
individuals affected by these devastating conditions.
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Table 6. Biological activities of chlorinated plant steroids (115–133).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

115 Hepatic disorders treatment (0.940)
Anti-eczematic (0.924)

Macular degeneration treatment (0.921)
Cytostatic (0.904)

116 Hepatic disorders treatment (0.933)
Anti-eczematic (0.932)

Macular degeneration treatment (0.926)
Cytostatic (0.875)

117 Anti-eczematic (0.919)
Hepatic disorders treatment (0.908)

Cytostatic (0.921)
Macular degeneration treatment (0.912)

118 Anti-diabetic (0.938)
Myocardial infarction treatment (0.823)

Anti-eczematic (0.902)
Alzheimer’s disease treatment (0.664)

119 Anti-diabetic (0.981)
Lipoprotein disorders treatment (0.938)

Anti-eczematic (0.902)
Alzheimer’s disease treatment (0.666)

120 Anti-diabetic (0.980)
Lipoprotein disorders treatment (0.939)

Anti-eczematic (0.897)
Alzheimer’s disease treatment (0.696)

121 Apoptosis agonist (0.888)
Anti-neoplastic (0.860)

Anti-eczematic (0.910)
Cytostatic (0.643)

122 Neurodegenerative diseases treatment (0.913)
Alzheimer’s disease treatment (0.889)

Anti-eczematic (0.926)
Anti-Parkinsonian (0.856)

123 Lipoprotein disorders treatment (0.968)
Anti-diabetic (0.953)

Anti-eczematic (0.912)
Alzheimer’s disease treatment (0.670)

124 Anti-eczematic (0.930)
Myocardial infarction treatment (0.872)

Anti-neoplastic (0.866)
Cytostatic (0.819)

125 Anti-eczematic (0.823)
Allergic conjunctivitis treatment (0.629)

Anti-neoplastic (0.785)
Anti-inflammatory (0.731)

126 Myocardial infarction treatment (0.825)
Anti-neoplastic (0.707)

Anti-eczematic (0.815)
Allergic conjunctivitis treatment (0.618)

127
Anti-neoplastic (0.918)
Apoptosis agonist (0.793)
Anti-neoplastic (myeloid leukemia) (0.520)

Respiratory analeptic (0.757)
Anti-secretoric (0.755)
Lipid metabolism regulator (0.677)

128
Anti-neoplastic (0.892)
Apoptosis agonist (0.796)
Anti-metastatic (0.551)

Hepatoprotectant (0.739)
Hepatic disorders treatment (0.701)
Dermatologic (0.614)

129
Cytostatic (0.863)
Anti-neoplastic (0.826)
Apoptosis agonist (0.797)

Anti-eczematic (0.929)
Macular degeneration treatment (0.856)
Alzheimer’s disease treatment (0.729)

130
Lipoprotein disorders treatment (0.952)
Anti-diabetic (0.943)
Anti-asthmatic (0.593)

Anti-eczematic (0.904)
Anti-neoplastic (0.765)
Anti-leukemic (0.651)

131

Insulin promoter (0.986)
Myocardial infarction treatment (0.868)
Anti-neoplastic (0.833)
Apoptosis agonist (0.768)

Anti-eczematic (0.910)
Anti-fungal (0.670)
Anti-psoriatic (0.582)
Anti-bacterial (0.535)

132
Anti-eczematic (0.914)
Anti-fungal (0.795)
Anti-parasitic (0.756)

Anti-neoplastic (0.854)
Apoptosis agonist (0.786)
Cytostatic (0.722)

133 Anti-neoplastic (0.914)
Apoptosis agonist (0.823)

Anti-asthmatic (0.834)
Anti-allergic (0.828)

* Only activities with Pa > 0.7 are shown.
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Figure 27. A 3D graph illustrating the predicted and calculated anti-eczematic activity of chlorinated
steroids, specifically compounds 115, 116, 117, 124, and 132. The graph provides insights into
the relationship between the activity of these compounds and their potential efficacy in treating
eczema. Anti-eczematic activity refers to the ability of a compound to alleviate or manage symptoms
associated with eczema, a chronic inflammatory skin condition characterized by itching, redness, and
rash. Compounds with anti-eczematic activity can help reduce inflammation, relieve itching, and
promote skin healing. The predicted and calculated activity values depicted on the graph represent
the potency or effectiveness of the chlorinated steroids in terms of their anti-eczematic properties.
With a confidence level of over 91%, the graph indicates a high degree of certainty in the accuracy of
the predicted and calculated activity values. The exploration of chlorinated steroids for their anti-
eczematic activity holds promise in the field of dermatology and skin health. Identifying compounds
that can effectively reduce inflammation, alleviate itching, and promote skin repair can significantly
improve the management of eczema. It is important to note that further research, including in vitro
and clinical studies, is necessary to fully understand the mechanisms of action, optimal dosage, and
potential applications of these chlorinated steroids in treating eczema. Additionally, comprehensive
safety evaluations would be required to assess their suitability for use in human subjects.



Molecules 2023, 28, 5549 36 of 53Molecules 2023, 28, x FOR PEER REVIEW 37 of 53 
 

 

 
Figure 28. Chlorinated highly oxygenated steroids derived from plants. 

Table 7. Biological activities of chlorinated plant steroids (134–153). 

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) * 

134 
Apoptosis agonist (0.806)  

Anti-neoplastic (0.803)  

Genital warts treatment (0.724)  

Anti-eczematic (0.718)  

135 
Insulin promoter (0.981)  

Myocardial infarction treatment (0.819)  

Anti-neoplastic (0.797)  

Apoptosis agonist (0.695)  

136 Insulin promoter (0.986)  Anti-neoplastic (0.866)  

Figure 28. Chlorinated highly oxygenated steroids derived from plants.



Molecules 2023, 28, 5549 37 of 53

Table 7. Biological activities of chlorinated plant steroids (134–153).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

134 Apoptosis agonist (0.806)
Anti-neoplastic (0.803)

Genital warts treatment (0.724)
Anti-eczematic (0.718)

135 Insulin promoter (0.981)
Myocardial infarction treatment (0.819)

Anti-neoplastic (0.797)
Apoptosis agonist (0.695)

136 Insulin promoter (0.986)
Myocardial infarction treatment (0.899)

Anti-neoplastic (0.866)
Apoptosis agonist (0.772)

137 Insulin promoter (0.986)
Myocardial infarction treatment (0.899)

Anti-neoplastic (0.839)
Apoptosis agonist (0.696)

138 Anti-neoplastic (0.875)
Apoptosis agonist (0.795)

Anti-asthmatic (0.816)
Anti-allergic (0.533)

139 Anti-neoplastic (0.885)
Apoptosis agonist (0.824)

Anti-psoriatic (0.595)
Anti-allergic (0.539)

140 Anti-neoplastic (0.806)
Apoptosis agonist (0.634)

Myocardial infarction treatment (0.781)
Hypolipemic (0.599)

141 Hepatic disorders treatment (0.934)
Immunosuppressant (0.691)

Anti-allergic (0.618)
Allergic conjunctivitis treatment (0.543)

142 Hepatic disorders treatment (0.942)
Anti-neoplastic (0.782)

Anti-allergic (0.758)
Anti-asthmatic (0.728)

143 Hepatic disorders treatment (0.930)
Anti-neoplastic (0.753)

Anti-allergic (0.711)
Allergic conjunctivitis treatment (0.597)

144 Anti-neoplastic (0.888)
Apoptosis agonist (0.761)

Anti-inflammatory (0.815)
Anti-fungal (0.629)

145 Anti-neoplastic (0.907)
Apoptosis agonist (0.673)

Anti-inflammatory (0.824)
Anti-fungal (0.597)

146 Anti-eczematic (0.850)
Anti-neoplastic (0.765)

Allergic conjunctivitis treatment (0.649)
Anti-allergic (0.641)

147 Anti-eczematic (0.850)
Anti-pruritic (0.787)

Allergic conjunctivitis treatment (0.649)
Anti-allergic (0.641)

148 Anti-protozoal (0.956)
Genital warts treatment (0.824)

Anti-neoplastic (0.761)
Anti-metastatic (0.530)

149 Anti-protozoal (0.954)
Genital warts treatment (0.805)

Anti-neoplastic (0.759)
Apoptosis agonist (0.540)

150 Anti-protozoal (0.958)
Anti-protozoal (Plasmodium) (0.953)

Genital warts treatment (0.798)
Anti-neoplastic (0.766)

151 Insulin promoter (0.984)
Cytostatic (0.907)

Anti-eczematic (0.907)
Anti-fungal (0.752)

152 Insulin promoter (0.982)
Cytostatic (0.921)

Anti-eczematic (0.919)
Macular degeneration treatment (0.912)

153 Anti-eczematic (0.922)
Macular degeneration treatment (0.913)

Anti-neoplastic (0.868)
Cytostatic (0.866)

* Only activities with Pa > 0.7 are shown.
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Figure 29. A 3D graph illustrating the predicted and calculated insulin promoter activity of chlo-
rinated steroids, specifically compounds 131, 135, 136, and 137. The graph provides insights into
the relationship between the activity of these compounds and their potential efficacy in promoting
insulin production. Insulin promoter activity refers to the ability of a compound to enhance the
production or secretion of insulin, a hormone that plays a crucial role in regulating blood sugar
levels. Compounds with insulin promoter activity can help improve glucose metabolism and enhance
insulin signaling, which is beneficial for individuals with conditions such as diabetes. The predicted
and calculated activity values displayed on the graph represent the potency or effectiveness of the
chlorinated steroids in terms of their insulin promoter properties. With a confidence level of over
98%, the graph indicates a high degree of certainty in the accuracy of the predicted and calculated
activity values. The exploration of chlorinated steroids for their insulin promoter activity holds
significant promise in the field of diabetes research. Identifying compounds that can enhance insulin
production or secretion can contribute to the development of new strategies for managing diabetes
and improving glycemic control.

Unusual 15,21-cyclowithanolides of the norbornane type, jaborosalactols 21 (138) and
22 (139), were isolated from Jaborosa bergii [178]. Furthermore, the acid hydrolysate of a
methanolic extract of Tubocapsicum anomalum contained TH-6 (140) [179]. These discover-
ies highlight the occurrence of chlorine-containing steroids in plants, particularly in the
Solanaceae family. The identification and characterization of these compounds contribute
to our understanding of the chemical diversity of natural products and their potential
biological activities. Further research is needed to explore the mechanisms of action and
therapeutic applications of these chlorine-containing steroids in various fields, including
medicine and agriculture.

A group of spiranoid withanolides with a 17(20)-ene-22-keto system, namely jaborosalac-
tones 3 (142) and 6 (143), were isolated from Jaborosa runcinata collected in Argentina [180].
These compounds represent chlorinated steroids with unique structural features. Additionally,
jaborosalactone 10 (141), presented in a 3D graph in Figure 30, was found in both J. runcinata
and J. odonelliana [181]. This compound further expands our understanding of the chemical
diversity within the Jaborosa genus.
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Figure 30. A 3D graph depicting the predicted and calculated activity of chlorinated steroids,
specifically compounds 141, 142, and 143, as potential treatments for liver disease. The graph
provides insights into the relationship between the activity of these compounds and their potential
efficacy in treating liver diseases. Liver disease refers to a wide range of conditions that affect the
liver, impairing its normal functioning. These conditions can include liver inflammation (hepatitis),
fatty liver disease, cirrhosis, liver cancer, and others. Treatment options for liver disease are diverse,
including medications that can help manage symptoms, slow down disease progression, or promote
liver regeneration. The predicted and calculated activity values displayed on the graph represent
the potency or effectiveness of the chlorinated steroids in terms of their activity against liver disease.
With a confidence level of over 93%, the graph indicates a high degree of certainty in the accuracy of
the predicted and calculated activity values. The exploration of chlorinated steroids for their potential
therapeutic effects in liver disease is an area of active research. These compounds may interact with
various molecular targets and pathways involved in liver function, inflammation, and regeneration,
potentially offering benefits in the management of liver diseases.

Two chlorinated 24,25-epoxy-γ-lactols (144 and 145) were isolated from plants of
Jaborosa parviflora [182]. These compounds possess a chlorine atom and an epoxy group
within their structures, contributing to their distinctive properties. Furthermore, the chloro-
hydrins jaborosalactone 42 (146) and jaborosalactone 49 (147) were detected in Jaborosa
caulescens var. bipinnatifida [183] and Jaborosa laciniata [184]. These compounds exhibit a
chlorohydrin moiety, further enhancing the chemical diversity within the Jaborosa species.

A group of constituents called physalins, which belong to the
13,14-seco-16,24-cycloergostane class of compounds, have been identified in extracts of
Brachistus stramoniifolius, Margaranthus solanaceous (sub nom. Physalis solanaceous), and
Schraderanthus viscosus (sub nom. Saracha viscosa) [185–187]. These compounds, including
physalins 148, 149, 150, and 151 (the 3D graph is shown in Figure 31), exhibit unique
structural characteristics within the 13,14-seco-16,24-cycloergostane framework.
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Figure 31. A 3D graph illustrating the predicted and calculated anti-protozoal activity of chlorinated
steroids, specifically compounds 148, 149, and 150. The graph provides insights into the relationship
between the activity of these compounds and their potential efficacy in inhibiting protozoan parasites.
Anti-protozoal activity refers to the ability of a compound to inhibit the growth or survival of
protozoan parasites, which are single-celled organisms that can cause various infectious diseases
in humans and animals. Protozoan parasites can cause diseases such as malaria, leishmaniasis,
trypanosomiasis, and toxoplasmosis, among others. The predicted and calculated activity values
depicted on the graph represent the potency or effectiveness of the chlorinated steroids in terms
of their anti-protozoal properties. With a confidence level of over 95%, the graph indicates a high
degree of certainty in the accuracy of the predicted and calculated activity values. The exploration of
chlorinated steroids for their anti-protozoal activity is of great interest in the field of parasitology and
drug discovery. Identifying compounds that can effectively target and inhibit protozoan parasites
can lead to the development of new treatments for various protozoal infections.

Two withanolides with a hemiketal bridge between what was originally ketone func-
tions at C-12 and C-22 have also been discovered. Upon formation of the D-lactone, these
compounds, known as 152 and 153, were detected and identified from Jaborosa rotacea [188].
These compounds demonstrate a distinct structural arrangement, featuring a six-membered
ring with a β-oriented hydroxy group at C-12 and a spiroketal at C-22. Figures 28 and 32
showcase the structures of various steroids, providing an overview of the diversity within
the class. Furthermore, Table 1 presents the biological activities associated with plant chlo-
rinated steroids, highlighting their cytostatic, anti-neoplastic, anti-eczematic, anti-diabetic,
anti-bacterial, and other activities. These chlorinated steroids exhibit a range of characteris-
tic biological activities, indicating their potential significance in various fields, including
medicine, pharmacology, and agriculture. However, it is important to conduct further
research, including in vitro and in vivo studies, to fully understand the mechanisms of
action, therapeutic potential, and safety profile of these compounds.
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4.2. Halogenated Steroids Derived from Marine Sources

Halogenated steroids derived from marine sources are natural compounds that contain
halogen atoms (such as chlorine, bromine, or iodine) and are obtained from various marine
organisms. These marine organisms can include algae, sponges, corals, mollusks, and other
marine invertebrates. Halogenated steroids from marine sources exhibit diverse chemical
structures and biological activities, making them of interest in the fields of pharmacology
and drug discovery [143,145,147,154].

Strong cytotoxic chlorinated steroids known as clionastatins A (154) and B (155) have
been discovered in the burrowing sponge Cliona nigricans. The structures of marine steroids
can be observed in Figure 32 and activity see in Table 8. These remarkable compounds
contain tri- and tetrachlorinated androstane derivatives, respectively. They are considered
the first polyhalogenated steroids found in a living organism, whether marine or terrestrial,
and represent the first instances of halogenated androstanes in nature [189]. Clionastatins
A and B exhibit potent cytotoxic activity, making them of significant interest in the field of
cancer research and drug development. These compounds have shown the ability to inhibit
the growth of cancer cells in vitro and have demonstrated promising anti-cancer potential.

The discovery of clionastatins A and B highlights the unique chemistry and biodiver-
sity found in marine organisms. These compounds contribute to our understanding of the
natural products derived from marine sources and their potential therapeutic applications.
Further research is needed to elucidate the precise mechanisms of action and therapeutic
potential of clionastatins A and B, as well as to explore their structure–activity relation-
ships. Investigating these compounds can provide insights into the development of novel
anti-cancer agents and inspire the discovery of additional halogenated steroids derived
from marine organisms.

Aragusterol C (156), a chlorinated steroid, was isolated from an Okinawan marine
sponge of the genus Xestospongia sp. This compound exhibited strong inhibitory effects
on the proliferation of KB cells in vitro. Furthermore, it demonstrated potent in vivo anti-
tumor activity against L1210 cells in mice [190]. The distribution of biological activity
percentages for aragusterol C is depicted in Figure 33. Another compound, aragusteroketal
C (157), which is a steroid with a dimethylketal structure, was also isolated from the same
sponge. This chlorinated steroid displayed cytotoxic activity against the KB tumor cell line,
with an IC50 value of 4 ng/mL [191]. Additionally, a chlorinated steroid (158) was isolated
from the soft coral Sinularia brassica. This coral-derived compound offers unique structural
and chemical characteristics [192]. The coral sample associated with this compound is
shown in Figure 34.

Table 8. Biological activities of halogenated steroids (154–175).

No. Dominated Biological Activity (Pa) * Additional Predicted Activities (Pa) *

154 Anti-neoplastic (0.860)
Prostate disorders treatment (0.781)

Bone diseases treatment (0.722)
Anti-inflammatory (0.639)

155 Anti-neoplastic (0.894)
Prostate disorders treatment (0.799)

Bone diseases treatment (0.787)
Anti-inflammatory (0.731)

156

Anti-neoplastic (0.934)
Prostate cancer treatment (0.885)
Anti-neoplastic (sarcoma) (0.875)
Anti-neoplastic (renal cancer) (0.820)

Choleretic (0.879)
Anti-hypercholesterolemic (0.828)
Anti-fungal (0.781)
Dermatologic (0.778)

157 Anti-neoplastic (0.922)
Anti-neoplastic (sarcoma) (0.836)

Anti-osteoporotic (0.803)
Bone diseases treatment (0.781)

158 Anti-hypercholesterolemic (0.937)
Atherosclerosis treatment (0.831)

Respiratory analeptic (0.878)
Anti-infertility, female (0.833)

159 Anti-neoplastic (0.881)
Growth stimulant (0.751)

Dermatologic (0.771)
Anti-fungal (0.696)
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Table 8. Cont.

160 Anti-hypercholesterolemic (0.885) Anesthetic general (0.823)

161 Anti-neoplastic (0.810)
Apoptosis agonist (0.776)

Prostate disorders treatment (0.688)
Acute neurologic disorders treatment (0.680)

162

Anti-neoplastic (0.805)
Apoptosis agonist (0.744)
Cytoprotectant (0.690)
Prostate disorders treatment (0.681)

Dermatologic (0.750)
Anti-viral (influenza) (0.738)
Anti-bacterial (0.736)
Anti-fungal (0.728)

163

Anti-neoplastic (0.805)
Apoptosis agonist (0.744)
Cytoprotectant (0.690)
Prostate disorders treatment (0.681)

Dermatologic (0.750)
Anti-viral (influenza) (0.738)
Anti-bacterial (0.736)
Anti-fungal (0.728)

164 Anti-neoplastic (0.851)
Anti-carcinogenic (0.754)

Biliary tract disorders treatment (0.841)
Bone diseases treatment (0.725)

165 Anti-neoplastic (0.882)
Cytostatic (0.793)

Anti-bacterial (0.736)
Anti-fungal (0.695)

166 Anti-neoplastic (0.822)
Cytostatic (0.782)

Anti-parasitic (0.718)
Anti-protozoal (0.714)

167 Glucan endo-1,3-b-D-glucosidase inhibitor (0.890) Biliary tract disorders treatment (0.845)

168 Anti-neoplastic (0.884) Anti-inflammatory (0.829)

169 Anti-inflammatory (0.829)
Anti-viral (0.826)

Anti-neoplastic (0.784)
Apoptosis agonist (0.763)

170 Anti-hypercholesterolemic (0.941)
Atherosclerosis treatment (0.831)

Anti-infertility, female (0.833)
Prostate disorders treatment (0.773)

171
Anti-neoplastic (0.912)
Cytoprotectant (0.764)
Prostate disorders treatment (0.767)

Respiratory analeptic (0.894)
Erythropoiesis stimulant (0.776)

172
Anti-neoplastic (0.912)
Cytoprotectant (0.764)
Prostate disorders treatment (0.767)

Respiratory analeptic (0.894)
Erythropoiesis stimulant (0.776)
Apoptosis agonist (0.677)

173
Anti-hypercholesterolemic (0.911)
Myocardial infarction treatment (0.900)
Atherosclerosis treatment (0.811)

Apoptosis agonist (0.862)
Anti-neoplastic (0.846)
Prostate disorders treatment (0.823)

174 Respiratory analeptic (0.911)
Myocardial infarction treatment (0.906)

Anti-hypercholesterolemic (0.845)
Anti-diabetic (type 2) (0.669)

175 Myocardial infarction treatment (0.864)
Immunosuppressant (0.734)

Dermatologic (0.785)
Anti-psoriatic (0.728)

* Only activities with Pa > 0.7 are shown.

Cytotoxic chlorinated ketosteroids known as kiheisterones C (159), D (160), and E (161)
were discovered in the extracts of the marine sponge Strongylacedon sp. from Maui [193].
These compounds exhibit cytotoxic activity and represent an intriguing class of chlorinated
ketosteroids derived from a marine source. In addition, unique pentacyclic saturated sester-
penes condensed with a hydroxy-hydroquinone moiety, known as 6′-chlorodisidein (162)
and 6′-bromodisidein (163), have been isolated from the marine sponge Disidea pallescens
in the form of disulfate sodium calcium salts [194]. These compounds possess a distinct
structural arrangement, incorporating both chlorine and bromine atoms. The discovery of
these chlorinated compounds further highlights the chemical diversity and pharmacologi-
cal potential of natural products derived from marine organisms. The cytotoxic and unique
structural characteristics of kiheisterones and disideins offer promising avenues for further
exploration in the fields of cancer research and drug development.
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steroid (169) (c), and steroid (170) was found in starfish Echilaster sepositus (d).
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Chalinulasterol (164), a chlorinated sterol disulfate, was isolated from the Caribbean
sponge Chalinula molitba [195]. This compound represents a unique chlorinated sterol
derivative found in a marine organism. Nakiterpiosinone (165) and nakiterpiosin (166),
two related C-nor-D homosteroids, were identified in MeOH extracts of the sponge Terpios
hoshinota. These compounds have shown potential as anti-cancer agents, particularly in
tumors resistant to existing anti-mitotic agents and dependent on Hedgehog pathway
responses for growth [196,197]. Their discovery highlights the importance of exploring
marine sources for novel compounds with therapeutic potential.

The marine sponge Topsentia sp. yielded a chlorine-containing steroid sulfate (167)
and the first natural iodinated steroid (168) [198]. These compounds showcase the chemi-
cal diversity of halogenated steroids derived from marine sources and contribute to our
understanding of the unique natural products found in marine organisms. Chlorinated
stypotriol triacetate (169) was detected in the dichloromethane extract of the brown alga Sty-
popodium flabelliforme [199]. This compound represents a chlorinated derivative of stypotriol,
a sterol commonly found in brown algae. The identification of chlorinated derivatives
expands our knowledge of the chemical variations within marine sterols. Furthermore, the
(3β,5α,22R,23S)-22-chlorocholesta-8,14-diene-3,23-diol (170) was found in MeOH-CHCl3
extracts of the starfish Echinaster sepositus [200]. This chlorinated steroid exhibits a unique
structural arrangement and represents an interesting discovery in the field of marine natural
products.

Two unique chloro-pregnane steroids (171 and 172) have been isolated from the eastern
Pacific octocoral Carijoa multiflora [201]. These compounds exhibit distinct structures and
represent novel chlorinated steroids found in the marine environment. The 3D graph
depicting the predicted and calculated activity for compound 171 is shown in Figure 35.
In addition, three chlorinated steroids, namely yonarasterols G (173), H (174), and I (175),
were discovered in MeOH extracts of the Okinawan soft coral Clavularia viridis [202]. These
compounds contribute to the growing repertoire of chlorinated steroids derived from
marine sources. These compounds exhibit diverse chemical architectures and display
unique halogenation patterns that contribute to their biological activities. The biological
activities of marine halogenated steroids are varied, with anti-tumor, anti-fungal, anti-
cancer, and anti-bacterial activities being characteristic among the compounds. Particularly,
anti-cancer activity appears to be a common feature observed in the presented steroids.
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steroids (156, 157, and 171) derived from marine sources. Anti-neoplastic activity refers to the ability
of a substance to inhibit or prevent the growth and spread of cancer cells. It is a crucial characteristic
for potential cancer treatments. The graph provides valuable insights into the relationship between
the structural features of these halogenated steroids and their potential effectiveness as anti-neoplastic
agents. The predicted and calculated activity values depicted on the graph represent the potency
or efficacy of these compounds for inhibiting the growth and proliferation of cancer cells. With
a confidence level of over 92%, the graph indicates a high degree of certainty in the accuracy of
the predicted and calculated anti-neoplastic activity values. This suggests that these halogenated
steroids hold promise as potential candidates for further investigation as anti-cancer agents. The
exploration of halogenated steroids derived from marine sources for their anti-neoplastic activity is
of great interest in cancer research and drug development. Natural compounds with anti-neoplastic
properties offer potential alternatives or adjuncts to traditional cancer therapies.

5. Conclusions

This comprehensive review has explored the diverse range of biological activity and
structural variations found within steroids and related isoprenoid lipids. The analysis
encompassed various natural compounds, including steroids with aromatic ring(s), steroid
phosphate esters from marine invertebrates, and steroids bearing halogen atoms (I, Br,
or Cl). These compounds are derived from sources such as fungi, fungal endophytes,
plants, algae, and marine invertebrates. Through an examination of referenced literature
sources, their biological activity was evaluated through in vivo and in vitro studies, as
well as employing the QSAR method. The findings revealed a multitude of compounds
exhibiting remarkable properties, including strong anti-neoplastic, anti-proliferative, anti-
hypercholesterolemic, anti-Parkinsonian, anti-eczematic, anti-psoriatic, and various other
activities. To enhance comprehension, the review incorporated visual aids such as 3D
graphs illustrating the activity of individual steroids and images showcasing selected
terrestrial or marine organisms. Furthermore, the review provided explanations elucidating
certain types of biological activity associated with these compounds. Overall, the findings
presented in this review not only contribute to the academic scientific knowledge in the
field but also hold practical relevance for the development of pharmacological interventions
and advancements in practical medicine. The review utilized data from various authors
regarding the biological activity of natural steroids. To assess the potential activity of these
steroids, the PASS program was employed. The PASS program utilizes structural features
of compounds to predict their biological activity profiles. By inputting the structural
information of the natural steroids into the program, their potential activity across multiple
predefined activity classes was estimated. However, it is important to note that these
predictions are based solely on structural information and should be validated through
experimental studies.
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